

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Product Status             | Not For New Designs                                                            |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | Н8/300Н                                                                        |
| Core Size                  | 16-Bit                                                                         |
| Speed                      | 20MHz                                                                          |
| Connectivity               | I²C, SCI                                                                       |
| Peripherals                | LVD, POR, PWM, WDT                                                             |
| Number of I/O              | 45                                                                             |
| Program Memory Size        | 56KB (56K x 8)                                                                 |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 4K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                                      |
| Data Converters            | A/D 8x10b                                                                      |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -20°C ~ 75°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 64-LQFP                                                                        |
| Supplier Device Package    | 64-LFQFP (10x10)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/hd64f3687gfpv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Figure 13.27 | Example of Reset Synchronous PWM Mode Operation (OLS0 = OLS1 = 1) | 219 |
|--------------|-------------------------------------------------------------------|-----|
| Figure 13.28 | Example of Reset Synchronous PWM Mode Operation (OLS0 = OLS1 = 0) | 220 |
| Figure 13.29 | Example of Complementar y PWM Mode Setting Procedure              | 222 |
| Figure 13.30 | Canceling Procedure of Complementary PWM Mode                     | 223 |
| Figure 13.31 | Example of Complementary PWM Mode Operation (1)                   | 224 |
| Figure 13.32 | (1) Example of Complementary PWM Mode Operation                   |     |
|              | (TPSC2 = TPSC1 = TPSC0 = 0) (2)                                   | 225 |
| Figure 13.32 | (2) Example of Complementary PWM Mode Operation                   |     |
|              | $(TPSC2 = TPSC1 = TPSC0 \neq 0) (3) \dots$                        | 226 |
| Figure 13.33 | Timing of Overshooting                                            | 227 |
| Figure 13.34 | Timing of Undershooting                                           | 227 |
| Figure 13.35 | Compare Match Buffer Operation                                    | 230 |
| Figure 13.36 | Input Capture Buffer Operation                                    | 231 |
| Figure 13.37 | Example of Buffer Operation Setting Procedure                     | 231 |
| Figure 13.38 | Example of Buffer Operation (1)                                   |     |
|              | (Buffer Operation for Output Compare Register)                    | 232 |
| Figure 13.39 | Example of Compare Match Timing for Buffer Operation              | 233 |
| Figure 13.40 | Example of Buffer Operation (2)                                   |     |
|              | (Buffer Operation for Input Capture Register)                     | 234 |
| Figure 13.41 | Input Capture Timing of Buffer Operation                          | 235 |
| Figure 13.42 | Buffer Operation (3) (Buffer Operation in Complementary           |     |
|              | PWM Mode CMD1 = CMD0 = 1)                                         | 236 |
| Figure 13.43 | Buffer Operation (4) (Buffer Operation in                         |     |
|              | Complementary PWM Mode CMD1 = CMD0 = 1)                           | 237 |
| Figure 13.44 | Example of Output Disable Timing of Timer Z by Writing to TOER    | 238 |
| Figure 13.45 | Example of Output Disable Timing of Timer Z by External Trigger   | 238 |
| Figure 13.46 | Example of Output Inverse Timing of Timer Z by Writing to TFCR    | 239 |
| Figure 13.47 | Example of Output Inverse Timing of Timer Z by Writing to POCR    | 239 |
| Figure 13.48 | IMF Flag Set Timing when Compare Match Occurs                     | 240 |
| Figure 13.49 | IMF Flag Set Timing at Input Capture                              | 241 |
| Figure 13.50 | OVF Flag Set Timing                                               | 241 |
| Figure 13.51 | Status Flag Clearing Timing                                       | 242 |
| Figure 13.52 | Contention between TCNT Write and Clear Operations                | 242 |
| Figure 13.53 | Contention between TCNT Write and Increment Operations            | 243 |
| Figure 13.54 | Contention between GR Write and Compare Match                     | 244 |
| Figure 13.55 | Contention between TCNT Write and Overflow                        | 245 |
| Figure 13.56 | Contention between GR Read and Input Capture                      | 246 |
| Figure 13.57 | Contention between Count Clearing and Increment                   |     |
|              | Operations by Input Capture                                       | 247 |
| Figure 13.58 | Contention between GR Write and Input Capture                     | 248 |

#### Section 1 Overview



Figure 1.2 Internal Block Diagram of H8/3687N (EEPROM Stacked Version)

## 2.1 Address Space and Memory Map

The address space of this LSI is 64 kbytes, which includes the program area and the data area. Figures 2.1 show the memory map.



Figure 2.1 Memory Map (1)

### 3.2.1 Interrupt Edge Select Register 1 (IEGR1)

IEGR1 selects the direction of an edge that generates interrupt requests of pins  $\overline{\text{NMI}}$  and  $\overline{\text{IRQ3}}$  to  $\overline{\text{IRQ0}}$ .

| Bit    | Bit Name | Initial<br>Value | R/W | Description                                                      |
|--------|----------|------------------|-----|------------------------------------------------------------------|
| 7      | NMIEG    | 0                | R/W | NMI Edge Select                                                  |
|        |          |                  |     | 0: Falling edge of $\overline{\text{NMI}}$ pin input is detected |
|        |          |                  |     | 1: Rising edge of NMI pin input is detected                      |
| 6 to 4 |          | All 1            |     | Reserved                                                         |
|        |          |                  |     | These bits are always read as 1.                                 |
| 3      | IEG3     | 0                | R/W | IRQ3 Edge Select                                                 |
|        |          |                  |     | 0: Falling edge of IRQ3 pin input is detected                    |
|        |          |                  |     | 1: Rising edge of IRQ3 pin input is detected                     |
| 2      | IEG2     | 0                | R/W | IRQ2 Edge Select                                                 |
|        |          |                  |     | 0: Falling edge of IRQ2 pin input is detected                    |
|        |          |                  |     | 1: Rising edge of IRQ2 pin input is detected                     |
| 1      | IEG1     | 0                | R/W | IRQ1 Edge Select                                                 |
|        |          |                  |     | 0: Falling edge of IRQ1 pin input is detected                    |
|        |          |                  |     | 1: Rising edge of IRQ1 pin input is detected                     |
| 0      | IEG0     | 0                | R/W | IRQ0 Edge Select                                                 |
|        |          |                  |     | 0: Falling edge of IRQ0 pin input is detected                    |
|        |          |                  |     | 1: Rising edge of IRQ0 pin input is detected                     |

8. The maximum number of repetitions of the program/program-verify sequence of the same bit is 1,000.



Figure 7.3 Program/Program-Verify Flowchart

#### 9.2.2 Port Data Register 2 (PDR2)

| Bit    | Bit Name | Initial<br>Value | R/W | Description                                             |
|--------|----------|------------------|-----|---------------------------------------------------------|
| 7 to 5 | _        | All 1            | _   | Reserved                                                |
|        |          |                  |     | These bits are always read as 1.                        |
| 4      | P24      | 0                | R/W | PDR2 stores output data for port 2 pins.                |
| 3      | P23      | 0                | R/W | If PDR2 is read while PCR2 bits are set to 1, the value |
| 2      | P22      | 0                | R/W | stored in PDR2 is read. If PDR2 is read while PCR2 bits |
| 1      | P21      | 0                | R/W | value stored in PDR2.                                   |
| 0      | P20      | 0                | R/W |                                                         |
|        |          |                  |     |                                                         |

PDR2 is a general I/O port data register of port 2.

#### 9.2.3 Port Mode Register 3 (PMR3)

PMR3 selects the CMOS output or NMOS open-drain output for port 2.

| Bit    | Bit Name | Initial<br>Value | R/W | Description                                                                                                            |
|--------|----------|------------------|-----|------------------------------------------------------------------------------------------------------------------------|
| 7 to 5 | _        | All 0            | _   | Reserved                                                                                                               |
|        |          |                  |     | These bits are always read as 0.                                                                                       |
| 4      | POF24    | 0                | R/W | When the bit is set to 1, the corresponding pin is cut off                                                             |
| 3      | POF23    | 0                | R/W | by PMOS and it functions as the NMOS open-drain<br>output. When cleared to 0, the pin functions as the CMOS<br>output. |
| 2 to 0 | _        | All 1            |     | Reserved                                                                                                               |
|        |          |                  |     | These bits are always read as 1.                                                                                       |

TCORA and TCNTV are compared at all times. When the TCORA and TCNTV contents match, CMFA is set to 1 in TCSRV. If CMIEA is also set to 1 in TCRV0, a CPU interrupt is requested. Note that they must not be compared during the T3 state of a TCORA write cycle.

Timer output from the TMOV pin can be controlled by the identifying signal (compare match A) and the settings of bits OS3 to OS0 in TCSRV.

TCORA and TCORB are initialized to H'FF.

#### 12.3.3 Timer Control Register V0 (TCRV0)

TCRV0 selects the input clock signals of TCNTV, specifies the clearing conditions of TCNTV, and controls each interrupt request.

|     |          | Initial |     |                                                                                                                                          |
|-----|----------|---------|-----|------------------------------------------------------------------------------------------------------------------------------------------|
| Bit | Bit Name | Value   | R/W | Description                                                                                                                              |
| 7   | CMIEB    | 0       | R/W | Compare Match Interrupt Enable B                                                                                                         |
|     |          |         |     | When this bit is set to 1, interrupt request from the CMFB bit in TCSRV is enabled.                                                      |
| 6   | CMIEA    | 0       | R/W | Compare Match Interrupt Enable A                                                                                                         |
|     |          |         |     | When this bit is set to 1, interrupt request from the CMFA bit in TCSRV is enabled.                                                      |
| 5   | OVIE     | 0       | R/W | Timer Overflow Interrupt Enable                                                                                                          |
|     |          |         |     | When this bit is set to 1, interrupt request from the OVF bit in TCSRV is enabled.                                                       |
| 4   | CCLR1    | 0       | R/W | Counter Clear 1 and 0                                                                                                                    |
| 3   | CCLR0    | 0       | R/W | These bits specify the clearing conditions of TCNTV.                                                                                     |
|     |          |         |     | 00: Clearing is disabled                                                                                                                 |
|     |          |         |     | 01: Cleared by compare match A                                                                                                           |
|     |          |         |     | 10: Cleared by compare match B                                                                                                           |
|     |          |         |     | <ol> <li>Cleared on the rising edge of the TMRIV pin. The<br/>operation of TCNTV after clearing depends on TRGE<br/>in TCRV1.</li> </ol> |
| 2   | CKS2     | 0       | R/W | Clock Select 2 to 0                                                                                                                      |
| 1   | CKS1     | 0       | R/W | These bits select clock signals to input to TCNTV and the                                                                                |
| 0   | CKS0     | 0       | R/W | counting condition in combination with ICKS0 in TCRV1.                                                                                   |
|     |          |         |     | Refer to table 12.2.                                                                                                                     |

# 12.5 Timer V Application Examples

### 12.5.1 Pulse Output with Arbitrary Duty Cycle

Figure 12.9 shows an example of output of pulses with an arbitrary duty cycle.

- 1. Set bits CCLR1 and CCLR0 in TCRV0 so that TCNTV will be cleared by compare match with TCORA.
- 2. Set bits OS3 to OS0 in TCSRV so that the output will go to 1 at compare match with TCORA and to 0 at compare match with TCORB.
- 3. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clock source.
- 4. With these settings, a waveform is output without further software intervention, with a period determined by TCORA and a pulse width determined by TCORB.



Figure 12.9 Pulse Output Example



#### 13.3.3 Timer PWM Mode Register (TPMR)

TPMR sets the pin to enter PWM mode.

| Bit | Bit Name | Initial<br>Value | R/W | Description                                           |
|-----|----------|------------------|-----|-------------------------------------------------------|
| 7   |          | 1                | _   | Reserved                                              |
|     |          |                  |     | This bit is always read as 1, and cannot be modified. |
| 6   | PWMD1    | 0                | R/W | PWM Mode D1                                           |
|     |          |                  |     | 0: FTIOD1 operates normally                           |
|     |          |                  |     | 1: FTIOD1 operates in PWM mode                        |
| 5   | PWMC1    | 0                | R/W | PWM Mode C1                                           |
|     |          |                  |     | 0: FTIOC1 operates normally                           |
|     |          |                  |     | 1: FTIOC1 operates in PWM mode                        |
| 4   | PWMB1    | 0                | R/W | PWM Mode B1                                           |
|     |          |                  |     | 0: FTIOB1 operates normally                           |
|     |          |                  |     | 1: FTIOB1 operates in PWM mode                        |
| 3   | _        | 1                | _   | Reserved                                              |
|     |          |                  |     | This bit is always read as 1, and cannot be modified. |
| 2   | PWMD0    | 0                | R/W | PWM Mode D0                                           |
|     |          |                  |     | 0: FTIOD0 operates normally                           |
|     |          |                  |     | 1: FTIOD0 operates in PWM mode                        |
| 1   | PWMC0    | 0                | R/W | PWM Mode C0                                           |
|     |          |                  |     | 0: FTIOC0 operates normally                           |
|     |          |                  |     | 1: FTIOC0 operates in PWM mode                        |
| 0   | PWMB0    | 0                | R/W | PWM Mode B0                                           |
|     |          |                  |     | 0: FTIOB0 operates normally                           |
|     |          |                  |     | 1: FTIOB0 operates in PWM mode                        |

When the counter is incremented or decremented, the IMFA flag of channel 0 is set to 1, and when the register is underflowed, the UDF flag of channel 0 is set to 1. After buffer operation has been designated for BR, BR is transferred to GR when the counter is incremented by compare match A0 or when TCNT\_1 is underflowed. If the  $\phi$  or  $\phi/2$  clock is selected by TPSC2 to TPSC0 bits, the OVF flag is not set to 1 at the timing that the counter value changes from H'FFFF to H'0000. If the  $\phi/4$  or  $\phi/8$  clock is selected by TPSC2 to TPSC0 bits, the OVF flag is set to 1.

- 3. Setting GR Value in Complementary PWM Mode: To set the general register (GR) or modify GR during operation in complementary PWM mode, refer to the following notes.
  - A. Initial value
    - a. When other than TPSC2 = TPSC1 = TPSC0 = 0, the GRA\_0 value must be equal to H'FFFC or less. When TPSC2 = TPSC1 = TPSC0 = 0, the GRA\_0 value can be set to H'FFFF or less.
    - b. H'0000 to T 1 (T: Initial value of TCNT0) must not be set for the initial value.
    - c.  $GRA_0 (T 1)$  or more must not be set for the initial value.
    - d. When using buffer operation, the same values must be set in the buffer registers and corresponding general registers.
  - B. Modifying the setting value
    - a. Writing to GR directly must be performed while the TCNT\_1 and TCNT\_0 values should satisfy the following expression:  $H'0000 \le TCNT_1 < previous GR value, and previous GR value < TCNT_0 \le GRA_0$ . Otherwise, a waveform is not output correctly. For details on outputting a waveform with a duty cycle of 0% and 100%, see C., Outputting a waveform with a duty cycle of 0% and 100%.
    - b. Do not write the following values to GR directly. When writing the values, a waveform is not output correctly.

H'0000  $\leq$  GR  $\leq$  T – 1 and GRA\_0 – (T – 1)  $\leq$  GR < GRA\_0 when TPSC2 = TPSC1 = TPSC0 = 0

 $H'0000 < GR \le T-1$  and  $GRA_0 - (T-1) \le GR < GRA_0 + 1$  when TPSC2 = TPSC1 = TPSC0 = 0

- c. Do not change settings of GRA\_0 during operation.
- C. Outputting a waveform with a duty cycle of 0% and 100%
  - a. Buffer operation is not used and TPSC2 = TPSC1 = TPSC0 = 0
     Write H'0000 or a value equal to or more than the GRA\_0 value to GR directly at the timing shown below.
  - To output a 0%-duty cycle waveform, write a value equal to or more than the GRA\_0 value while H'0000 ≤ TCNT\_1 < previous GR value
  - To output a 100%-duty cycle waveform, write H'0000 while previous GR value< TCNT\_0  $\leq$  GRA\_0



Figure 13.41 Input Capture Timing of Buffer Operation

Figures 13.42 and 13.43 show the operation examples when buffer operation has been designated for GRB\_0 and GRD\_0 in complementary PWM mode. These are examples when a PWM waveform of 0% duty is created by using the buffer operation and performing GRD\_0  $\ge$  GRA\_0. Data is transferred from GRD\_0 to GRB\_0 according to the settings of CMD\_0 and CMD\_1 when TCNT\_0 and GRA\_0 are compared and their contents match or when TCNT\_1 underflows. However, when GRD\_0  $\ge$  GRA\_0, data is transferred from GRD\_0 to GRB\_0 when TCNT\_1 underflows regardless of the setting of CMD\_0 and CMD\_1. When GRD\_0 = H'0000, data is transferred from GRD\_0 to GRB\_0 when TCNT\_1 and GRA\_0 are compared and CMD\_1. When GRD\_0 = H'0000, data is transferred from GRD\_0 to GRB\_0 when TCNT\_1 and GRA\_0 are compared and their contents match regardless of the settings of CMD\_0 and CMD\_1. When GRD\_0 = H'0000, data is transferred from GRD\_0 to GRB\_0 when TCNT\_0 and GRA\_0 are compared and their contents match regardless of the settings of CMD\_0 and CMD\_1.







#### 13.4.9 Timer Z Output Timing

The outputs of channels 0 and 1 can be disabled or inverted by the settings of TOER and TOCR and the external level.

1. Output Disable/Enable Timing of Timer Z by TOER: Setting the master enable bit in TOER to 1 disables the output of timer Z. By setting the PCR and PDR of the corresponding I/O port beforehand, any value can be output. Figure 13.44 shows the timing to enable or disable the output of timer Z by TOER.





Figure 16.8 Sample Serial Reception Data Flowchart (Asynchronous Mode) (2)



|     |          | Initial |     |                                                                                               |
|-----|----------|---------|-----|-----------------------------------------------------------------------------------------------|
| Bit | Bit Name | Value   | R/W | Description                                                                                   |
| 3   | CKS3     | 0       | R/W | Transfer Clock Select 3 to 0                                                                  |
| 2   | CKS2     | 0       | R/W | These bits should be set according to the necessary                                           |
| 1   | CKS1     | 0       | R/W | transfer rate (see table 17.2) in master mode. In slave                                       |
| 0   | CKS0     | 0       | R/W | time in transmit mode. The time is 10 $t_{cyc}$ when CKS3 = 0 and 20 $t_{cyc}$ when CKS3 = 1. |

### Table 17.2 Transfer Rate

| Bit 3 | Bit 2 | Bit 1 | Bit 0 | _                                                                                                                                                                                                                                                                                                      | image: series of the  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |  |  |
|-------|-------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--|--|
| CKS3  | CKS2  | CKS1  | CKS0  | Clock                                                                                                                                                                                                                                                                                                  | φ = 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | φ = 8 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | φ = 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | φ = 16 MHz | φ = 20 MHz |  |  |
| 0     | 0     | 0     | 0     | ф/28                                                                                                                                                                                                                                                                                                   | 179 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 286 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 357 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 571 kHz    | 714 kHz    |  |  |
|       |       |       | 1     | ф/40                                                                                                                                                                                                                                                                                                   | 125 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400 kHz    | 500 kHz    |  |  |
|       |       | 1     | 0     | ф/48                                                                                                                                                                                                                                                                                                   | 104 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 167 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 208 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 333 kHz    | 417 kHz    |  |  |
|       |       |       | 1     | ф/64                                                                                                                                                                                                                                                                                                   | Image: Problem index inde |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |  |  |
|       | 1     | 0     | 0     | φ/80                                                                                                                                                                                                                                                                                                   | 62.5 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transfer Rate= 5 MHz\$\$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |  |  |
|       |       |       | 1     | \$\phi\$/100         50.0 kHz         80.0 kHz         100 kHz         160 kHz         200           \$\phi\$/112         44.6 kHz         71.4 kHz         89.3 kHz         143 kHz         179           \$\phi\$/128         39.1 kHz         62.5 kHz         78.1 kHz         125 kHz         156 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |  |  |
|       |       | 1     | 0     | ф/112                                                                                                                                                                                                                                                                                                  | 143 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |  |  |
|       |       |       | 1     | ф <b>/128</b>                                                                                                                                                                                                                                                                                          | 39.1 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62.5 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78.1 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125 kHz    | 156 kHz    |  |  |
| 1     | 0     | 0     | 0     | ф/56                                                                                                                                                                                                                                                                                                   | 89.3 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 179 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 286 kHz    | 357 kHz    |  |  |
|       |       |       | 1     | φ/80                                                                                                                                                                                                                                                                                                   | 62.5 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200 kHz    | 250 kHz    |  |  |
|       |       | 1     | 0     | ф/96                                                                                                                                                                                                                                                                                                   | 52.1 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.3 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 167 kHz    | 208 kHz    |  |  |
|       |       |       | 1     | ф/128                                                                                                                                                                                                                                                                                                  | 39.1 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62.5 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78.1 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125 kHz    | 156 kHz    |  |  |
|       | 1     | 0     | 0     | ф <b>/16</b> 0                                                                                                                                                                                                                                                                                         | 31.3 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62.5 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 kHz    | 125 kHz    |  |  |
|       |       |       | 1     | ф/200                                                                                                                                                                                                                                                                                                  | 25.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.0 kHz   | 100 kHz    |  |  |
|       |       | 1     | 0     | ф/224                                                                                                                                                                                                                                                                                                  | 89.3 kHz       143 kHz       179 kHz       286 kHz       357 kHz         62.5 kHz       100 kHz       125 kHz       200 kHz       250 kHz         52.1 kHz       83.3 kHz       104 kHz       167 kHz       208 kHz         39.1 kHz       62.5 kHz       78.1 kHz       125 kHz       156 kHz         31.3 kHz       50.0 kHz       62.5 kHz       100 kHz       125 kHz         25.0 kHz       40.0 kHz       50.0 kHz       80.0 kHz       100 kHz         22.3 kHz       35.7 kHz       44.6 kHz       71.4 kHz       89.3 kHz         19.5 kHz       31.3 kHz       39.1 kHz       62.5 kHz       78.1 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |  |  |
|       |       |       | 1     | ф <b>/</b> 256                                                                                                                                                                                                                                                                                         | 19.5 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.3 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\phi = 8 \text{ MHz}$ $\phi = 10 \text{ MHz}$ $\phi = 16 \text{ MHz}$ $\phi = 20 \text{ MHz}$ 286 kHz357 kHz571 kHz714 kHz200 kHz250 kHz400 kHz500 kHz167 kHz208 kHz333 kHz417 kHz125 kHz156 kHz250 kHz313 kHz100 kHz125 kHz200 kHz250 kHz100 kHz125 kHz200 kHz250 kHz80.0 kHz100 kHz160 kHz200 kHz71.4 kHz89.3 kHz143 kHz179 kHz62.5 kHz78.1 kHz125 kHz156 kHz100 kHz125 kHz200 kHz250 kHz100 kHz125 kHz200 kHz357 kHz100 kHz125 kHz200 kHz250 kHz100 kHz125 kHz200 kHz250 kHz100 kHz125 kHz100 kHz250 kHz100 kHz125 kHz100 kHz250 kHz33.3 kHz104 kHz167 kHz208 kHz62.5 kHz78.1 kHz125 kHz156 kHz50.0 kHz50.0 kHz80.0 kHz100 kHz35.7 kHz44.6 kHz71.4 kHz89.3 kHz31.3 kHz39.1 kHz62.5 kHz78.1 kHz |            |            |  |  |





Figure 19.6 Random Address Read Operation

#### 3. Sequential Read

This is a mode to read the data sequentially. Data is sequential read by either a current address read or a random address read. If the EEPROM receives acknowledgement "0" after 1-byte read data is output, the read address is incremented and the next 1-byte read data are coming out. Data is output sequentially by incrementing addresses as long as the EEPROM receives acknowledgement "0" after the data is output. The address will roll over and returns address zero if it reaches the last address H'01FF. The sequential read can be continued after roll over. The sequential read is terminated if the EEPROM receives acknowledgement "1" and a following stop condition as the same manner as in the random address read.

The condition of a sequential read when the current address read is used is shown in figure 19.7.



Figure 19.7 Sequential Read Operation (when current address read is used)

## 21.2 When Not Using Internal Power Supply Step-Down Circuit

When the internal power supply step-down circuit is not used, connect the external power supply to the  $V_{cL}$  pin and  $V_{cc}$  pin, as shown in figure 21.2. The external power supply is then input directly to the internal power supply. The permissible range for the power supply voltage is 3.0 V to 3.6 V. Operation cannot be guaranteed if a voltage outside this range (less than 3.0 V or more than 3.6 V) is input.



Figure 21.2 Power Supply Connection when Internal Step-Down Circuit is Not Used



### 22.2 Register Bits

The addresses and bit names of the registers in the on-chip peripheral modules are listed below. The 16-bit register is indicated in two rows, 8 bits for each row.

| Register<br>Name | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3                      | Bit 2   | Bit 1   | Bit 0   | Module<br>Name |
|------------------|---------|---------|---------|---------|----------------------------|---------|---------|---------|----------------|
| _                | _       | _       | _       | _       | _                          | _       | _       | _       | _              |
| TCR_0            | CCLR2   | CCLR1   | CCLR0   | CKEG1   | CKEG0                      | TPSC2   | TPSC1   | TPSC0   | Timer Z        |
| TIORA_0          | _       | IOB2    | IOB1    | IOB0    |                            | IOA2    | IOA1    | IOA0    | -              |
| TIORC_0          | _       | IOD2    | IOD1    | IOD0    | _                          | IOC2    | IOC1    | IOC0    | -              |
| TSR_0            | _       | _       | _       | OVF     | IMFD                       | IMFC    | IMFB    | IMFA    | -              |
| TIER_0           | _       | _       | _       | OVIE    | IMIED                      | IMIEC   | IMIEB   | IMIEA   | -              |
| POCR_0           | _       |         | _       |         |                            | POLD    | POLC    | POLB    |                |
| TCNT_0           | TCNT0H7 | TCNT0H6 | TCNT0H5 | TCNT0H4 | TCNT0H3                    | TCNT0H2 | TCNT0H1 | TCNT0H0 | -              |
|                  | TCNT0L7 | TCNT0L6 | TCNT0L5 | TCNT0L4 | L4 TCNT0L3 TCNT0L2 TCNT0L1 |         | TCNT0L0 | -       |                |
| GRA_0            | GRA0H7  | GRA0H6  | GRA0H5  | GRA0H4  | GRA0H3                     | GRA0H2  | GRA0H1  | GRA0H0  |                |
|                  | GRA0L7  | GRA0L6  | GRA0L5  | GRA0L4  | GRA0L3                     | GRA0L2  | GRA0L1  | GRA0L0  | -              |
| GRB_0            | GRB0H7  | GRB0H6  | GRB0H5  | GRB0H4  | GRB0H3                     | GRB0H2  | GRB0H1  | GRB0H0  | -              |
|                  | GRB0L7  | GRB0L6  | GRB0L5  | GRB0L4  | 4 GRB0L3 GRE               |         | GRB0L1  | GRB0L0  | -              |
| GRC_0            | GRC0H7  | GRC0H6  | GRC0H5  | GRC0H4  | GRC0H3                     | GRC0H2  | GRC0H1  | GRC0H0  | -              |
|                  | GRC0L7  | GRC0L6  | GRC0L5  | GRC0L4  | GRC0L3                     | GRC0L2  | GRC0L1  | GRC0L0  | -              |
| GRD_0            | GRD0H7  | GRD0H6  | GRD0H5  | GRD0H4  | GRD0H3                     | GRD0H2  | GRD0H1  | GRD0H0  | -              |
|                  | GRD0L7  | GRD0L6  | GRD0L5  | GRD0L4  | GRD0L3                     | GRD0L2  | GRD0L1  | GRD0L0  | -              |
| TCR_1            | CCLR2   | CCLR1   | CCLR0   | CKEG1   | CKEG0                      | TPSC2   | TPSC1   | TPSC0   | -              |
| TIORA_1          | _       | IOB2    | IOB1    | IOB0    | _                          | IOA2    | IOA1    | IOA0    | -              |
| TIORC_1          | _       | IOD2    | IOD1    | IOD0    | _                          | IOC2    | IOC1    | IOC0    | -              |
| TSR_1            | _       |         | UDF     | OVF     | IMFD                       | IMFC    | IMFB    | IMFA    | -              |
| TIER_1           | _       | _       | _       | OVIE    | IMIED                      | IMIEC   | IMIEB   | IMIEA   | -              |
| POCR_1           | _       | _       | _       | _       | _                          | POLD    | POLC    | POLB    | -              |
| TCNT_1           | TCNT1H7 | TCNT1H6 | TCNT1H5 | TCNT1H4 | TCNT1H3                    | TCNT1H2 | TCNT1H1 | TCNT1H0 | -              |
|                  | TCNT1L7 | TCNT1L6 | TCNT1L5 | TCNT1L4 | TCNT1L3                    | TCNT1L2 | TCNT1L1 | TCNT1L0 | -              |
| GRA_1            | GRA1H7  | GRA1H6  | GRA1H5  | GRA1H4  | GRA1H3                     | GRA1H2  | GRA1H1  | GRA1H0  | -              |
|                  | GRA1L7  | GRA1L6  | GRA1L5  | GRA1L4  | GRA1L3                     | GRA1L2  | GRA1L1  | GRA1L0  | -              |



#### 23.2.7 EEPROM Characteristics

### Table 23.9 EEPROM Characteristics

 $V_{cc}$  = 3.0 V to 5.5 V,  $V_{ss}$  = 0.0 V,  $T_a$  = -20°C to +75°C, unless otherwise specified.

|                                             |                   | Test      |      | Value |     | Reference |             |
|---------------------------------------------|-------------------|-----------|------|-------|-----|-----------|-------------|
| Item                                        | Symbol            | Condition | Min  | Тур   | Max | Unit      | Figure      |
| SCL input cycle time                        | t <sub>scl</sub>  |           | 2500 |       |     | ns        | Figure 23.7 |
| SCL input high pulse width                  | t <sub>sclh</sub> |           | 600  | _     |     | μs        | -           |
| SCL input low pulse width                   | t <sub>scll</sub> |           | 1200 |       |     | ns        | _           |
| SCL, SDA input spike pulse removal time     | t <sub>sp</sub>   |           | _    | _     | 50  | ns        | _           |
| SDA input bus-free time                     | t <sub>BUF</sub>  |           | 1200 | _     |     | ns        | _           |
| Start condition input hold time             | t <sub>stah</sub> |           | 600  | —     |     | ns        | -           |
| Retransmit start condition input setup time | t <sub>stas</sub> |           | 600  | —     | —   | ns        | _           |
| Stop condition input setup time             | t <sub>stos</sub> |           | 600  |       |     | ns        | -           |
| Data input setup time                       | t <sub>sdas</sub> |           | 160  | _     |     | ns        | -           |
| Data input hold time                        | t <sub>sdah</sub> |           | 0    |       |     | ns        | _           |
| SCL, SDA input fall time                    | t <sub>sf</sub>   |           | _    |       | 300 | ns        | _           |
| SDA input rise time                         | t <sub>sr</sub>   |           | _    |       | 300 | ns        | _           |
| Data output hold time                       | t <sub>DH</sub>   |           | 50   | _     | _   | ns        | -           |
| SCL, SDA capacitive load                    | C,                |           | 0    | _     | 400 | pF        | _           |
| Access time                                 | t <sub>AA</sub>   |           | 100  | _     | 900 | ns        | -           |
| Cycle time at writing*                      | t <sub>wc</sub>   |           |      |       | 10  | ms        |             |
| Reset release time                          | t <sub>res</sub>  |           |      |       | 13  | ms        | _           |

Note: \* Cycle time at writing is a time from the stop condition to write completion (internal control).

|       |                   |   |   | A<br>Inst | ddr | essi<br>tion | ing<br>Lei | Moc<br>ngth | le a<br>n (by | nd<br>/tes | ) |                                                                                                                                             |   |     |         |      |     |    | No<br>Stat | . of<br>tes <sup>*1</sup> |
|-------|-------------------|---|---|-----------|-----|--------------|------------|-------------|---------------|------------|---|---------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---------|------|-----|----|------------|---------------------------|
|       | Mnemonic          |   | ð | E         | ERn | (d, ERn)     | -ERn/@ERn+ | aa          | (d, PC)       | 0 @aa      |   | Operation                                                                                                                                   |   | Con | ditio   | n Co | ode | 1  | ormal      | dvanced                   |
|       |                   | 0 | # | 2         | ø   | ø            | ø          | ø           | ø             | ø          |   |                                                                                                                                             | 1 | н   | N       | Z    | V   | С  | z          | •                         |
| DEC   | DEC.L #1, ERd     | L |   | 2         |     |              |            |             |               |            |   | ERd32–1 $\rightarrow$ ERd32                                                                                                                 | - | -   | ↓↓<br>↓ |      |     | -  |            | 2                         |
|       | DEC.L #2, ERd     | L |   | 2         |     |              |            |             |               |            |   | ERd32–2 $\rightarrow$ ERd32                                                                                                                 | — | -   | ₽       | ↓ Û  | ↓   | -  | 1          | 2                         |
| DAS   | DAS.Rd            | B |   | 2         |     |              |            |             |               |            |   | Rd8 decimal adjust $\rightarrow$ Rd8                                                                                                        | - | *   | \$      | ↓    | *   | -  | 2          | 2                         |
| MULXU | MULXU. B Rs, Rd   | В |   | 2         |     |              |            |             |               |            |   | $Rd8 \times Rs8 \rightarrow Rd16$<br>(unsigned multiplication)                                                                              | - | -   | -       | -    | -   | -  | 1          | 4                         |
|       | MULXU. W Rs, ERd  | W |   | 2         |     |              |            |             |               |            |   | $Rd16 \times Rs16 \rightarrow ERd32$<br>(unsigned multiplication)                                                                           | — | —   | -       | -    | -   | -  | 2          | 2                         |
| MULXS | MULXS. B Rs, Rd   | В |   | 4         |     |              |            |             |               |            |   | $Rd8 \times Rs8 \rightarrow Rd16$<br>(signed multiplication)                                                                                | — | -   | \$      | \$   | -   | -  | 1          | 6                         |
|       | MULXS. W Rs, ERd  | W |   | 4         |     |              |            |             |               |            |   | $Rd16 \times Rs16 \rightarrow ERd32$<br>(signed multiplication)                                                                             | — | -   | \$      | \$   | -   | -  | 2          | 4                         |
| DIVXU | DIVXU. B Rs, Rd   | В |   | 2         |     |              |            |             |               |            |   | $\begin{array}{l} Rd16 \div Rs8 \rightarrow Rd16 \\ (RdH: remainder, \\ RdL: quotient) \\ (unsigned division) \end{array}$                  |   | -   | (6)     | (7)  | _   | -  | 1          | 4                         |
|       | DIVXU. W Rs, ERd  | W |   | 2         |     |              |            |             |               |            |   | ERd32 ÷ Rs16 → ERd32<br>(Ed: remainder,<br>Rd: quotient)<br>(unsigned division)                                                             | _ | _   | (6)     | (7)  |     | -  | 2          | .2                        |
| DIVXS | DIVXS. B Rs, Rd   | В |   | 4         |     |              |            |             |               |            |   | Rd16 $\div$ Rs8 $\rightarrow$ Rd16<br>(RdH: remainder,<br>RdL: quotient)<br>(signed division)                                               | _ | _   | (8)     | (7)  | _   | -  | 1          | 6                         |
|       | DIVXS. W Rs, ERd  | W |   | 4         |     |              |            |             |               |            |   | $\label{eq:result} \begin{array}{l} ERd32 \div Rs16 \rightarrow ERd32 \\ (Ed: remainder, \\ Rd: quotient) \\ (signed division) \end{array}$ | _ | _   | (8)     | (7)  | _   | -  | 2          | .4                        |
| CMP   | CMP.B #xx:8, Rd   | В | 2 |           |     |              |            |             |               |            |   | Rd8–#xx:8                                                                                                                                   | - | \$  | \$      | \$   | \$  | \$ | 1          | 2                         |
|       | CMP.B Rs, Rd      | В |   | 2         |     |              |            |             |               |            |   | Rd8–Rs8                                                                                                                                     | - | \$  | \$      | \$   | \$  | \$ |            | 2                         |
|       | CMP.W #xx:16, Rd  | W | 4 |           |     |              |            |             |               |            |   | Rd16-#xx:16                                                                                                                                 | - | (1) | \$      | \$   | 1   | 1  | 4          | 4                         |
|       | CMP.W Rs, Rd      | W |   | 2         |     |              |            |             |               |            |   | Rd16-Rs16                                                                                                                                   | - | (1) | \$      | 1    | 1   | 1  |            | 2                         |
|       | CMP.L #xx:32, ERd | L | 6 |           |     |              |            |             |               |            |   | ERd32-#xx:32                                                                                                                                | - | (2) | \$      | \$   | \$  | 1  | 4          | 4                         |
|       | CMP.L ERs. ERd    | L |   | 2         |     |              |            |             |               |            |   | ERd32–ERs32                                                                                                                                 | _ | (2) | 1       | 1    | 1   | 1  | :          | 2                         |

# A.2 Operation Code Map

## Table A.2 Operation Code Map (1)

| <ul> <li>Instruction when most significant bit of BH is 0.</li> <li>Instruction when most significant bit of BH is 1.</li> </ul> | L          | Table A.2<br>(2) | Table A.2<br>(2) |                  | BLE   |     |       |                  |             |                  |     |      |     |      |    |     |     |     |
|----------------------------------------------------------------------------------------------------------------------------------|------------|------------------|------------------|------------------|-------|-----|-------|------------------|-------------|------------------|-----|------|-----|------|----|-----|-----|-----|
|                                                                                                                                  |            | ш                | ADDX             | SUBX             |       |     | BGT   | JSR              | NOM         | Table A.2<br>(3) |     | ADDX | CMP | SUBX | КO | XOR | AND | MOV |
|                                                                                                                                  |            | D                | 20               | IP               |       |     | BLT   |                  |             |                  |     |      |     |      |    |     |     |     |
|                                                                                                                                  | BH is 1    | O                | Table A.2 C      | CV               |       |     | BGE   | BSR              |             |                  |     |      |     |      |    |     |     |     |
|                                                                                                                                  | t bit of ] | В                |                  | Table A.2<br>(2) |       |     | BMI   |                  |             | EEPMOV           |     |      |     |      |    |     |     |     |
|                                                                                                                                  | nifican    | A                | Table A.2<br>(2) | Table A.2<br>(2) |       |     | BPL   | JMP              |             | Table A.2<br>(2) |     |      |     |      |    |     |     |     |
|                                                                                                                                  | nost sig   | 6                | ADD              |                  |       |     | BVS   |                  | BST<br>BIST | Table A.2<br>(2) |     |      |     |      |    |     |     |     |
|                                                                                                                                  | when n     | 8                |                  | SUI              | MOV.B |     | BVC   | Table A.2<br>(2) |             | NOM              |     |      |     |      |    |     |     |     |
|                                                                                                                                  | ruction    | 7                | LDC              | Table A.2<br>(2) |       |     | BEQ   | TRAPA            |             | BLD              | ADD |      |     |      |    |     |     |     |
|                                                                                                                                  | - Inst     | 9                | ANDC             | AND.B            |       |     | BNE   | RTE              | AND         | BAND<br>BIAND    |     |      |     |      |    |     |     |     |
|                                                                                                                                  |            | 5                | XORC             | XOR.B            |       |     | BCS   | BSR              | OR XOR      | BXOR<br>BIXOR    |     |      |     |      |    |     |     |     |
| 2nd byte<br>BH BL                                                                                                                |            | 4                | ORC              | OR.B             |       |     | BCC   | RTS              |             | BOR<br>BIOR      |     |      |     |      |    |     |     |     |
|                                                                                                                                  | 1 110      | e                | LDC              | Table A.2<br>(2) |       |     | BLS   | DIVXU            |             | BISI             |     |      |     |      |    |     |     |     |
| t byte                                                                                                                           | t byte     | N                | STC              | Table A.2<br>(2) |       | BHI | MULXU |                  | BCLH        |                  |     |      |     |      |    |     |     |     |
| ion code: 1st AF                                                                                                                 | 2          | 1                | Table A.2<br>(2) | Table A.2<br>(2) |       |     | BRN   | DIVXU            | ŀ           | BNOI             |     |      |     |      |    |     |     |     |
|                                                                                                                                  |            | 0                | NOP              | Table A.2<br>(2) |       |     | BRA   | MULXU            | l           | BSEL             |     |      |     |      |    |     |     |     |
| Instruct                                                                                                                         |            | AH               | 0                | ÷                | 2     | ო   | 4     | S                | 9           | 7                | 8   | 6    | A   | В    | С  | D   | ш   | ш   |

