

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	H8S/2000
Core Size	16-Bit
Speed	33MHz
Connectivity	I ² C, IrDA, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	96
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 6x8b
Oscillator Type	External
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d12373vfq33v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4.2 Reset Sequence (Advanced Mode with On-chip ROM Disabled)

4.3.2 Interrupts after Reset

If an interrupt is accepted after a reset but before the stack pointer (SP) is initialized, the PC and CCR will not be saved correctly, leading to a program crash. To prevent this, all interrupt requests, including NMI, are disabled immediately after a reset. Since the first instruction of a program is always executed immediately after the reset state ends, make sure that this instruction initializes the stack pointer (example: MOV.L #xx: 32, SP).

4.3.3 On-Chip Peripheral Functions after Reset Release

After reset release, MSTPCR is initialized to H'0FFF and all modules except the DMAC, EXDMAC and the DTC enter module stop mode.

Consequently, on-chip peripheral module registers cannot be read or written to. Register reading and writing is enabled when module stop mode is exited.

Renesas

6.3.11 Refresh Timer Counter (RTCNT)

RTCNT is an 8-bit readable/writable up-counter. RTCNT counts up using the internal clock selected by bits RTCK2 to RTCK0 in REFCR.

When RTCNT matches RTCOR (compare match), the CMF flag in REFCR is set to 1 and RTCNT is cleared to H'00. If the RFSHE bit in REFCR is set to 1 at this time, a refresh cycle is started. If the RFSHE bit is cleared to 0 and the CMIE bit in REFCR is set to 1, a compare match interrupt (CMI) is generated.

RTCNT is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

6.3.12 Refresh Time Constant Register (RTCOR)

RTCOR is an 8-bit readable/writable register that sets the period for compare match operations with RTCNT.

The values of RTCOR and RTCNT are constantly compared, and if they match, the CMF flag in REFCR is set to 1 and RTCNT is cleared to H'00.

RTCOR is initialized to H'FF by a reset and in hardware standby mode. It is not initialized in software standby mode.

If areas 2 to 5 are designated as continuous synchronous DRAM space, large-capacity (e.g. 64-Mbit) synchronous DRAM can be connected. In this case, the $\overline{CS2}$, $\overline{CS3}$, $\overline{CS4}$, and $\overline{CS5}$ pins are used as the \overline{RAS} , \overline{CAS} , \overline{WE} , and CLK signals for the continuous synchronous DRAM space. The \overline{OE} pin is used as the CKE signal.

Area 6: In externally expanded mode, all of area 6 is external space.

When area 6 external space is accessed, the $\overline{CS6}$ signal can be output.

Only the basic bus interface can be used for area 6.

Area 7: Area 7 includes the on-chip RAM and internal/O registers. In externally expanded mode, the space excluding the on-chip RAM and internal I/O registers is external address space. The on-chip RAM is enabled when the RAME bit is set to 1 in the system control register (SYSCR); when the RAME bit is cleared to 0, the on-chip RAM is disabled and the corresponding addresses are in external address space.

When area 7 external address space is accessed, the $\overline{\text{CS7}}$ signal can be output.

Only the basic bus interface can be used for the area 7 memory interface.

6.4.4 Chip Select Signals

This LSI can output chip select signals ($\overline{CS0}$ to $\overline{CS7}$) for areas 0 to 7. The signal outputs low when the corresponding external space area is accessed. Figure 6.7 shows an example of $\overline{CS0}$ to $\overline{CS7}$ signals output timing.

Enabling or disabling of $\overline{CS0}$ to $\overline{CS7}$ signals output is set by the data direction register (DDR) bit for the port corresponding to the $\overline{CS0}$ to $\overline{CS7}$ pins.

In expanded mode with on-chip ROM disabled, the $\overline{CS0}$ pin is placed in the output state after a reset. Pins $\overline{CS1}$ to $\overline{CS7}$ are placed in the input state after a reset and so the corresponding DDR bits should be set to 1 when outputting signals $\overline{CS1}$ to $\overline{CS7}$.

In expanded mode with on-chip ROM enabled, pins $\overline{CS0}$ to $\overline{CS7}$ are all placed in the input state after a reset and so the corresponding DDR bits should be set to 1 when outputting signals $\overline{CS0}$ to $\overline{CS7}$.

When areas 2 to 5 are designated as DRAM space, outputs $\overline{CS2}$ to $\overline{CS5}$ are used as \overline{RAS} signals.

When areas 2 to 5 are designated as continuous synchronous DRAM space in the H8S/2378R Group, outputs $\overline{CS2}$, $\overline{CS3}$, $\overline{CS4}$, and $\overline{CS5}$ are used as \overline{RAS} , \overline{CAS} , \overline{WE} , and CLK signals.

In some DRAMs provided with a self-refresh mode, the RAS signal precharge time immediately after self-refreshing is longer than the normal precharge time. A setting can be made in bits TPCS2 to TPCS0 in REFCR to make the precharge time immediately after self-refreshing from 1 to 7 states longer than the normal precharge time. In this case, too, normal precharging is performed according to the setting of bits TPC1 and TPC0 in DRACCR, and therefore a setting should be made to give the optimum post-self-refresh precharge time, including this time. Figure 6.40 shows an example of the timing when the precharge time immediately after self-refreshing is extended by 2 states.

8.2 Input/Output Pins

Table 8.1 shows the pin configuration of the EXDMAC.

Table 8.1Pin Configuration

Channel	Name	Abbre- viation	I/O	Function
2	EXDMA transfer request 2	EDREQ2	Input	Channel 2 external request
	EXDMA transfer acknowledge 2	EDACK2	Output	Channel 2 single address transfer acknowledge
	EXDMA transfer end 2	ETEND2	Output	Channel 2 transfer end
	EDREQ2 acceptance acknowledge	EDRAK2	Output	Notification to external device of channel 2 external request acceptance and start of transfer processing
3	EXDMA transfer request 3	EDREQ3	Input	Channel 3 external request
	EXDMA transfer acknowledge 3	EDACK3	Output	Channel 3 single address transfer acknowledge
	EXDMA transfer end 3	ETEND3	Output	Channel 3 transfer end
	EDREQ3 acceptance acknowledge	EDRAK3	Output	Notification to external device of channel 3 external request acceptance and start of transfer processing

Bit	Bit Name	Initial Value	R/W	Description
31	_	All 0	_	Reserved
to 24				These bits are always read as 0 and cannot be modified.
23		Undefined	R/W	Block Size
to 16				These bits specify the block size (number of bytes or number of words) for block transfer. Setting H'01 specifies one as the block, while setting H'00 specifies the maximum block size, that is 256. The register value always indicates the specified block size.
15		Undefined	R/W	16-Bit Transfer Counter
to 0				These bits specify the number of block transfers. Setting H'0001 specifies one block transfer. Setting H'0000 means no specification for the number of transfers, and the transfer counter function is halted. In this case, there is no transfer end interrupt by the transfer counter. Setting H'FFFF specifies the maximum number of block transfers, that is 65,535. During EXDMA transfer, this counter shows the remaining number of block transfers.

Block Transfer Mode:

The source address repeat area is specified by bits SARA4 to SARA0 in EDACR, and the destination address repeat area by bits DARA4 to DARA0 in EDACR. The size of each repeat area can be specified independently.

When the address register value is the last address in the repeat area and repeat area overflow occurs, DMA transfer can be temporarily halted and an interrupt request sent to the CPU. If the SARIE bit in EDACR is set to 1, when the source address register overflows the repeat area, the IRF bit is set to 1 and the EDA bit cleared to 0 in EDMDR, and transfer is terminated. If EDIE = 1 in EDMDR, an interrupt is requested. If the DARIE bit in EDACR is set to 1, the above applies to the destination address register.

If the EDA bit in EDMDR is set to 1 during interrupt generation, transfer is resumed. Figure 8.9 illustrates the operation of the repeat area function.

Figure 8.9 Example of Repeat Area Function Operation

Caution is required when the repeat area overflow interrupt function is used together with block transfer mode. If transfer is always terminated when repeat area overflow occurs in block transfer

Figure 9.13 Chain Transfer when Counter = 0

11.10.3 Caution on Cycle Setting

When counter clearing by compare match is set, TCNT is cleared in the final state in which it matches the TGR value (the point at which the count value matched by TCNT is updated). Consequently, the actual counter frequency is given by the following formula:

 $f = \frac{\phi}{(N+1)}$ Where f: Counter frequency ϕ : Operating frequency N: TGR set value

11.10.4 Contention between TCNT Write and Clear Operations

If the counter clearing signal is generated in the T_2 state of a TCNT write cycle, TCNT clearing takes precedence and the TCNT write is not performed. Figure 11.45 shows the timing in this case.

Figure 11.45 Contention between TCNT Write and Clear Operations

already been written to TDR during serial transmission, the SCI transfers the written data to TSR to continue transmission. Although TDR can be read or written to by the CPU at all times, to achieve reliable serial transmission, write transmit data to TDR for only once after confirming that the TDRE bit in SSR is set to 1.

15.3.4 Transmit Shift Register (TSR)

TSR is a shift register that transmits serial data. To perform serial data transmission, the SCI first transfers transmit data from TDR to TSR, then sends the data to the TxD pin starting. TSR cannot be directly accessed by the CPU.

15.3.5 Serial Mode Register (SMR)

SMR is used to set the SCI's serial transfer format and select the on-chip baud rate generator clock source.

Some bit functions of SMR differ in normal serial communication interface mode and Smart Card interface mode.

Bit	Bit Name	Initial Value	R/W	Description
7	C/Ā	0	R/W	Communication Mode
				0: Asynchronous mode
				1: Clocked synchronous mode
6	CHR	0	R/W	Character Length (enabled only in asynchronous mode)
				0: Selects 8 bits as the data length.
				1: Selects 7 bits as the data length. LSB-first is fixed and the MSB (bit 7) of TDR is not transmitted in transmission.
				In clocked synchronous mode, a fixed data length of 8 bits is used.

Normal Serial Communication Interface Mode (When SMIF in SCMR is 0)

Section 18 D/A Converter

18.1 Features

D/A converter features are listed below.

- 8-bit resolution
- Output channels:

Six channels for the H8S/2378 $0.18\mu m$ F-ZTAT Group, H8S/2378R $0.18\mu m$ F-ZTAT Group, H8S/2377, and H8S/2377R

Two channels for the H8S/2375, H8S/2375R, H8S/2373, and H8S/2373R

- Maximum conversion time of $10 \ \mu s$ (with $20 \ pF$ load)
- Output voltage of 0 V to Vref
- D/A output hold function in software standby mode
- Setting the module stop mode

Renesas

Boot MAT. Please make sure you know which MAT is selected when switching between them.

8. When the data storable area indicated by programming parameter FMPDR is within the flash memory area, an error will occur even when the data stored is normal. Therefore, the data should be transferred to the on-chip RAM to place the address that FMPDR indicates in an area other than the flash memory.

In consideration of these conditions, there are three factors; operating mode, the bank structure of the user MAT, and operations.

The areas in which the programming data can be stored for execution are shown in tables.

Table 21.7 Executable MAT

Initiated Mode						
User Program Mode	User Boot Mode [*]					
Table 21.8 (1)	Table 21.8 (3)					
Table 21.8 (2)	Table 21.8 (4)					
	In User Program Mode Table 21.8 (1) Table 21.8 (2)	Initiated ModeUser Program ModeUser Boot Mode*Table 21.8 (1)Table 21.8 (3)Table 21.8 (2)Table 21.8 (4)				

Note : * Programming/Erasing is possible to user MATs.

Section 25	List of Registers
------------	-------------------

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
PORTA	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	PORT
PORTB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	_
PORTC	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	-
PORTD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	_
PORTE	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	_
PORTF	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	-
PORTG	_	PG6	PG5	PG4	PG3	PG2	PG1	PG0	-
P1DR	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR	-
P2DR	P27DR	P26DR	P25DR	P24DR	P23DR	P22DR	P21DR	P20DR	-
P3DR		_	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR	-
P5DR		_	_		P53DR	P52DR	P51DR	P50DR	-
P6DR		_	P65DR	P64DR	P63DR	P62DR	P61DR	P60DR	-
P8DR	_	_	P85DR	P84DR	P83DR	P82DR	P81RD	P80DR	-
PADR	PA7DR	PA6DR	PA5DR	PA4DR	PA3DR	PA2DR	PA1DR	PA0DR	-
PBDR	PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR	-
PCDR	PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR	-
PDDR	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR	-
PEDR	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR	-
PFDR	PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PF0DR	-
PGDR	_	PG6DR	PG5DR	PG4DR	PG3DR	PG2DR	PG1DR	PG0DR	-
PORTH		_	_		PH3	PH2	PH1	PH0	-
PHDR	_	_	_	_	PH3DR	PH2DR	PH1DR	PH0DR	-
PHDDR	_	_	_	_	PH3DDR	PH2DDR	PH1DDR	PH0DDR	-
SMR_0 ^{*4} SMR_0 ^{*5}	C/Ā GM	CHR BLK	PE PE	O/Ē O/Ē	STOP BCP1	MP BCP0	CKS1 CKS1	CKS0 CKS0	SCI_0, Smart
BRR_0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	card
SCR_0	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	0
TDR_0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SSR_0 ^{*4} SSR_0 ^{*5}	TDRE TDRE	RDRF RDRF	ORER ORER	FER ERS	PER PER	TEND TEND	MPB MPB	MPBT MPBT	-
RDR_0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SCMR_0	_	_	_	_	SDIR	SINV	_	SMIF	-

Register Abbreviation	Reset	High- Speed	Clock Division	Sleep	Module Stop	All Module Clock Stop	Software Standby	Hardware Standby	Module
MRA	Initialized		_	_	_	_	_	Initialized	DTC
SAR	Initialized		_		_			Initialized	_
MRB	Initialized		_		_	_	_	Initialized	_
DAR	Initialized		_	_	_	_	_	Initialized	_
CRA	Initialized		_	_	_	_	_	Initialized	-
CRB	Initialized		_		_	_	_	Initialized	_
ICCRA_0	Initialized		_	_	_	_	_	Initialized	IIC2_0
ICCRB_0	Initialized		_		_	_	_	Initialized	-
ICMR_0	Initialized		_		_	_	_	Initialized	-
ICIER_0	Initialized		_	_	_	_	_	Initialized	-
ICSR_0	Initialized		_	_	_	_	_	Initialized	-
SAR_0	Initialized		_	_	_	_	_	Initialized	_
ICDRT_0	Initialized		_	_	_	_	_	Initialized	-
ICDRR_0	Initialized		_	_	_	_	_	Initialized	-
ICCRA_1	Initialized		_		_	_	_	Initialized	IIC2_1
ICCRB_1	Initialized		_		_	_	_	Initialized	_
ICMR_1	Initialized		_	_	_	_	_	Initialized	_
ICIER_1	Initialized		_		_	_	_	Initialized	-
ICSR_1	Initialized		_		_	_	_	Initialized	_
SAR_1	Initialized		_	_	_	_	_	Initialized	-
ICDRT_0	Initialized		_		_	_	_	Initialized	-
ICDRR_0	Initialized		_	_	_	_	_	Initialized	_
SEMR_2	Initialized		_	_	_	_	_	Initialized	SCI2
EDSAR_2	Initialized		_		_			Initialized	EXDMAC_2
EDDAR_2	Initialized		_		_	_	_	Initialized	*1
EDTCR_2	Initialized	_	_	_	_	_		Initialized	-
EDMDR_2	Initialized	_	_	_	_	_	_	Initialized	-
EDACR_2	Initialized	_		—	_	_	_	Initialized	-

25.3 Register States in Each Operating Mode

26.1.2 DC Characteristics

Table 26.2 DC Characteristics (1)

 $\begin{array}{ll} \text{Conditions:} & V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}, \text{AV}_{CC} = 3.0 \text{ V to } 3.6 \text{ V}, \text{V}_{ref} = 3.0 \text{ V to } \text{AV}_{CC}, \\ & V_{SS} = \text{AV}_{SS} = 0 \text{ V}^{*1}, \text{T}_a = -20^{\circ}\text{C} \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)}, \\ & \text{T}_a = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C} \text{ (wide-range specifications)} \end{array}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt	Port 1, port 2,	VT [_]	$V_{\text{CC}} \times 0.2$			V	_
trigger input	port 6^{*2} , port 8^{*2} ,	VT^+	_	_	$V_{\text{CC}} \times 0.7$	V	_
, in the second s	PA4 to PA7 ^{*2} , PF1 ^{*2} , PF2 ^{*2} , PH2 ^{*2} , PH3 ^{*2}	$VT^+ - VT^-$	$V_{CC} \times 0.07$	_		V	-
Input high voltage	STBY, MD2 to MD0	V _{IH}	$V_{CC} \times 0.9$	_	V _{CC} +0.3	V	
	RES, NMI, EMLE		$V_{CC} \times 0.9$	_	V _{CC} +0.3	V	-
	EXTAL	-	$V_{CC} \times 0.7$	_	V _{CC} +0.3	V	-
	Port 3, P50 to P53 ^{*3} , ports 6^{*3} and 8^{*3} , ports A to H^{*3}	-	2.2	—	V _{CC} +0.3	V	-
	Port 4, Port 9		2.2	—	AV_{CC} +0.3	V	-
Input low voltage	RES, STBY, MD2 to MD0, EMLE	VIL	-0.3		$V_{CC} \times 0.1$	V	
	NMI, EXTAL		-0.3	—	$V_{\text{CC}} \times 0.2$	V	-
	Ports 3 to 6 ^{*3} , Port 8 ^{*3} , ports A to H ^{*3} , port 9	-	-0.3	_	$V_{CC} imes 0.2$	V	-
Output high	All output pins	V _{OH}	V _{CC} -0.5	_	_	V	$I_{OH}=-200~\mu A$
voltage			V _{CC} -1.0	_		V	$I_{OH} = -1 \text{ mA}$
Output low	All output pins	V _{OL}	_	_	0.4	V	$I_{OL} = 1.6 \text{ mA}$
voltage	P32 to P35 ^{*4}		_	_	0.5	V	$I_{OL} = 8.0 \text{ mA}$

Notes: 1. When the A/D and D/A converters are not used, the AV_{CC}, V_{ref}, and AV_{SS} pins should not be open. Connect the AV_{CC} and V_{ref} pins to V_{CC}, and the AV_{SS} pin to V_{SS}.

- 2. When used as $\overline{\text{IRQ0}}$ to $\overline{\text{IRQ15}}.$
- 3. When used as other than $\overline{\text{IRQ0}}$ to $\overline{\text{IRQ15}}.$
- 4. When used as SCL0 to SCL1, SDA0 to SDA1.

26.1.3 AC Characteristics

Figure 26.1 Output Load Circuit

26.2.2 DC Characteristics

Table 26.15 DC Characteristics

 $\begin{array}{ll} \mbox{Conditions:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } AV_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } V_{ref} = 3.0 \mbox{ V to } AV_{CC}, \\ & V_{SS} = AV_{SS} = 0 \mbox{ V}^{*1}, \mbox{ } T_a = -20^{\circ}\mbox{C to } +75^{\circ}\mbox{C (regular specifications)}, \\ & T_a = -40^{\circ}\mbox{C to } +85^{\circ}\mbox{C (wide-range specifications)} \end{array}$

ltem		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt	Port 1, port 2,	VT ⁻	$V_{\text{CC}} \times 0.2$		_	V	
trigger input	P50 to P53 ^{*2} ,	VT^+	_		$V_{\text{CC}} \times 0.7$	V	_
voitage	PA4 to PA7 ^{*2} , PF1 ^{*2} , PF2 ^{*2} , PH2 ^{*2} , PH3 ^{*2}	$VT^+ - VT^-$	$V_{CC} \times 0.07$			V	-
Input high voltage	STBY, MD2 to MD0	V _{IH}	$V_{CC} \times 0.9$	_	V _{CC} +0.3	V	
	RES, NMI, EMLE	-	$V_{\text{CC}} \times 0.9$		V _{CC} +0.3	V	_
	EXTAL	-	$V_{\text{CC}} \times 0.7$	—	V _{CC} +0.3	V	_
	Port 3, P50 to P53 ^{*3} , ports 6^{*3} and 8^{*3} , ports A to H^{*3}		2.2	_	V _{CC} +0.3	V	_
	Port 4, Port 9	-	2.2	_	AV _{CC} +0.3	V	_
Input low voltage	RES, STBY, MD2 to MD0, EMLE	VIL	-0.3		$V_{CC} \times 0.1$	V	
	NMI, EXTAL	-	-0.3		$V_{CC} \times 0.2$	V	_
	Ports 3 to 6 ^{*3} , Port 8 ^{*3} , ports A to H ^{*3} , port 9	-	-0.3		$V_{CC} \times 0.2$	V	-
Output high	All output pins	V _{OH}	V _{CC} -0.5	_	_	V	$I_{OH}=-200~\mu A$
voltage			V _{CC} -1.0	_	_	V	$I_{OH} = -1 \text{ mA}$
Output low	All output pins	V _{OL}	_	_	0.4	V	$I_{OL} = 1.6 \text{ mA}$
voltage	P32 to P35 ^{*4}		_	_	0.5	V	$I_{OL} = 8.0 \text{ mA}$

Notes: 1. When the A/D and D/A converters are not used, the AV_{CC}, V_{ref}, and AV_{SS} pins should not be open. Connect the AV_{CC} and V_{ref} pins to V_{CC}, and the AV_{SS} pin to V_{SS}.

2. When used as $\overline{IRQ0}$ to $\overline{IRQ15}$.

3. When used as other than $\overline{\text{IRQ0}}$ to $\overline{\text{IRQ15}}$.

4. When used as SCL0, SCL1, SDA0, and SDA1.

Figure 26.11 Basic Bus Timing: Three-State Access (CS Assertion Period Extended)

Table D.1 Execution State of Instructions

Instruction	1	2	3	4	5	6	7	8	9
ADD.B #xx:8,Rd	R:W NEXT								
ADD.B Rs,Rd	R:W NEXT								
ADD.W #xx:16,Rd	R:W 2nd	R:W NEXT							
ADD.W Rs,Rd	R:W NEXT								
ADD.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
ADD.L ERs,ERd	R:W NEXT								
ADDS #1/2/4,ERd	R:W NEXT								
ADDX #xx:8,Rd	R:W NEXT								
ADDX Rs,Rd	R:W NEXT								
AND.B #xx:8,Rd	R:W NEXT								
AND.B Rs,Rd	R:W NEXT								
AND.W #xx:16,Rd	R:W 2nd	R:W: NEXT							
AND.W Rs,Rd	R:W NEXT								
AND.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
AND.L ERs,ERd	R:W 2nd	R:W NEXT							
ANDC #xx:8,CCR	R:W NEXT								
ANDC #xx:8,EXR	R:W 2nd	R:W NEXT							
BAND #xx:3,Rd	R:W NEXT								
BAND #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT						

