
Renesas Electronics America Inc - DF2370VFQ34V Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor H8S/2000

Core Size 16-Bit

Speed 34MHz

Connectivity I²C, IrDA, SCI, SmartCard

Peripherals DMA, POR, PWM, WDT

Number of I/O 96

Program Memory Size 256KB (256K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 16K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 16x10b; D/A 6x8b

Oscillator Type External

Operating Temperature -20°C ~ 75°C (TA)

Mounting Type Surface Mount

Package / Case 144-LQFP

Supplier Device Package 144-LQFP (20x20)

Purchase URL https://www.e-xfl.com/product-detail/renesas-electronics-america/df2370vfq34v

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/df2370vfq34v-4430834
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Section 5 Interrupt Controller

Rev.7.00 Mar. 18, 2009 page 116 of 1136
REJ09B0109-0700

5.3.5 IRQ Status Register (ISR)

ISR is an IRQ15 to IRQ0 interrupt request flag register.

Bit Bit Name Initial Value R/W Description

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

IRQ15F
IRQ14F
IRQ13F
IRQ12F
IRQ11F
IRQ10F
IRQ9F
IRQ8F
IRQ7F
IRQ6F
IRQ5F
IRQ4F
IRQ3F
IRQ2F
IRQ1F
IRQ0F

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

R/(W)*
R/(W)*
R/(W)*
R/(W)*
R/(W)*
R/(W)*
R/(W)*
R/(W)*
R/(W)*
R/(W)*
R/(W)*
R/(W)*
R/(W)*
R/(W)*
R/(W)*
R/(W)*

[Setting condition]

When the interrupt source selected by ISCR occurs

[Clearing conditions]

• Cleared by reading IRQnF flag when IRQnF =
1, then writing 0 to IRQnF flag

• When interrupt exception handling is executed
when low-level detection is set and IRQn input
is high

• When IRQn interrupt exception handling is
executed when falling, rising, or both-edge
detection is set

• When the DTC is activated by an IRQn
interrupt, and the DISEL bit in MRB of the DTC
is cleared to 0

(n = 15 to 0)

Note: * Only 0 can be written, to clear the flag.

Section 5 Interrupt Controller

Rev.7.00 Mar. 18, 2009 page 125 of 1136
REJ09B0109-0700

Vector
Address*1

Interrupt
Source

Origin of
Interrupt
Source

Vector
Number

Advanced
Mode

IPR

Priority

DTC
Activation

DMAC
Activation

SCI_0 ERI0 88 H'0160 IPRI2 to IPRI0 High ⎯ ⎯

 RXI0 89 H'0164

 TXI0 90 H'0168

 TEI0 91 H'016C ⎯ ⎯

SCI_1 ERI1 92 H'0170 IPRJ14 to IPRJ12 ⎯ ⎯

 RXI1 93 H'0174

 TXI1 94 H'0178

 TEI1 95 H'017C ⎯ ⎯

SCI_2 ERI2 96 H'0180 IPRJ10 to IPRJ8 ⎯ ⎯

 RXI2 97 H'0184 ⎯

 TXI2 98 H'0188 ⎯

 TEI2 99 H'018C ⎯ ⎯

SCI_3 ERI3 100 H'0190 IPRJ6 to IPRJ4 ⎯ ⎯

 RXI3 101 H'0194 ⎯

 TXI3 102 H'0198 ⎯

 TEI3 103 H'019C ⎯ ⎯

SCI_4 ERI4 104 H'01A0 IPRJ2 to IPRJ0 ⎯ ⎯

 RXI4 105 H'01A4 ⎯

 TXI4 106 H'01A8 ⎯

 TEI4 107 H'01AC ⎯ ⎯

 108 H'01B0 IPRK14 to IPRK12 ⎯ ⎯

 109 H'01B4 ⎯ ⎯

 110 H'01B8 ⎯ ⎯

Reserved for
system use

111 H'01BC ⎯ ⎯

 112 H'01C0 IPRK10 to IPRK8 ⎯ ⎯

 113 H'01C4 ⎯ ⎯

114 H'01C8 ⎯ ⎯

 115 H'01CC Low ⎯ ⎯

Section 6 Bus Controller (BSC)

Rev.7.00 Mar. 18, 2009 page 162 of 1136
REJ09B0109-0700

Bit Bit Name Initial Value R/W Description

2
1
0

MXC2
MXC1
MXC0

0
0
0

R/W
R/W
R/W

011: 11-bit shift
• When 8-bit access space is designated:

Row address bits A23 to A11 used for
comparison
When 16-bit access space is designated:
Row address bits A23 to A12 used for
comparison

Synchronous DRAM interface

100: 8-bit shift

• When 8-bit access space is designated:
Row address bits A23 to A8 used for
comparison

• When 16-bit access space is designated:
Row address bits A23 to A9 used for
comparison
The precharge-sel is A15 to A9 of the column
address.

101: 9-bit shift

• When 8-bit access space is designated:
Row address bits A23 to A9 used for
comparison

• When 16-bit access space is designated:
Row address bits A23 to A10 used for
comparison
The precharge-sel is A15 to A10 of the column
address.

110: 10-bit shift

• When 8-bit access space is designated:
Row address bits A23 to A10 used for
comparison

• When 16-bit access space is designated:
Row address bits A23 to A11 used for
comparison
The precharge-sel is A15 to A11 of the column
address.

Section 6 Bus Controller (BSC)

Rev.7.00 Mar. 18, 2009 page 166 of 1136
REJ09B0109-0700

Tp

RAS

SDWCD 0

CAS

DQMU, DQML

WE

CKE

Data bus

Address bus

SDRAMφ

φ

Tr Tc1 Tcl Tc2

PALL ACTV NOP WRIT NOP

Tp Tr Tc1 Tc2

Column address

Column address

Row address

Precharge-sel Row address

Column address

High

RAS

SDWCD 1

CAS

DQMU, DQML

WE

CKE

Data bus

Address bus

PALL ACTV NOP WRIT

Row address

Precharge-sel Row address

Column address

High

Figure 6.5 CAS Latency Control Cycle Disable Timing during Continuous Synchronous
DRAM Space Write Access (for CAS Latency 2)

Section 6 Bus Controller (BSC)

Rev.7.00 Mar. 18, 2009 page 208 of 1136
REJ09B0109-0700

6.6.12 Refresh Control

This LSI is provided with a DRAM refresh control function. CAS-before-RAS (CBR) refreshing
is used. In addition, self-refreshing can be executed when the chip enters the software standby
state.

Refresh control is enabled when any area is designated as DRAM space in accordance with the
setting of bits RMTS2 to RMTS0 in DRAMCR.

CAS-before-RAS (CBR) Refreshing: To select CBR refreshing, set the RFSHE bit to 1 in
REFCR.

With CBR refreshing, RTCNT counts up using the input clock selected by bits RTCK2 to RTCK0
in REFCR, and when the count matches the value set in RTCOR (compare match), refresh control
is performed. At the same time, RTCNT is reset and starts counting up again from H'00.
Refreshing is thus repeated at fixed intervals determined by RTCOR and bits RTCK2 to RTCK0.
Set a value in RTCOR and bits RTCK2 to RTCK0 that will meet the refreshing interval
specification for the DRAM used.

When bits RTCK2 to RTCK0 in REFCR are set, RTCNT starts counting up. RTCNT and RTCOR
settings should therefore be completed before setting bits RTCK2 to RTCK0. RTCNT operation is
shown in figure 6.34, compare match timing in figure 6.35, and CBR refresh timing in figure 6.36.

When the CBRM bit in REFCR is cleared to 0, access to external space other than DRAM space is
performed in parallel during the CBR refresh period.

RTCOR

H'00

Refresh request

RTCNT

Figure 6.34 RTCNT Operation

Section 7 DMA Controller (DMAC)

Rev.7.00 Mar. 18, 2009 page 331 of 1136
REJ09B0109-0700

7.5.8 Basic Bus Cycles

An example of the basic DMAC bus cycle timing is shown in figure 7.17. In this example, word-
size transfer is performed from 16-bit, 2-state access space to 8-bit, 3-state access space. When
the bus is transferred from the CPU to the DMAC, a source address read and destination address
write are performed. The bus is not released in response to another bus request, etc., between
these read and write operations. As like CPU cycles, DMA cycles conform to the bus controller
settings.

The address is not output to the external address bus in an access to on-chip memory or an internal
I/O register.

Address bus

φ

DMAC cycle (1-word transfer)

RD

LWR

HWR

Source
address Destination address

CPU cycle CPU cycle

T1 T2 T3T1 T2 T3T1 T2

Figure 7.17 Example of DMA Transfer Bus Timing

Section 10 I/O Ports

Rev.7.00 Mar. 18, 2009 page 472 of 1136
REJ09B0109-0700

10.2 Port 2

Port 2 is an 8-bit I/O port that also has other functions. The port 2 has the following registers.

• Port 2 data direction register (P2DDR)
• Port 2 data register (P2DR)
• Port 2 register (PORT2)

10.2.1 Port 2 Data Direction Register (P2DDR)

The individual bits of P2DDR specify input or output for the pins of port 2.

P2DDR cannot be read; if it is, an undefined value will be read.

Bit Bit Name Initial Value R/W Description

7 P27DDR 0 W

6 P26DDR 0 W

5 P25DDR 0 W

4 P24DDR 0 W

3 P23DDR 0 W

2 P22DDR 0 W

1 P21DDR 0 W

When a pin function is specified to a general
purpose I/O, setting this bit to 1 makes the
corresponding port 1 pin an output pin, while
clearing this bit to 0 makes the pin an input pin.

0 P20DDR 0 W

Section 11 16-Bit Timer Pulse Unit (TPU)

Rev.7.00 Mar. 18, 2009 page 551 of 1136
REJ09B0109-0700

• Timer interrupt enable register_3 (TIER_3)
• Timer status register_3 (TSR_3)
• Timer counter_3 (TCNT_3)
• Timer general register A_3 (TGRA_3)
• Timer general register B_3 (TGRB_3)
• Timer general register C_3 (TGRC_3)
• Timer general register D_3 (TGRD_3)
• Timer control register_4 (TCR_4)
• Timer mode register_4 (TMDR_4)
• Timer I/O control register _4 (TIOR_4)
• Timer interrupt enable register_4 (TIER_4)
• Timer status register_4 (TSR_4)
• Timer counter_4 (TCNT_4)
• Timer general register A_4 (TGRA_4)
• Timer general register B_4 (TGRB_4)
• Timer control register_5 (TCR_5)
• Timer mode register_5 (TMDR_5)
• Timer I/O control register_5 (TIOR_5)
• Timer interrupt enable register_5 (TIER_5)
• Timer status register_5 (TSR_5)
• Timer counter_5 (TCNT_5)
• Timer general register A_5 (TGRA_5)
• Timer general register B_5 (TGRB_5)

Common Registers

• Timer start register (TSTR)
• Timer synchronous register (TSYR)

Section 11 16-Bit Timer Pulse Unit (TPU)

Rev.7.00 Mar. 18, 2009 page 592 of 1136
REJ09B0109-0700

Table 11.28 Register Combinations in Buffer Operation

Channel Timer General Register Buffer Register

0 TGRA_0 TGRC_0

 TGRB_0 TGRD_0

3 TGRA_3 TGRC_3

 TGRB_3 TGRD_3

• When TGR is an output compare register
When a compare match occurs, the value in the buffer register for the corresponding channel is
transferred to the timer general register.
This operation is illustrated in figure 11.12.

Buffer register
Timer general

register
TCNTComparator

Compare match signal

Figure 11.12 Compare Match Buffer Operation

• When TGR is an input capture register
When input capture occurs, the value in TCNT is transferred to TGR and the value previously
held in the timer general register is transferred to the buffer register.
This operation is illustrated in figure 11.13.

Buffer register Timer general

register
TCNT

Input capture

signal

Figure 11.13 Input Capture Buffer Operation

Section 11 16-Bit Timer Pulse Unit (TPU)

Rev.7.00 Mar. 18, 2009 page 617 of 1136
REJ09B0109-0700

TCFV Flag/TCFU Flag Setting Timing: Figure 11.40 shows the timing for setting of the TCFV
flag in TSR by overflow occurrence, and the TCIV interrupt request signal timing.

Figure 11.41 shows the timing for setting of the TCFU flag in TSR by underflow occurrence, and
the TCIU interrupt request signal timing.

Overflow

signal

 TCNT

(overflow)

TCNT input

clock

H'FFFF H'0000

TCFV flag

TCIV interrupt

φ

Figure 11.40 TCIV Interrupt Setting Timing

Underflow

signal

TCNT

(underflow)

TCNT

input clock

H'0000 H'FFFF

TCFU flag

TCIU interrupt

φ

Figure 11.41 TCIU Interrupt Setting Timing

Section 12 Programmable Pulse Generator (PPG)

Rev.7.00 Mar. 18, 2009 page 649 of 1136
REJ09B0109-0700

1. Set up the TPU channel to be used as the output trigger channel so that TGRA and TGRB are
output compare registers. Set the trigger period in TGRB and the non-overlap margin in
TGRA, and set the counter to be cleared by compare match B. Set the TGIEA bit in TIER to 1
to enable the TGIA interrupt.

2. Write H'FF in P1DDR and NDERH, and set the G3CMS1, G3CMS0, G2CMS1, and G2CMS0
bits in PCR to select compare match in the TPU channel set up in the previous step to be the
output trigger. Set the G3NOV and G2NOV bits in PMR to 1 to select non-overlapping output.
Write output data H'95 in NDRH.

3. The timer counter in the TPU channel starts. When a compare match with TGRB occurs,
outputs change from 1 to 0. When a compare match with TGRA occurs, outputs change from 0
to 1 (the change from 0 to 1 is delayed by the value set in TGRA). The TGIA interrupt
handling routine writes the next output data (H'65) in NDRH.

4. Four-phase complementary non-overlapping pulse output can be obtained subsequently by
writing H'59, H'56, H'95... at successive TGIA interrupts.
If the DTC or DMAC is set for activation by the TGIA interrupt, pulse output can be obtained
without imposing a load on the CPU.

Section 13 8-Bit Timers (TMR)

Rev.7.00 Mar. 18, 2009 page 654 of 1136
REJ09B0109-0700

Figure 13.1 shows a block diagram of the 8-bit timer module (TMR_0 and TMR_1).

External clock source Internal clock sources

TMR_0

φ/8

φ/64

φ/8192

TMR_1

φ/8

φ/64

φ/8192

Clock 1

Clock 0

Compare match A1

Compare match A0

Clear 1

CMIA0

CMIB0

OVI0

CMIA1

CMIB1

OVI1

Interrupt signals

TCORA_0 : Time constant register A_0

TCORB_0 : Time constant register B_0

TCNT_0 : Timer counter_0

TCSR_0 : Timer control/status register_0

TCR_0 : Timer control register_0

TCORA_1 : Time constant register A_1

TCORB_1 : Time constant register B_1

TCNT_1 : Timer counter_1

TCSR_1 : Timer control/status register_1

TCR_1 : Timer control register_1

TMO0

TMRI0

In
te

rn
a
l
b
u
s

TCORA_0

Comparator A_0

Comparator B_0

TCORB_0

TCSR_0

TCR_0

TCORA_1

Comparator A_1

TCNT_1

Comparator B_1

TCORB_1

TCSR_1

TCR_1

TMCI0

TMCI1

TCNT_0
Overflow 1

Overflow 0

Compare match B1

Compare match B0

TMO1

TMRI1

A/D

conversion

start request

signal

Clock select

Control logic

Clear 0

Legend:

Figure 13.1 Block Diagram of 8-Bit Timer Module

Section 18 D/A Converter

Rev.7.00 Mar. 18, 2009 page 826 of 1136
REJ09B0109-0700

• DACR01 (Available only for the H8S/2377, H8S/2377R, H8S/2378 0.18μm F-ZTAT Group,
and H8S/2378R 0.18μm F-ZTAT Group)

Bit Bit Name Initial Value R/W Description

7 DAOE1 0 R/W D/A Output Enable 1

Controls D/A conversion and analog output.

0: Analog output (DA1) is disabled

1: Channel 1 D/A conversion is enabled; analog output
(DA1) is enabled

6 DAOE0 0 R/W D/A Output Enable 0

Controls D/A conversion and analog output.

0: Analog output (DA0) is disabled

1: Channel 0 D/A conversion is enabled; analog output
(DA0) is enabled

5 DAE 0 R/W D/A Enable

Used together with the DAOE0 and DAOE1 bits to
control D/A conversion. When the DAE bit is cleared to
0, channel 0 and 1 D/A conversions are controlled
independently. When the DAE bit is set to 1, channel 0
and 1 D/A conversions are controlled together.

Output of conversion results is always controlled
independently by the DAOE0 and DAOE1 bits. For
details, see table 18.2.

4 to
0

— All 1 — Reserved

These bits are always read as 1 and cannot be modified.

Table 18.2 Control of D/A Conversion

Bit 5
DAE

Bit 7
DAOE1

Bit 6
DAOE0

Description

0 0 0 D/A conversion disabled

 1 Channel 0 D/A conversion enabled, channel1 D/A conversion disabled

 1 0 Channel 1 D/A conversion enabled, channel0 D/A conversion disabled

 1 Channel 0 and 1 D/A conversions enabled

1 0 0 D/A conversion disabled

 1 Channel 0 and 1 D/A conversions enabled

 1 0

 1

Section 20 Flash Memory (0.35-μm F-ZTAT Version)

Rev.7.00 Mar. 18, 2009 page 851 of 1136
REJ09B0109-0700

Start

End of programming

End sub

Set SWE bit in FLMCR1

Wait (x) μs

n = 1

m = 0

Sub-routine-call

Subroutine-call

See Note 7 for pulse width

Note 7: Write Pulse Width

Start of programming

Write pulse application

Set PSU bit in FLMCR1

Enable WDT

Set P bit in FLMCR1

Wait (y) μs

Clear P bit in FLMCR1

Wait (z1) μs or (z2) ms or (z3) μs

Clear PSU bit in FLMCR1

Wait (α) μs

Disable WDT

Wait (β) μs

Write pulse application subroutine

NG

NG

NG

NG

NG NG

OK

OK

OK

OK

OK

Wait (γ) μs

Wait (ε) μs

*2

*4

*6

*6

*6

*6

*6 *6

*6

*5 *6

*6

*1

Set PV bit in FLMCR1

H'FF dummy write to verify address

Read verify data

Additional program data computation

Transfer additional program data to

additional program data area

Write data = verify

data?

*4

*1

*4

*3Reprogram data computation

Clear PV bit in FLMCR1

Clear SWE bit in FLMCR1

m = 1

128-byte

data verification

completed?

m = 0?

6 ≥ n ?

6 ≥ n ?

Increment address

Programming failure

OK

Clear SWE bit in FLMCR1

n ≥ (N)?

0

1

0

1

0

1

0

1

Comments

Additional programming executed

Additional programming not executed

Additional programming not executed

Additional programming not executed

Additional Program Data Operation Chart

Write 128-byte data in RAM reprogram

data area consecutively to flash memory

Write pulse application

 (z1) μs or (z2) μs

Perform programming in the erased state.
Do not perform additional programming
on previously programmed addresses.

RAM

Program data storage

area (128 bytes)

Reprogram data storage

area (128 bytes)

Additional program data

storage area (128 bytes)

Store 128-byte program data in program

data area and reprogram data area

Number of Writes (n)

1

2

3

4

5

6

7

8

9

10

11

12

13
.
.
.

998

999

1000

Write Time (z) μs

z1

z1

z1

z1

z1

z1

z2

z2

z2

z2

z2

z2

z2
.
.
.

z2

z2

z2

Notes: 1. Data transfer is performed by byte transfer. The lower 8 bits of the first address

 written to must be H'00 or H'80. A 128-byte data transfer must be performed

 even if writing fewer than 128 bytes; in this case, H'FF data must be written to

 the extra addresses.

 2. Verify data is read in 16-bit (W) units.

 3. The reprogram data is given by the operation of the following tables (comparison

 between stored data in the program data area and verify data). Programming is

 executed for the bits of reprogram data 0 in the next reprogram loop. Even bits

 for which programming has been completed will be subjected to additional

 programming if they fail the subsequent verify operation.

 4. A 128-byte areas for storing program data, reprogram data, and additional

 program data must be provided in the RAM. The contents of the reprogram and

 additional program data are modified as programming proceeds.

 5. A write pulse of (z1) or (z2) µs should be applied according to the progress of

 the programming operation. See Note 7 for the pulse widths. When writing

 of additional-programming data is executed, a (z3) μs write pulse should be applied.

 Reprogram data X' means reprogram data when the write pulse is applied.

 6. For the values of x, y, z1, z2, z3, α, β, γ, ε, η, θ, and N, see section 26.1.6, Flash Memory Characteristics.

0

1

0

1

0

1

1

0

1

Comments

Programming completed

Programming incomplete; reprogram

Still in erased state; no action

Program Data Operation Chart

Transfer reprogram data to reprogram

data area

n ← n + 1

Note: Use a z3 µs write pulse for additional

 programming.

Sequentially write 128-byte data in

additional program data area in RAM to

flash memory

Write pulse application

(z3) µs

(additional programming)

Wait (θ) μs

Wait (η) μs

Wait (θ) μs

Original Data
(D)

Verify Data
(V)

Reprogram Data
(X)

Reprogram Data
(X')

Verify Data
(V)

Additional Program Data
(Y)

Figure 20.7 Program/Program-Verify Flowchart

Section 21 Flash Memory (0.18-μm F-ZTAT Version)

Rev.7.00 Mar. 18, 2009 page 917 of 1136
REJ09B0109-0700

Storable/Executable Area Selected MAT

Item On-chip
RAM

User
Boot
MAT

External
Space

(Expanded
Mode)

User
MAT

User
Boot
MAT

Embedded
Program

Storage Area

Operation for Settings
of Program Parameter

 ×

Execution of
Programming

 × ×

Determination of
Program Result

 ×

Operation for Program
Error

 ×*2

Operation for FKEY
Clear

 ×

Switching MATs by
FMATS

 × ×

Notes: 1. Transferring the data to the on-chip RAM enables this area to be used.
 2. Switching FMATS by a program in the on-chip RAM enables this area to be used.

Section 21 Flash Memory (0.18-μm F-ZTAT Version)

Rev.7.00 Mar. 18, 2009 page 931 of 1136
REJ09B0109-0700

(d) Clock Mode Selection

The boot program will set the specified clock mode. The program will return the selected clock-
mode information after this setting has been made.

The clock-mode selection command should be sent after the device-selection commands.

Command H'11 Size Mode SUM

• Command, H'11, (one byte): Selection of clock mode
• Size (one byte): Amount of data that represents the modes
• Mode (one byte): A clock mode returned in reply to the supported clock mode inquiry.
• SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to the clock mode selection command
ACK will be returned when the clock mode matches.

Error Response H'91 ERROR

• Error response, H'91, (one byte) : Error response to the clock mode selection command
• ERROR, (one byte): Error code

 H'11: Checksum error
 H'22: Clock mode error, that is, the clock mode does not match.

Even if the clock mode numbers are H'00 and H'01 by a clock mode inquiry, the clock mode must
be selected using these respective values.

Section 21 Flash Memory (0.18-μm F-ZTAT Version)

Rev.7.00 Mar. 18, 2009 page 947 of 1136
REJ09B0109-0700

Command H'58 Size Block number SUM

• Command, H'58, (one byte): Erasure
• Size, (one byte): The number of bytes that represents the block number

This is fixed to 1.
• Block number (one byte): H'FF

Stop code for erasure
• SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to end of erasure (ACK)
When erasure is to be performed after the block number H'FF has been sent, the procedure
should be executed from the erasure selection command.

(11) Memory read

The boot program will return the data in the specified address.

Command H'52 Size Area Read address

 Read size SUM

• Command: H'52 (1 byte): Memory read
• Size (1 byte): Amount of data that represents the area, read address, and read size (fixed at 9)
• Area (1 byte)

H'00: User boot MAT
H'01: User MAT
 An address error occurs when the area setting is incorrect.

• Read address (4 bytes): Start address to be read from
• Read size (4 bytes): Size of data to be read
• SUM (1 byte): Checksum

Response H'52 Read size

 Data ···

 SUM

• Response: H'52 (1 byte): Response to memory read
• Read size (4 bytes): Size of data to be read
• Data (n bytes): Data for the read size from the read address
• SUM (1 byte): Checksum

Appendix

Rev.7.00 Mar. 18, 2009 page 1099 of 1136
REJ09B0109-0700

Port Name
MCU Operating
Mode Reset

Hardware
Standby
Mode

Software
Standby Mode

Bus Release
State

Program
Execution
State Sleep
Mode

Port E 1, 2, 4 8-bit
bus

T T keep keep I/O port

 16-bit
bus

T T T T D7 to D0

 8-bit
bus

T T keep keep I/O port

3, 5*2,
7

16-bit
bus

T T [Data bus]

T

[Other than the
above]

keep

[Data bus]

T

[Other than the
above]

keep

[Data bus]

D7 to D0

[Other than the
above]

I/O port

1, 2, 4 Clock outputPF7/φ

3, 5*2, 7 T

T [Clock output]

H

[Other than the
above]

keep

[Clock output]

Clock output

[Other than the
above]

keep

[Clock output]

Clock output

[Other than the
above]

Input port

1, 2, 4 H T PF6/AS

3, 5*2, 7 T

[OPE = 0,
AS output]

T

[OPE = 1,
AS output]

H

[Other than the
above]

keep

[AS output]

T

[Other than the
above]

keep

[AS output]

AS

[Other than the
above]

I/O port

Appendix

Rev.7.00 Mar. 18, 2009 page 1124 of 1136
REJ09B0109-0700

Instruction 1 2 3 4 5 6 7 8 9

OR.L ERs,ERd R:W 2nd R:W
NEXT

ORC #xx:8,CCR R:W
NEXT

ORC #xx:8,EXR R:W 2nd R:W
NEXT

POP.W Rn R:W
NEXT

1 State of
internal
operation

R:W EA

POP.L ERn R:W 2nd R:W
NEXT

1 State of
internal
operation

R:W:M
EA

R:W
EA+2

PUSH.W Rn R:W
NEXT

1 State of
internal
operation

W:W EA

PUSH.L ERn R:W 2nd R:W
NEXT

1 State of
internal
operation

W:W:M
EA

W:W
EA+2

ROTL.B Rd R:W
NEXT

ROTL.B #2,Rd R:W
NEXT

ROTL.W Rd R:W
NEXT

ROTL.W #2,Rd R:W
NEXT

ROTL.L ERd R:W
NEXT

ROTL.L #2,ERd R:W
NEXT

ROTR.B Rd R:W
NEXT

ROTR.B #2,Rd R:W
NEXT

ROTR.W Rd R:W
NEXT

ROTR.W #2,Rd R:W
NEXT

ROTR.L ERd R:W
NEXT

ROTR.L #2,ERd R:W
NEXT

Appendix

Rev.7.00 Mar. 18, 2009 page 1127 of 1136
REJ09B0109-0700

Instruction 1 2 3 4 5 6 7 8 9

SLEEP R:W
NEXT

Internal
operation:
M

STC CCR,Rd R:W
NEXT

STC EXR,Rd R:W
NEXT

STC
CCR,@ERd

R:W 2nd R:W
NEXT

W:W EA

STC
EXR,@ERd

R:W 2nd R:W
NEXT

W:W EA

STC CCR,
@(d:16,ERd)

R:W 2nd R:W 3rd R:W
NEXT

W:W EA

STC EXR,
@(d:16,ERd)

R:W 2nd R:W 3rd R:W
NEXT

W:W EA

STC CCR,
@(d:32,ERd)

R:W 2nd R:W 3rd R:W 4th R:W 5th R:W
NEXT

W:W EA

STC EXR,
@(d:32,ERd)

R:W 2nd R:W 3rd R:W 4th R:W 5th R:W
NEXT

W:W EA

STC CCR,
@-ERd

R:W 2nd R:W
NEXT

1 state of
internal
operation

W:W EA

STC EXR,
@-ERd

R:W 2nd R:W
NEXT

1 state of
internal
operation

W:W EA

STC
CCR,@aa:16

R:W 2nd R:W 3rd R:W
NEXT

W:W EA

STC
EXR,@aa:16

R:W 2nd R:W 3rd R:W
NEXT

W:W EA

STC
CCR,@aa:32

R:W 2nd R:W 3rd R:W 4th R:W
NEXT

W:W EA

STC
EXR,@aa:32

R:W 2nd R:W 3rd R:W 4th R:W
NEXT

W:W EA

STM.L (ERn-
ERn+1),
@-SP *8

R:W 2nd R:W
NEXT

1 state of
internal
operation

W:W:M
Stack (H)
*2

W:W
Stack (L)
*2

STM.L (ERn-
ERn+2),
@-SP *8

R:W 2nd R:W
NEXT

1 state of
internal
operation

W:W:M
Stack (H)
*2

W:W
Stack (L)
*2

