

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	34MHz
Connectivity	I ² C, IrDA, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	96
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 6x8b
Oscillator Type	External
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2371rvfq34v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit	Bit Name	Initial Value	R/W	Description	
1	V	Undefined	R/W	Overflow Flag	
				Set to 1 when an arithmetic overflow occurs, and cleared to 0 otherwise.	
0	С	Undefined	R/W	Carry Flag	
				Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:	
				Add instructions, to indicate a carry	
				Subtract instructions, to indicate a borrow	
				Shift and rotate instructions, to indicate a carry	
				The carry flag is also used as a bit accumulator by bit manipulation instructions.	

2.4.5 Initial Register Values

Reset exception handling loads the CPU's program counter (PC) from the vector table, clears the trace (T) bit in EXR to 0, and sets the interrupt mask (I) bits in CCR and EXR to 1. The other CCR bits and the general registers are not initialized. Note that the stack pointer (ER7) is undefined. The stack pointer should therefore be initialized by an MOV.L instruction executed immediately after a reset.

2.5 Data Formats

The H8S/2000 CPU can process 1-bit, 4-bit BCD, 8-bit (byte), 16-bit (word), and 32-bit (longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2, ..., 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit BCD data.

Addressing Mode and Instruction Format	Effective Address Calculation	Effective Address (EA)
Absolute address		
@aa:8		31 24 23 8 7 0
op abs		Don't care H'FFFF
@22:16		
op abs		31 24 23 16 15 0
@aa:24		<u>31 24 23 0</u>
op abs		Don't care
		_
@aa:32		
ор		31 24 23 0
abs		Don't care
		<u> </u>
Immediate		
#xx:8/#xx:16/#xx:32		Operand is immediate data.
op IMM		
Program-counter relative	PC contents	
op disp	23 0	
	extension disp	<u>31 24 23 0</u>
	Ť	Don't care
Memory indirect @@aa:8		
Normal mode*		
op abs		
	15 0	31 24 23 16 15 0
	- Wennory contents	
Advanced mode		
	31 87 0	
op abs	H'000000 abs	<u>31 24 23 0</u>
	310	Don't care
	Memory contents	
	Addressing Mode and Instruction Format Absolute address @aa:8 op abs @aa:16 op abs @aa:24 op abs @aa:32 op @aa:32 op @aa:32 op @aa:32 op @abs @aa:32 op @abs @abs @abs @abs Program-counter relative @(d:8,PC)/@(d:16,PC) op Op Memory indirect @@aa.8 • Normal mode* op Advanced mode op Advanced mode	Addressing Mode and Instruction Format Effective Address Calculation Absolute address

Note: * For this LSI, normal mode is not available.

2.9 Usage Note

2.9.1 Note on Bit Manipulation Instructions

Bit manipulation instructions such as BSET, BCLR, BNOT, BST, and BIST read data in byte units, perform bit manipulation, and write data in byte units. Thus, care must be taken when these bit manipulation instructions are executed for a register or port including write-only bits.

In addition, the BCLR instruction can be used to clear the flag of an internal I/O register. In this case, if the flag to be cleared has been set by an interrupt processing routine, the flag need not be read before executing the BCLR instruction.

Renesas

• WTCRBH

Bit	Bit Name	Initial Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0 and cannot be modified.
14	W32	1	R/W	Area 3 Wait Control 2 to 0
13 12	W31 W30	1 1	R/W R/W	These bits select the number of program wait states when accessing area 3 while AST3 bit in ASTCR = 1.
				000: Program wait not inserted
				001: 1 program wait state inserted
				010: 2 program wait states inserted
				011: 3 program wait states inserted
				100: 4 program wait states inserted
				101: 5 program wait states inserted
				110: 6 program wait states inserted
				111: 7 program wait states inserted
11	_	0	R	Reserved
				This bit is always read as 0 and cannot be modified.

6.5.2 Valid Strobes

Table 6.3 shows the data buses used and valid strobes for the access spaces.

In a read, the $\overline{\text{RD}}$ signal is valid for both the upper and the lower half of the data bus. In a write, the $\overline{\text{HWR}}$ signal is valid for the upper half of the data bus, and the $\overline{\text{LWR}}$ signal for the lower half.

Area	Access Size	Read/ Write	Address	Valid Strobe	Upper Data Bus (D15 to D8)	Lower Data Bus (D7 to D0)
8-bit access	Byte	Read	_	RD	Valid	Invalid
space		Write	_	HWR	_	Hi-Z
16-bit access	Byte	Read	Even	RD	Valid	Invalid
space			Odd		Invalid	Valid
		Write	Even	HWR	Valid	Hi-Z
			Odd	LWR	Hi-Z	Valid
	Word	Read		RD	Valid	Valid
		Write		HWR, LWR	Valid	Valid

Table 6.3 Data Buses Used and Valid Strobes

Note: Hi-Z: High-impedance state

Invalid: Input state; input value is ignored.

6.5.3 Basic Timing

8-Bit, 2-State Access Space: Figure 6.10 shows the bus timing for an 8-bit, 2-state access space. When an 8-bit access space is accessed, the upper half (D15 to D8) of the data bus is used. The \overline{LWR} pin is always fixed high. Wait states can be inserted.

8-Bit, 3-State Access Space: Figure 6.11 shows the bus timing for an 8-bit, 3-state access space. When an 8-bit access space is accessed, the upper half (D15 to D8) of the data bus is used. The \overline{LWR} pin is always fixed high. Wait states can be inserted.

Figure 6.11 Bus Timing for 8-Bit, 3-State Access Space

16-Bit, 2-State Access Space: Figures 6.12 to 6.14 show bus timings for a 16-bit, 2-state access space. When a 16-bit access space is accessed, the upper half (D15 to D8) of the data bus is used

6.7.7 CAS Latency Control

CAS latency is controlled by settings of the W22 to W20 bits of WTCRB. Set the CAS latency count, as shown in table 6.10, by the setting of synchronous DRAM. Depending on the setting, the CAS latency control cycle (T_{c1}) is inserted. WTCRB can be set regardless of the setting of the AST2 bit of ASTCR. Figure 6.45 shows the CAS latency control timing when synchronous DRAM of CAS latency 3 is connected.

The initial value of W22 to W20 is H'7. Set the register according to the CAS latency of synchronous DRAM to be connected.

W22	W21	W20	Description	CAS Latency Control Cycle Inserted
0	0	0 0 Connect synchronous DRAM of CAS latency 1		0 state
		1	Connect synchronous DRAM of CAS latency 2	1 state
	1	0	Connect synchronous DRAM of CAS latency 3	2 states
		1	Connect synchronous DRAM of CAS latency 4	3 states
1	0	0	Reserved (must not used)	
		1	Reserved (must not used)	
	1	0	Reserved (must not used)	_
		1	Reserved (must not used)	

Table 6.10	Setting	CAS	Latency
-------------------	---------	-----	---------

Figure 6.56 Auto Refresh Timing (TPC = 0, TPC0 = 0, RLW1 = 0, RLW0 = 1)

Self-Refreshing: A self-refresh mode (battery backup mode) is provided for synchronous DRAM as a kind of standby mode. In this mode, refresh timing and refresh addresses are generated within the synchronous DRAM.

To select self-refreshing, set the RFSHE bit to 1 in REFCR. When a SLEEP instruction is executed to enter software standby mode, the SELF command is issued, as shown in figure 6.57.

When software standby mode is exited, the SLFRF bit in REFCR is cleared to 0 and self-refresh mode is exited automatically. If an auto refresh request occurs when making a transition to software standby mode, auto refreshing is executed, then self-refresh mode is entered.

When using self-refresh mode, the OPE bit must not be cleared to 0 in SBYCR.

Renesas

In some synchronous DRAMs provided with a self-refresh mode, the interval between clearing self-refreshing and the next command is specified. A setting can be made in bits TPCS2 to TPCS0 in REFCR to make the precharge time after self-refreshing from 1 to 7 states longer than the normal precharge time. In this case, too, normal precharging is performed according to the setting of bits TPC1 and TPC0 in DRACCR, and therefore a setting should be made to give the optimum post-self-refresh precharge time, including this time. Figure 6.58 shows an example of the timing when the precharge time after self-refreshing is extended by 2 states.

Write after Read: If an external write occurs after an external read while the ICIS0 bit is set to 1 in BCR, an idle cycle is inserted at the start of the write cycle.

Figure 6.66 shows an example of the operation in this case. In this example, bus cycle A is a read cycle for ROM with a long output floating time, and bus cycle B is a CPU write cycle. In (a), an idle cycle is not inserted, and a collision occurs in bus cycle B between the read data from ROM and the CPU write data. In (b), an idle cycle is inserted, and a data collision is prevented.

Figure 6.66 Example of Idle Cycle Operation (Write after Read)

7.5.2 Sequential Mode

Sequential mode can be specified by clearing the RPE bit in DMACR to 0. In sequential mode, MAR is updated after each byte or word transfer in response to a single transfer request, and this is executed the number of times specified in ETCR. One address is specified by MAR, and the other by IOAR. The transfer direction can be specified by the DTDIR bit in DMACR.

Table 7.5 summarizes register functions in sequential mode.

	Fun	ction			
Register	DTDIR = 0	DTDIR = 1	Initial Setting	Operation	
23 0	Source address register	Destination address register	Start address of transfer destination or transfer source	Incremented/ decremented every transfer	
23 15 0 H'FF IOAR	Destination address register	Source address register	Start address of transfer source or transfer destination	Fixed	
15 0 ETCR	Transfer co	unter	Number of transfers	Decremented every transfer; transfer ends when count reaches H'0000	

MAR specifies the start address of the transfer source or transfer destination as 24 bits. MAR is incremented or decremented by 1 or 2 each time a byte or word is transferred. IOAR specifies the lower 16 bits of the other address. The 8 bits above IOAR have a value of H'FF.

Figure 7.3 illustrates operation in sequential mode.

8.4.10 EXDMAC Bus Cycles (Single Address Mode)

Single Address Mode (Read): Figure 8.22 shows an example of transfer when ETEND output is enabled, and byte-size, single address mode transfer (read) is performed from external 8-bit, 2-state access space to an external device.

Figure 8.22 Example of Single Address Mode (Byte Read) Transfer

Figure 8.23 shows an example of transfer when ETEND output is enabled, and word-size, single address mode transfer (read) is performed from external 8-bit, 2-state access space to an external device.

Figure 8.23 Example of Single Address Mode (Word Read) Transfer

• P14/PO12/TIOCA1

The pin function is switched as shown below according to the combination of the TPU channel 1 settings (by bits MD3 to MD0 in TMDR_1, bits IOA3 to IOA0 in TIOR_1, and bits CCLR1 and CCLR0 in TCR_1), bit NDER12 in NDERH, and bit P14DDR.

TPU channel 1 settings	(1) in table below	(2) in table below				
P14DDR		0	1	1		
NDER12	—		0	1		
Pin function	TIOCA1 output	P14 input	P14 output	PO12 output		
		TIOCA1 input ^{*1}				

TPU channel 1 settings	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000	, B'01××	B'001×	B'0010	B'0	011
IOA3 to IOA0	B'0000 B'0100 B'1×××	B'0001 to B'0011 B'0101 to B'0111	B'××00	Other than B'××00	Other that	an B'××00
CCLR1, CCLR0					Other than B'01	B'01
Output function	_	Output compare output		PWM ^{*2} mode 1 output	PWM mode 2 output	_

Legend:

×: Don't care

Notes: 1. TIOCA1 input when MD3 to MD0 = B'0000 or B'01×× and IOA3 to IOA0 = B'10××.

2. TIOCB1 output disabled.

• P33/RxD1/SCL1

The pin function is switched as shown below according to the combination of bit ICE in ICCRA of I^2C_0 , bit RE in SCR of SCI_1 and bit P33DDR.

ICE		1		
RE	(C	1	
P33DDR	0 1		—	—
Pin function	P33 input	P33 output ^{*1}	RxD1 input	SCL1 I/O*2

Notes: 1. NMOS open-drain output when P33ODR = 1.

2. NMOS open-drain output regardless of P33ODR.

• P32/RxD0/IrRxD/SDA1

The pin function is switched as shown below according to the combination of bit ICE in ICCRA of I^2C_0 , bit RE in SCR of SCI_0 and bit P32DDR.

ICE		1		
RE	()	1	—
P32DDR	0	1	_	—
Pin function	P32 input	P32 output ^{*1}	RxD0/IrRxD input	SDA1 I/O ^{*2}

Notes: 1. NMOS open-drain output when P32ODR = 1.

2. NMOS open-drain output regardless of P32ODR.

• P31/TxD1

The pin function is switched as shown below according to the combination of bit TE in SCR of SCI_1 and bit P31DDR.

TE	C	1	
P31DDR	0	1	—
Pin function	P31 input	P31 output*	TxD1 output*

Note: * NMOS open-drain output when P310DR = 1.

Table 11.17	TIORL_3
--------------------	---------

				Description					
Bit 7 IOD3	Bit 6 IOD2	Bit 5 IOD1	Bit 4 IOD0	TGRD_3 Function	TIOCD3 Pin Function				
0	0	0	0	Output	Output disabled				
			1	compare	Initial output is 0 output				
				register	0 output at compare match				
		1	0		Initial output is 0 output				
					1 output at compare match				
			1		Initial output is 0 output				
					Toggle output at compare match				
	1	0	0		Output disabled				
			1		Initial output is 1 output				
					0 output at compare match				
		1	0	_	Initial output is 1 output				
					1 output at compare match				
			1		Initial output is 1 output				
					Toggle output at compare match				
1	0	0	0	Input	Capture input source is TIOCD3 pin				
				capture rogistor*2	Input capture at rising edge				
			1		Capture input source is TIOCD3 pin				
					Input capture at falling edge				
		1	×	_	Capture input source is TIOCD3 pin				
					Input capture at both edges				
	1	х	х	_	Capture input source is channel 4/count clock				
					Input capture at TCNT_4 count-up/count-down*1				

Legend: x: Don't care

Notes: 1. When bits TPSC2 to TPSC0 in TCR_4 are set to B'000 and $\phi/1$ is used as the TCNT_4 count clock, this setting is invalid and input capture is not generated.

2. When the BFB bit in TMDR_3 is set to 1 and TGRD_3 is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

		Operating Frequency ∳ (MHz)																
Bit Rate	e	8		10		16		20		25		30		33	;	34 *1		35 ^{*2}
(bit/s)	n	Ν	n	Ν	n	Ν	n	Ν	n	Ν	n	Ν	n	Ν	n	Ν	n	Ν
110																		
250	3	124	_		3	249												
500	2	249	_	_	3	124	_	_			3	233						
1 k	2	124	_		2	249		_	3	97	3	116	3	128	3	132	3	136
2.5 k	1	199	1	249	2	99	2	124	2	155	2	187	2	205	2	212	2	218
5 k	1	99	1	124	1	199	1	249	2	77	2	93	2	102	2	105	2	108
10 k	0	199	0	249	1	99	1	124	1	155	1	187	1	205	1	212	1	218
25 k	0	79	0	99	0	159	0	199	0	249	1	74	1	82	1	84	1	87
50 k	0	39	0	49	0	79	0	99	0	124	0	149	0	164	0	169	0	174
100 k	0	19	0	24	0	39	0	49	0	62	0	74	0	82	0	84	0	87
250 k	0	7	0	9	0	15	0	19	0	24	0	29	0	32	0	33	0	34
500 k	0	3	0	4	0	7	0	9	_	_	0	14	_	_	0	16		_
1 M	0	1			0	3	0	4		_	_	_	_	_				_
2.5 M			0	0*			0	1	_	_	0	2	_	_				_
5 M							0	0*	_	_	_		_	_			_	_

Legend:

Blank: Cannot be set.

—: Can be set, but there will be a degree of error.

*: Continuous transfer is not possible.

Notes: 1. Supported on the H8S/2378 0.18 μm F-ZTAT Group and H8S/2378R 0.18 μm F-ZTAT Group only.

2. Supported on the H8S/2378 only.

•	Bit Rate (bps) (Above)/Bit Period × 3/16 (μs) (Below)										
Operating Frequency	2400	9600	19200	38400	57600	115200					
φ (MHz)	78.13	19.53	9.77	4.88	3.26	1.63					
8	100	100	100	100	100	100					
9.8304	100	100	100	100	100	100					
10	100	100	100	100	100	100					
12	101	101	101	101	101	101					
12.288	101	101	101	101	101	101					
14	101	101	101	101	101	101					
14.7456	101	101	101	101	101	101					
16	101	101	101	101	101	101					
16.9344	101	101	101	101	101	101					
17.2032	101	101	101	101	101	101					
18	101	101	101	101	101	101					
19.6608	101	101	101	101	101	101					
20	101	101	101	101	101	101					
25	110	110	110	110	110						
30	110	110	110	110	110						
33	110	110	110	110	110						
34 ^{*1}	110	110	110	110	110						
35 ^{*2}	110	110	110	110	110						

Table 15.12 Settings of Bits IrCKS2 to IrCKS0

Legend:

—: A bit rate setting cannot be made on the SCI side.

Notes: 1. Supported on the H8S/2378 0.18 μm F-ZTAT Group and H8S/2378R 0.18 μm F-ZTAT Group only.

2. Supported on the H8S/2378 only.

18.4 Operation

The D/A converter includes D/A conversion circuits for six channels^{*1}, each of which can operate independently.

When DAOE bit in DACR01^{*2}, DACR23, or DACR45^{*3} is set to 1, D/A conversion is enabled and the conversion result is output.

The operation example concerns D/A conversion on channel 2. Figure 18.4 shows the timing of this operation.

- [1] Write the conversion data to DADR2.
- [2] Set the DAOE2 bit in DACR23 to 1. D/A conversion is started. The conversion result is output from the analog output pin DA2 after the conversion time t_{DCONV} has elapsed. The conversion result is continued to output until DADR2 is written to again or the DAOE2 bit is cleared to 0. The output value is expressed by the following formula:

 $\frac{\text{DADR contents}}{256} \times \text{Vref}$

- [3] If DADR2 is written to again, the conversion is immediately started. The conversion result is output after the conversion time t_{DCONV} has elapsed.
- [4] If the DAOE2 bit is cleared to 0, analog output is disabled.
- Notes: 1. Two channels are available for the H8S/2375, H8S/2375R, H8S/2373, and H8S/2373R.
 - 2. Not supported by the H8S/2375, H8S/2375R, H8S/2373, and H8S/2373R.
 - 3. Not supported by the H8S/2375, H8S/2375R, H8S/2373, and H8S/2373R.

(3) Erasing Procedure in User Program Mode

The procedures for download, initialization, and erasing are shown in figure 21.12.

Figure 21.12 Erasing Procedure

The procedure program must be executed in an area other than the user MAT to be erased. Especially the part where the SCO bit in FCCS is set to 1 for downloading must be executed in the on-chip RAM.

The area that can be executed in the steps of the user procedure program (on-chip RAM, user MAT, and external space) is shown in section 21.4.4, Procedure Program and Storable Area for Programming Data.

For the downloaded on-chip program area, refer to figure 21.10.

Instruction	1	2	3	4	5	6	7	8	9
BLD #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT						
BLD #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W NEXT					
BLD #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W NEXT				
BNOT #xx:3,Rd	R:W NEXT								
BNOT #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT #xx:3,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BNOT #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BNOT Rn,Rd	R:W NEXT								
BNOT Rn,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT Rn,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT Rn,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BNOT Rn,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BOR #xx:3,Rd	R:W NEXT								
BOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT						
BOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT						
BOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W NEXT					
BOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W NEXT				
BSET #xx:3,Rd	R:W NEXT								
BSET #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					