

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	34MHz
Connectivity	I ² C, IrDA, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	96
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 6x8b
Oscillator Type	External
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2372rvfq34v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Main Revisions for This Edition

Item	Page	Revision (See Manual for Details)						
3.4 Memory Map in Each Operating Mode	79	Figure amended ROM: 512 kbytes ROM: 512 kbytes ROM: 512 kbytes						
Figure 3.2 Memory Map for H8S/2378 and H8S/2378R (2)		RAM: 32 kbytes RAM: 32 kbytes RAM: 32 kbytes Mode 4 Mode 5 Mode 7 (Expanded mode with (User boot mode) (Single-chip activation on-chip ROM enabled) expanded mode, with on-chip ROM enabled						
100/20/01(2)		H.000000 H.000000 H.000000						
		On-chip ROM On-chip ROM On-chip ROM						
		H.080000 H.080000 H.080000						
Figure 3.7 Memory	84	Figure amended						
Map for H8S/2374 and H8S/2374R (1)								
		H'FF4000 H'FF4000						
		On-chip RAM/ external address space*1						
		H'FFC000						
Figure 3.15 Memory	92	Figure amended						
Map for H8S/2370 and H8S/2370R (2)		H'FF4000 Becomed area*1 H'FF4000 Becomed area*1						
		H'FF8000 On-chip RAM/ external address						
		HFFC000 space*1 HFFC000 space*3						
6.7.11 Byte Access Control	230	Figure amended						
Figure 6.51 Example		64-Mbit synchronous DRAM This LSI 1 Mword × 16 bits × 4-bank configuration (Address shift size set to 8 bits) 8-bit column address						
of DQMU and DQML Byte Control		CS2 (RAS) CS3 (CAS)						
6.9.2 Pin States in	268	Table amended						
Idle Cycle Table 6.12 Pin States in Idle Cycle		PinsPin StateEDACKn (n = 3, 2)High						
7.3.7 DMA Terminal	306	Description amended						
Control Register (DMATCR)		The TEND pin is available only for channel B in short address mode.						
		Bau 7 00 Mar 40 2000 mana vii af hui						

Contents

Secti	on 1	Overview	.1
1.1	Feature	28	. 1
1.2	Block I	Diagram	. 3
1.3	Pin De	scription	. 7
	1.3.1	Pin Arrangement	. 7
	1.3.2	Pin Arrangement in Each Operating Mode	12
	1.3.3	Pin Functions	18
Secti	on 2	CPU	35
2.1			
	2.1.1	Differences between H8S/2600 CPU and H8S/2000 CPU	
	2.1.2	Differences from H8/300 CPU	
	2.1.3	Differences from H8/300H CPU	
2.2	CPU O	perating Modes	
	2.2.1	Normal Mode	
	2.2.2	Advanced Mode	40
2.3	Addres	s Space	42
2.4		r Configuration	
	2.4.1	General Registers	
	2.4.2	Program Counter (PC)	45
	2.4.3	Extended Control Register (EXR)	
	2.4.4	Condition-Code Register (CCR)	46
	2.4.5	Initial Register Values	
2.5	Data Fe	ormats	47
	2.5.1	General Register Data Formats	
	2.5.2	Memory Data Formats	50
2.6	Instruc	tion Set	
	2.6.1	Table of Instructions Classified by Function	52
	2.6.2	Basic Instruction Formats	61
2.7	Addres	sing Modes and Effective Address Calculation	62
	2.7.1	Register Direct—Rn	63
	2.7.2	Register Indirect—@ERn	63
	2.7.3	Register Indirect with Displacement—@(d:16, ERn) or @(d:32, ERn)	63
	2.7.4	Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ERn	63
	2.7.5	Absolute Address—@aa:8, @aa:16, @aa:24, or @aa:32	64
	2.7.6	Immediate—#xx:8, #xx:16, or #xx:32	64
	2.7.7	Program-Counter Relative—@(d:8, PC) or @(d:16, PC)	
	2.7.8	Memory Indirect—@@aa:8	65
		Rev.7.00 Mar. 18, 2009 page xxiii of l: REJ09B0109-07	

2.7.7 Program-Counter Relative—@(d:8, PC) or @(d:16, PC)

This mode can be used by the Bcc and BSR instructions. An 8-bit or 16-bit displacement contained in the instruction code is sign-extended to 24 bits and added to the 24-bit address indicated by the PC value to generate a 24-bit branch address. Only the lower 24 bits of this branch address are valid; the upper 8 bits are all assumed to be 0 (H'00). The PC value to which the displacement is added is the address of the first byte of the next instruction, so the possible branching range is -126 to +128 bytes (-63 to +64 words) or -32766 to +32768 bytes (-16383 to +16384 words) from the branch instruction. The resulting value should be an even number.

2.7.8 Memory Indirect—@@aa:8

This mode can be used by the JMP and JSR instructions. The instruction code contains an 8-bit absolute address specifying a memory operand which contains a branch address. The upper bits of the 8-bit absolute address are all assumed to be 0, so the address range is 0 to 255 (H'0000 to H'00FF in normal mode, H'000000 to H'000FF in advanced mode).

In normal mode, the memory operand is a word operand and the branch address is 16 bits long. In advanced mode, the memory operand is a longword operand, the first byte of which is assumed to be 0 (H'00).

Note that the top area of the address range in which the branch address is stored is also used for the exception vector area. For further details, refer to section 4, Exception Handling.

If an odd address is specified in word or longword memory access, or as a branch address, the least significant bit is regarded as 0, causing data to be accessed or the instruction code to be fetched at the address preceding the specified address. (For further information, see section 2.5.2, Memory Data Formats.)

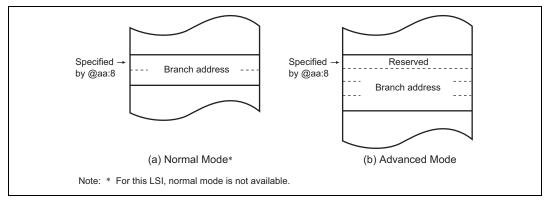
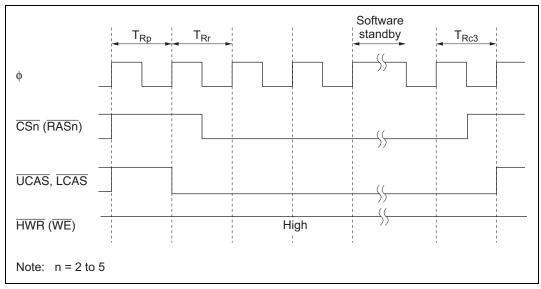


Figure 2.12 Branch Address Specification in Memory Indirect Addressing Mode

Renesas


6.3.6 Area 0 Burst ROM Interface Control Register (BROMCRH) Area 1 Burst ROM Interface Control Register (BROMCRL)

BROMCRH and BROMCRL are used to make burst ROM interface settings. Area 0 and area 1 burst ROM interface settings can be made independently in BROMCRH and BROMCRL, respectively.

Bit	Bit Name	Initial Value	R/W	Description
7	BSRMn	0	R/W	Burst ROM Interface Select
				Selects the basic bus interface or burst ROM interface.
				0: Basic bus interface space
				1: Burst ROM interface space
6	BSTSn2	0	R/W	Burst Cycle Select
5 4	BSTSn1 BSTSn0	0 0	R/W R/W	These bits select the number of burst cycle states.
4	0313110	0	r///	000: 1 state
				001: 2 states
				010: 3 states
				011: 4 states
				100: 5 states
				101: 6 states
				110: 7 states
				111: 8 states
3, 2	_	All 0	R/W	Reserved
				These bits are always read as 0. The initial value should not be changed.
1	BSWDn1	0	R/W	Burst Word Number Select
0	BSWDn0	0	R/W	These bits select the number of words that can be burst-accessed on the burst ROM interface.
				00: Maximum 4 words
				01: Maximum 8 words
				10: Maximum 16 words
				11: Maximum 32 words

(n = 1 or 0)

Renesas

In some DRAMs provided with a self-refresh mode, the RAS signal precharge time immediately after self-refreshing is longer than the normal precharge time. A setting can be made in bits TPCS2 to TPCS0 in REFCR to make the precharge time immediately after self-refreshing from 1 to 7 states longer than the normal precharge time. In this case, too, normal precharging is performed according to the setting of bits TPC1 and TPC0 in DRACCR, and therefore a setting should be made to give the optimum post-self-refresh precharge time, including this time. Figure 6.40 shows an example of the timing when the precharge time immediately after self-refreshing is extended by 2 states.

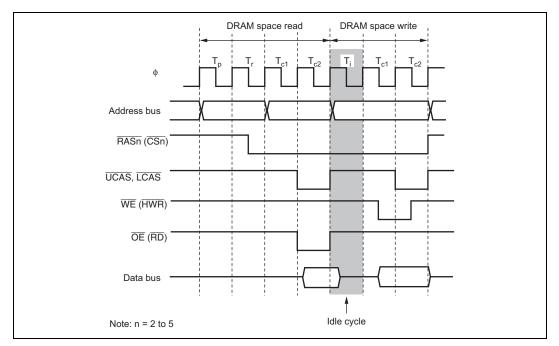


Figure 6.81 Example of Timing for Idle Cycle Insertion in Case of Consecutive Read and Write Accesses to DRAM Space in RAS Down Mode

Bit	Bit Name	Initial Value	R/W	Description
5	DTME0	0	R/W	Data Transfer Master Enable 0
				Together with the DTE0 bit, this bit controls enabling or disabling of data transfer on channel 0. When both the DTME0 bit and DTE0 bit are set to 1, transfer is enabled for channel 0.
				If channel 0 is in the middle of a burst mode transfer when an NMI interrupt is generated, the DTME0 bit is cleared, the transfer is interrupted, and bus mastership passes to the CPU. When the DTME0 bit is subsequently set to 1 again, the interrupted transfer is resumed. In block transfer mode, however, the DTME0 bit is not cleared by an NMI interrupt, and transfer is not interrupted.
				[Clearing conditions]
				When initialization is performed
				When NMI is input in burst mode
				When 0 is written to the DTME0 bit
				[Setting condition]
				When 1 is written to DTME0 after reading DTME0 = 0

_	_	*3*3		м	ode 7	Input/	
Port	Description	Mode 1 ^{*3} Mode 2 ^{*3}	Mode 4	EXPE = 1	EXPE = 0	Output Type	
	General I/O port	PA7/A23/IRQ7	PA7/A23/Ī	RQ7	PA7/IRQ7	Only PA4	
А	also functioning as address	PA6/A22/IRQ6	PA6/A22/Ī	RQ6	PA6/IRQ6	to PA7 are	
	outputs	PA5/A21/IRQ5	PA5/A21/Ī	RQ5	PA5/IRQ5	Schmitt-	
		A20/IRQ4	PA4/A20/Ī	RQ4	PA4/IRQ4	triggered	
		A19	PA3/A19		PA3	input when	
		A18	PA2/A18		PA2	used as	
		A17	PA1/A17		PA1	IRQ	
		A16	PA0/A16		PA0	input. Built-in input pull-	
						up MOS	
						Open- drain	
						output	
						capability	
	General I/O port	A15	PB7/A15		PB7	Built-in	
В	also functioning as address	A14	PB6/A14		PB6	input pull- up MOS	
	outputs	A13	PB5/A13		PB5		
		A12	PB4/A12		PB4		
		A11	PB3/A11		PB3		
		A10	PB2/A10		PB2		
		A9	PB1/A9		PB1		
		A8	PB0/A8		PB0		
	General I/O port	A7	PC7/A7		PC7	Built-in	
С	also functioning as address	A6	PC6/A6		PC6	input pull- up MOS	
	outputs	A5	PC5/A5		PC5		
		A4	PC4/A4		PC4		
		A3	PC3/A3		PC3		
		A2	PC2/A2		PC2		
		A1	PC1/A1		PC1		
		A0	PC0/A0		PC0		

10.11.6 Port C Input Pull-Up MOS States

Port C has a built-in input pull-up MOS function that can be controlled by software. This input pull-up MOS function can be used in modes 4 and 7. Input pull-up MOS can be specified as on or off on a bit-by-bit basis.

In modes 4 and 7, when a PCDDR bit is cleared to 0, setting the corresponding PCPCR bit to 1 turns on the input pull-up MOS for that pin.

Table 10.4 summarizes the input pull-up MOS states.

Table 10.4	Input	Pull-Up	MOS	States	(Port	C)
-------------------	-------	---------	-----	--------	-------	----

Mode Reset		Hardware Standby Mode	Software Standby Mode	In Other Operations	
1, 2	Off	Off	Off	Off	
4, 7			On/Off	On/Off	

Legend:

Off: Input pull-up MOS is always off.

On/Off: On when PCDDR = 0 and PCPCR = 1; otherwise off.

10.14.2 Port F Data Register (PFDR)

PFDR stores output data for the port F pins.

Bit	Bit Name	Initial Value	R/W	Description
7	PF7DR	0	R/W	Output data for a pin is stored when the pin function
6	PF6DR	0	R/W	is specified to a general purpose I/O.
5	PF5DR	0	R/W	_
4	PF4DR	0	R/W	_
3	PF3DR	0	R/W	_
2	PF2DR	0	R/W	_
1	PF1DR	0	R/W	_
0	PF0DR	0	R/W	_

10.14.3 Port F Register (PORTF)

PORTF shows port F pin states.

PORTF cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	PF7	*	R	If a port F read is performed while PFDDR bits are
6	PF6	*	R	 set to 1, the PFDR values are read. If a port F read is performed while PFDDR bits are cleared to 0, the
5	PF5	*	R	pin states are read.
4	PF4	*	R	—
3	PF3	*	R	
2	PF2	*	R	—
1	PF1	*	R	—
0	PF0	*	R	_

Note: * Determined by the states of pins PF7 to PF0.

• PG5/BACK

The pin function is switched as shown below according to the operating mode, bit EXPE, bit BRLE, and bit PG5DDR.

Operating mode		1, 2, 4		7					
EXPE		—		(0 1				
BRLE	0		1	_		C)	1	
PG5DDR	0	1	_	0	1	0	1		
Pin function	PG5 input PG5 output		BACK output	PG5 input	PG5 output	PG5 input	PG5 output	BACK output	

• PG4/BREQO

The pin function is switched as shown below according to the operating mode, bit EXPE, bit BRLE, bit BREQO, and bit PG4DDR.

Operating mode	1, 2, 4					7						
EXPE	—					0 1						
BRLE	(0 1			— 0)	1				
BREQO	-	_	(0	1	_		—		()	1
PG4DDR	0	1	0	1	_	0	1	0	1	0	1	—
Pin function	PG4 input	PG4 output	PG4 input	PG4 output	BREQO output	PG4 input	PG4 output	PG4 input	PG4 output	PG4 input	PG4 output	BREQO output

Table 11.15 TIOR_2

				Description						
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	TGRB_2 Function	TIOCB2 Pin Function					
0	0	0	0	Output	Output disabled					
			1	compare register	Initial output is 0 output					
		_		register	0 output at compare match					
		1	0	_	Initial output is 0 output					
					1 output at compare match					
			1	_	Initial output is 0 output					
					Toggle output at compare match					
	1	0	0	_	Output disabled					
	1		_	Initial output is 1 output						
					0 output at compare match					
		1	0	_	Initial output is 1 output					
					1 output at compare match					
			1	_	Initial output is 1 output					
					Toggle output at compare match					
1	х	0	0	Input	Capture input source is TIOCB2 pin					
				capture —register	Input capture at rising edge					
			1	-legister	Capture input source is TIOCB2 pin					
					Input capture at falling edge					
		1	х	_	Capture input source is TIOCB2 pin					
					Input capture at both edges					

Legend: x: Don't care

11.4.4 Cascaded Operation

In cascaded operation, two 16-bit counters for different channels are used together as a 32-bit counter.

This function works by counting the channel 1 (channel 4) counter clock at overflow/underflow of TCNT_2 (TCNT_5) as set in bits TPSC2 to TPSC0 in TCR.

Underflow occurs only when the lower 16-bit TCNT is in phase-counting mode.

Table 11.29 shows the register combinations used in cascaded operation.

Note: When phase counting mode is set for channel 1 or 4, the counter clock setting is invalid and the counter operates independently in phase counting mode.

Table 11.29 Cascaded Combinations

Combination	Upper 16 Bits	Lower 16 Bits		
Channels 1 and 2	TCNT_1	TCNT_2		
Channels 4 and 5	TCNT_4	TCNT_5		

Example of Cascaded Operation Setting Procedure: Figure 11.17 shows an example of the setting procedure for cascaded operation.

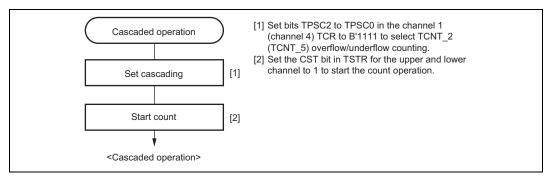


Figure 11.17 Cascaded Operation Setting Procedure

12.3.4 PPG Output Control Register (PCR)

PCR selects output trigger signals on a group-by-group basis. For details on output trigger selection, refer to section 12.3.5, PPG Output Mode Register (PMR).

Bit	Bit Name	Initial Value	R/W	Description			
7	G3CMS1	1	R/W	Group 3 Compare Match Select 1 and 0			
6	G3CMS0	1	R/W	Select output trigger of pulse output group 3.			
				00: Compare match in TPU channel 0			
				01: Compare match in TPU channel 1			
				10: Compare match in TPU channel 2			
				11: Compare match in TPU channel 3			
5	G2CMS1	1	R/W	Group 2 Compare Match Select 1 and 0			
4	G2CMS0	1	R/W	Select output trigger of pulse output group 2.			
				00: Compare match in TPU channel 0			
				01: Compare match in TPU channel 1			
				10: Compare match in TPU channel 2			
				11: Compare match in TPU channel 3			
3	G1CMS1	1	R/W	Group 1 Compare Match Select 1 and 0			
2	G1CMS0	1	R/W	Select output trigger of pulse output group 1.			
				00: Compare match in TPU channel 0			
				01: Compare match in TPU channel 1			
				10: Compare match in TPU channel 2			
				11: Compare match in TPU channel 3			
1	G0CMS1	1	R/W	Group 0 Compare Match Select 1 and 0			
0	G0CMS0	1	R/W	Select output trigger of pulse output group 0.			
				00: Compare match in TPU channel 0			
				01: Compare match in TPU channel 1			
				10: Compare match in TPU channel 2			
				11: Compare match in TPU channel 3			

15.6 Operation in Clocked Synchronous Mode

Figure 15.14 shows the general format for clocked synchronous communication. In clocked synchronous mode, data is transmitted or received in synchronization with clock pulses. One character of communication data consists of 8-bit data. In clocked synchronous serial communication, data on the transmission line is output from one falling edge of the serial clock to the next. In clocked synchronous mode, the SCI receives data in synchronization with the rising edge of the serial clock. After 8-bit data is output, the transmission line holds the MSB state. In clocked synchronous mode, no parity or multiprocessor bit is added. Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication by use of a common clock. Both the transmitter and the receiver also have a double-buffered structure, so that data can be read or written during transmission or reception, enabling continuous data transfer.

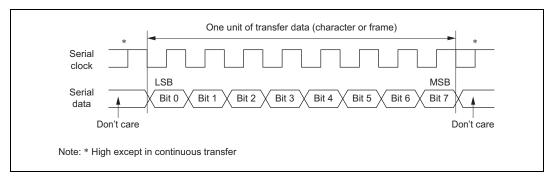


Figure 15.14 Data Format in Clocked Synchronous Communication (For LSB-First)

15.6.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external synchronization clock input at the SCK pin can be selected, according to the setting of CKE1 and CKE0 bits in SCR. When the SCI is operated on an internal clock, the serial clock is output from the SCK pin. Eight serial clock pulses are output in the transfer of one character, and when no transfer is performed the clock is fixed high.

16.3.2 I²C Bus Control Register B (ICCRB)

ICCRB is an 8-bit readable/writable register that issues start/stop conditions, manipulates the SDA pin, monitors the SCL pin, and controls reset in I^2C control.

Bit	Bit Name	Initial Value	R/W	Description			
7	BBSY	0	R/W	Bus Busy			
				This bit enables to confirm whether the I^2C bus is occupied or released and to issue start and stop conditions in master mode. This bit is set to 1 when the SDA level changes from high to low under the condition of SCL = high, assuming that the start condition has been issued. This bit is cleared to 0 when the SDA level changes from low to high under the condition of SCL = high, assuming that the stop condition has been issued. Write 1 to BBSY and 0 to SCP to issue a start condition. Follow this procedure when also re-transmitting a start condition. Write 0 to BBSY and 0 to SCP to issue a stop condition. To issue a start/stop condition, use the MOV instruction.			
6	SCP	1	W	Start Condition/Stop Condition Prohibit			
				The SCP bit controls the issue of start/stop conditions in master mode.			
				To issue a start condition, write 1 in BBSY and 0 in SCP. A retransmit start condition is issued in the same way. To issue a stop condition, write 0 in BBSY and 0 in SCP. This bit is always read as 1. If 1 is written, the data is not stored.			
5	SDAO	1	R/W	Monitors the output level of SDA.			
				0: When reading, SDA pin outputs low.			
				1: When reading, SDA pin outputs high.			
_				The write value must always be 1.			
4		1	R/W	Reserved			
				The write value must always be 1.			
3	SCLO	1	R	This bit monitors SCL output level. When reading and SCLO is 1, SCL pin outputs high. When reading and SCLO is 0, SCL pin outputs low.			
2	_	1		Reserved			
				This bit is always read as 1.			

	Bit	Initial		
Bit	Name	Value	R/W	Description
2	WD	_	R/W	Write Data Address Detect
				When the address in the flash memory area is specified as the start address of the storage destination of the program data, an error occurs.
				0: Setting of write data address is normal
				1: Setting of write data address is abnormal
1	WA	_	R/W	Write Address Error Detect
				When the following items are specified as the start address of the programming destination, an error occurs.
				 When the programming destination address in the area other than flash memory is specified
				 When the specified address is not a 128-byte boundary (the value of A6 to A0 is not H'0).
				0: Setting of programming destination address is normal
				1: Setting of programming destination address is abnormal
0	SF	_	R/W	Success/Fail
				Indicates whether the program processing is ended normally or not.
				0: Programming is ended normally (no error)
				1: Programming is ended abnormally (error occurs)

(4) Erasure Execution

When flash memory is erased, the erase-block number on the user MAT must be passed to the erasing program which is downloaded. This is set to the FEBS parameter (general register ER0).

One block is specified from the block number 0 to 15.

For details on the erasing processing procedure, see section 21.4.2, User Program Mode.

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
BCR	BRLE	BREQ0E		IDLC	ICIS1	ICIS0	WDBE	WAITE	BSC
	_	_	_	_	_	ICIS2	_		_
DRAMCR	OEE	RAST	_	CAST	_	RMTS2	RMTS1	RMTS0	_
	BE	RCDM	DDS	EDDS	_	MXC2	MXC1	MXC0	_
DRACCRH	DRMI	_	TPC1	TPC0	SDWCD	_	RCD1	RCD0	_
DRACCRL	_			_	CKSPE	_	RDXC1	RDXC0	_
REFCR	CMF	CMIE	RCW1	RCW0	_	RTCK2	RTCK1	RTCK0	_
	RFSHE	CBRM	RLW1	RLW0	SLFRF	TPCS2	TPCS1	TPCS0	_
RTCNT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
RTCOR	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
MAR_0AH	_	_	_	_	_	_	_	_	DMAC
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
MAR_0AL	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
IOAR_0A	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
ETCR_0A	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
MAR_0BH	_	_		_	_	_	_		_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
MAR_0BL	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
IOAR_0B	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
ETCR_0B	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
MAR_1AH		_	_	_	_	_	_		_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
MAR_1AL	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
IOAR_1A	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_

26.3.3 AC Characteristics

The clock, control signal, bus, DMAC, EXDMAC, and on-chip peripheral function timings are shown below. The measurement conditions of the AC characteristics are shown in figure 26.1.

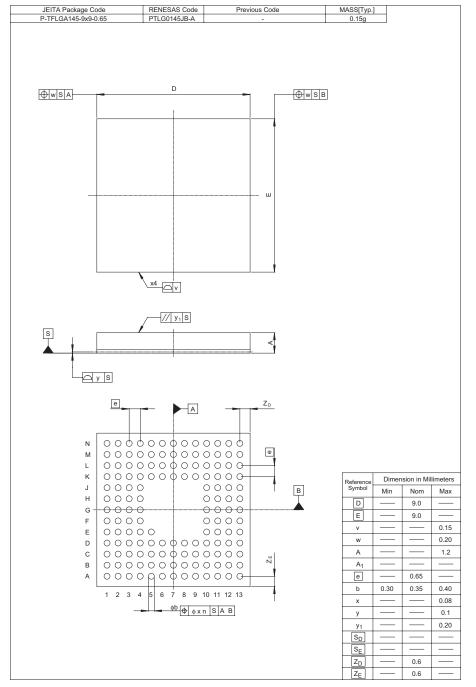

(1) Clock Timing

Table 26.31 Clock Timing

 $[\]begin{array}{ll} \mbox{Conditions:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}, \mbox{AV}_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}, \mbox{V}_{ref} = 3.0 \mbox{ V to } AV_{CC}, \mbox{V}_{SS} = AV_{SS} = \\ & 0 \mbox{ V}, \mbox{ϕ} = 8 \mbox{ MHz to } 34 \mbox{ MHz}, \mbox{T_a} = -20^{\circ}\mbox{C to } +75^{\circ}\mbox{C} \mbox{ (regular specifications)}, \\ & T_a = -40^{\circ}\mbox{C to } +85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$

Item	Symbol	Min.	Max.	Unit	Test Conditions
Clock cycle time	t _{cyc}	29.4	125	ns	Figure 26.2
Clock pulse high width	t _{CH}	9	—	ns	Figure 26.2
Clock pulse low width	t _{CL}	9	—	ns	_
Clock rising time	t _{Cr}	_	5	ns	_
Clock falling time	t _{Cf}	_	5	ns	_
Reset oscillation settling time (crystal)	t _{OSC1}	10	_	ms	Figure 26.4(1)
Software standby oscillation settling time (crystal)	t _{OSC2}	10	_	ms	Figure 26.4(2)
External clock output delay settling time	t _{DEXT}	1	_	ms	Figure 26.4(1)
Clock phase difference*	t _{cdif}	$1/4 \times t_{cyc} - 3$	$1/4 \times t_{\text{cyc}} + 3$	ns	Figure 26.3
Clock pulse high width (SDRAM)*	t _{SDCH}	9	_	ns	Figure 26.3
Clock pulse low width (SDRAMø)*	t _{SDCL}	9		ns	Figure 26.3
Clock rising time $(SDRAM\phi)^*$	t _{sdcr}	_	5	ns	Figure 26.3
Clock falling time $(SDRAM\phi)^*$	t _{sdcf}		5	ns	Figure 26.3

Note: * Supported by the H8S/2378R, H8S/2374R, H8S/2372R, H8S/2371R, and H8S/2370R only.

Figure C.2 Package Dimensions (TLP-145V)