

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	H8S/2000
Core Size	16-Bit
Speed	34MHz
Connectivity	I ² C, IrDA, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	96
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 6x8b
Oscillator Type	External
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2372vfq34v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 7.21	Example of Full Address Mode Transfer (Block Transfer Mode)	335
Figure 7.22	Example of DREQ Pin Falling Edge Activated Normal Mode Transfer	336
Figure 7.23	Example of DREQ Pin Falling Edge Activated Block Transfer Mode Transfer	337
Figure 7.24	Example of DREQ Pin Low Level Activated Normal Mode Transfer	338
Figure 7.25	Example of DREQ Pin Low Level Activated Block Transfer Mode Transfer	339
Figure 7.26	Example of Single Address Mode Transfer (Byte Read)	340
Figure 7.27	Example of Single Address Mode (Word Read) Transfer	341
Figure 7.28	Example of Single Address Mode Transfer (Byte Write)	342
Figure 7.29	Example of Single Address Mode Transfer (Word Write)	343
Figure 7.30	Example of DREQ Pin Falling Edge Activated Single Address Mode Transfer	344
Figure 7.31	Example of DREQ Pin Low Level Activated Single Address Mode Transfer	345
Figure 7.32	Example of Dual Address Transfer Using Write Data Buffer Function	346
Figure 7.33	Example of Single Address Transfer Using Write Data Buffer Function	347
Figure 7.34	Example of Multi-Channel Transfer	348
Figure 7.35	Example of Procedure for Continuing Transfer on Channel Interrupted	
	by NMI Interrupt	350
Figure 7.36	Example of Procedure for Forcibly Terminating DMAC Operation	351
Figure 7.37	Example of Procedure for Clearing Full Address Mode	352
Figure 7.38	Block Diagram of Transfer End/Transfer Break Interrupt	353
Figure 7.39	DMAC Register Update Timing	354
Figure 7.40	Contention between DMAC Register Update and CPU Read	355
Figure 7.41	Example in which Low Level Is Not Output at TEND Pin	357
Section 9	EVDMA Controllor (EVDMAC)	250
Section 8	EXDMA CONTROL (EXDMAC)	. 339
Figure 8.1	Block Diagram of EXDMAC	360
Figure 8.2	Example of Timing in Dual Address Mode	376
Figure 8.3	Data Flow in Single Address Mode	377
Figure 8.4	Example of Timing in Single Address Mode	378
Figure 8.5	Example of Timing in Cycle Steal Mode	380
Figure 8.6	Examples of Timing in Burst Mode	381
Figure 8.7	Examples of Timing in Normal Transfer Mode	382
Figure 8.8	Example of Timing in Block Transfer Mode	383
Figure 8.9	Example of Repeat Area Function Operation	384
Figure 8.10	Example of Repeat Area Function Operation in Block Transfer Mode	385
Figure 8.11	EDTCR Update Operations in Normal Transfer Mode and	• • • •
	Block Transfer Mode	388
Figure 8.12	Procedure for Changing Register Settings in Operating Channel	389
Figure 8.13	Example of Channel Priority Timing	391
Figure 8.14	Examples of Channel Priority Timing	392
Figure 8.15	Example of Normal Transfer Mode (Cycle Steal Mode) Transfer	393
Figure 8.16	Example of Normal Transfer Mode (Burst Mode) Transfer	394

Rev.7.00 Mar. 18, 2009 page xlviii of lxvi REJ09B0109-0700

6.5.2 Valid Strobes

Table 6.3 shows the data buses used and valid strobes for the access spaces.

In a read, the $\overline{\text{RD}}$ signal is valid for both the upper and the lower half of the data bus. In a write, the $\overline{\text{HWR}}$ signal is valid for the upper half of the data bus, and the $\overline{\text{LWR}}$ signal for the lower half.

Area	Access Size	Read/ Write	Address	Valid Strobe	Upper Data Bus (D15 to D8)	Lower Data Bus (D7 to D0)
8-bit access	Byte	Read	_	RD	Valid	Invalid
space		Write	_	HWR	_	Hi-Z
16-bit access	Byte	Read	Even	RD	Valid	Invalid
space			Odd		Invalid	Valid
		Write	Even	HWR	Valid	Hi-Z
			Odd	LWR	Hi-Z	Valid
	Word	Read		RD	Valid	Valid
		Write		HWR, LWR	Valid	Valid

Table 6.3 Data Buses Used and Valid Strobes

Note: Hi-Z: High-impedance state

Invalid: Input state; input value is ignored.

6.5.3 Basic Timing

8-Bit, 2-State Access Space: Figure 6.10 shows the bus timing for an 8-bit, 2-state access space. When an 8-bit access space is accessed, the upper half (D15 to D8) of the data bus is used. The \overline{LWR} pin is always fixed high. Wait states can be inserted.

not inserted after continuous synchronous DRAM space read access even if bits ICIS1 and ICIS0 are set to 1.

Figure 6.79 Example of Idle Cycle Operation after Continuous Synchronous DRAM Space Read Access (Read between Different Area) (IDLC = 0, CAS Latency 2)

• DMABCRL

Bit	Bit Name	Initial Value	R/W	Description
7	DTME1	0	R/W	Data Transfer Master Enable 1
				Together with the DTE1 bit, this bit controls enabling or disabling of data transfer on channel 1. When both the DTME1 bit and DTE1 bit are set to 1, transfer is enabled for channel 1.
				If channel 1 is in the middle of a burst mode transfer when an NMI interrupt is generated, the DTME1 bit is cleared, the transfer is interrupted, and bus mastership passes to the CPU. When the DTME1 bit is subsequently set to 1 again, the interrupted transfer is resumed. In block transfer mode, however, the DTME1 bit is not cleared by an NMI interrupt, and transfer is not interrupted.
				[Clearing conditions]
				When initialization is performed
				When NMI is input in burst mode
				When 0 is written to the DTME1 bit
				[Setting condition]
				When 1 is written to DTME1 after reading DTME1 = 0

Table 7.4 DMAC Transfer Modes

Transfer N	lode	Transfer Source	Remarks
Short address mode	 Dual address mode 1-byte or 1-word transfer for a single transfer request Specify source and destination addresses to transfer data in two bus cycles. (1) Sequential mode Memory address incremented or decremented by 1 or 2 Number of transfers: 1 to 65,536 (2) Idle mode Memory address fixed Number of transfers: 1 to 65,536 (3) Repeat mode Memory address incremented or decremented by 1 or 2 Continues transfer after sending number of transfers (1 to 256) and restoring the initial value 	 TPU channel 0 to 5 compare match/input capture A interrupt SCI transmission complete interrupt SCI reception complete interrupt A/D converter conversion end interrupt External request 	 Up to 4 channels can operate independently External request applies to channel B only Single address mode applies to channel B only
	 Single address mode 1-byte or 1-word transfer for a single transfer request 1-bus cycle transfer by means of DACK pin instead of using address for specifying I/O Sequential mode, idle mode, or repeat mode can be specified 	• External request	 Up to 4 channels can operate independently External request applies to channel B only Single address mode applies to channel B only

ETCRB is decremented by 1 after every block transfer, and when the count reaches H'0000 the DTE bit in DMABCRL is cleared and transfer ends. If the DTIE bit in DMABCRL is set to 1 at this point, an interrupt request is sent to the CPU or DTC.

Figure 7.15 shows the operation flow in block transfer mode.

Figure 7.15 Operation Flow in Block Transfer Mode

Section 8 EXDMA Controller (EXDMAC)

Bit	Bit Name	Initial Value	R/W	Description			
6	IRF	0	R/(W)*	Interrupt Request Flag			
				Flag indicating that an interrupt request has occurred and transfer has ended.			
				0: No interrupt request			
				[Clearing conditions]			
				Writing 1 to the EDA bit			
				• Writing 0 to IRF after reading IRF = 1			
				1: Interrupt request occurrence			
				[Setting conditions]			
				Transfer end interrupt request generated by			
				transfer counter			
				Source address repeat area overflow interrupt request			
				Destination address repeat area overflow			
				interrupt request			
5	TCEIE	0	R/W	Transfer Counter End Interrupt Enable			
				Enables or disables transfer end interrupt requests by the transfer counter. When transfer ends according to the transfer counter while this bit is set to 1, the IRF bit is set to 1, indicating that an interrupt request has occurred.			
				0: Transfer end interrupt requests by transfer counter are disabled			
				1: Transfer end interrupt requests by transfer counter are enabled			
4	SDIR	0	R/W	Single Address Direction			
				Specifies the data transfer direction in single address mode. In dual address mode, the specification by this bit is ignored.			
				0: Transfer direction: EDSAR \rightarrow external device with $\overline{\text{DACK}}$			
				1: Transfer direction: External device with $\overrightarrow{\text{DACK}} \rightarrow \text{EDDAR}$			

• P22/PO2/TIOCC3/(IRQ10)

The pin function is switched as shown below according to the combination of the TPU channel 3 settings (by bits MD3 to MD0 in TMDR_3, bits IOC3 to IOC0 in TIORL_3, and bits CCLR2 to CCLR0 in TCR_3), bit NDER2 in NDERL, bit P22DDR, and bit ITS10 in ITSR.

TPU channel 3 settings	(1) in table below	(2) in table below				
P22DDR		0 1 1				
NDER2	_	_	0	1		
Pin function	TIOCC3 output	P22 input	P22 output	PO2 output		
		TIOCC3 input ^{*1}				
	IRQ10 interrupt input ^{*2}					

TPU channel 3 settings	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0	000	B'001×	B'0010	B'0011	
IOC3 to IOC0	B'0000 B'0100 B'1×××	B'0001 to B'0011 B'0101 to B'0111	B'××00	Other than B'××00	Other than B'××00	
CCLR2 to CCLR0	_				Other B'101 than B'101	
Output function		Output compare output		PWM ^{*3} mode 1 output	PWM mode 2 output	_

Legend:

×: Don't care

Notes: 1. TIOCC3 input when MD3 to MD0 = B'0000 and IOC3 to IOC0 = B'10××.

2. $\overline{\text{IRQ10}}$ input when ITS10 = 1.

TIOCD3 output disabled.
 Output disabled and settings (2) effective when BFA = 1 or BFB = 1 in TMDR_3.

• PF2/LCAS/IRQ15/DQML^{*2}

The pin function is switched as shown below according to the combination of the operating mode, bit EXPE, bits RMTS2 to RMTS0 in DRAMCR, bits ABW5 to ABW2 in ABWCR, and bit PF2DDR.

Operating mode	1, 2, 4			3 ^{*2} , 7					
EXPE		_		C)		1		
Areas 2 to 5	Any DRAM / synchro- nous DRAM ^{*2} space area is 16-bit bus space	All DRAM synchrond DRAM ^{*2} s areas are space, or 5 are all n space	ous space 8-bit bus areas 2 to ormal			Any DRAM/ synchro- nous DRAM ^{*2} space area is 16-bit bus space	Any All DRAM/ DRAM/ synchronous synchro- nous DRAM ^{*2} space areas are 8-bit bus space 5 are all normal area is space 16-bit bus space		
PF2DDR		0	1	0	0 1		0	1	
Pin function	LCAS/ DQML ^{*2} output	PF2 input PF2 output		PF2 input	PF2 output	LCAS/ DQML *2 output	PF2 input	PF2 output	
			Ī	RQ15 inter	rupt input*	1			

Notes: 1. IRQ15 interrupt input when bit ITS15 is cleared to 0 in ITSR.

2. Not used in the H8S/2378 0.18 μm F-ZTAT Group, H8S/2377, H8S/2375, and H8S/2373.

Smart Card Interface Mode	(When SMIF in SCMR is 1)
---------------------------	--------------------------

Bit	Bit Name	Initial Value	R/W	Description				
7	TDRE	1	R/(W)* ¹	¹ Transmit Data Register Empty				
				Indicates whether TDR contains transmit data.				
				[Setting conditions]				
				• When the TE bit in SCR is 0				
				• When data is transferred from TDR to TSR, and data writing to TDR is enabled.				
				[Clearing conditions]				
				 When 0 is written to TDRE after reading TDRE = 1 				
				 When the DMAC or DTC is activated by a TXI interrupt request and transfers data to TDR 				
6	RDRF	0	R/(W)* ¹	Receive Data Register Full				
				Indicates that the received data is stored in RDR.				
				[Setting condition]				
				 When serial reception ends normally and receive data is transferred from RSR to RDR 				
				[Clearing conditions]				
				 When 0 is written to RDRF after reading RDRF = 1 				
				• When the DMAC or DTC is activated by an RXI interrupt and transferred data from RDR				
				The RDRF flag is not affected and retains its previous value when the RE bit in SCR is cleared to 0. Exercise care because if reception of the next data is completed while the RDRF flag is set to 1, an overrun error occurs and receive data will be lost.				

15.4 Operation in Asynchronous Mode

Figure 15.2 shows the general format for asynchronous serial communication. One frame consists of a start bit (low level), followed by transfer data, a parity bit, and finally stop bits (high level). In asynchronous serial communication, the transmission line is usually held in the mark state (high level). The SCI monitors the transmission line, and when it goes to the space state (low level), recognizes a start bit and starts serial communication. In asynchronous serial communication, the communication line is usually held in the mark state (high level). The SCI monitors the communication line, and when it goes to the space state (low level), recognizes a start bit and starts serial communication. In asynchronous serial communication, the communication line, and when it goes to the space state (low level), recognizes a start bit and starts serial communication. Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication. Both the transmitter and the receiver also have a double-buffered structure, so that data can be read or written during transmission or reception, enabling continuous data transfer.

Figure 15.2 Data Format in Asynchronous Communication (Example with 8-Bit Data, Parity, Two Stop Bits)

15.4.1 Data Transfer Format

Table 15.10 shows the data transfer formats that can be used in asynchronous mode. Any of 12 transfer formats can be selected according to the SMR setting. For details on the multiprocessor bit, refer to section 15.5, Multiprocessor Communication Function.

When bit manipulation instructions are used to set MST and TRS in succession to specify master transmit while operating in multi-master mode, an arbitration lost may occur, during execution of the bit manipulation instruction to set TRS, with timing that results in a contradictory state in which AL in ICSR is set to 1 and master transmit mode (MST = 1, TRS = 1) is selected as well.

The following methods can be used to prevent this from occurring.

- When operating in multi-master mode, always use the MOV instruction to set MST and TRS.
- When an arbitration lost occurs, confirm that MST and TRS are both cleared to 0. If the settings are other than MST = 0, TRS = 0, clear MST and TRS to 0.

MAT is being programmed. Because the user boot MAT is hidden while the user MAT is being programmed, the procedure program must be located in an area other than flash memory. After programming completes, switch the MATs again to return to the first state.

MAT switching is enabled by writing a specific value to FMATS. However note that while the MATs are being switched, the LSI is in an unstable state, e.g. access to a MAT is not allowed until MAT switching is completed, and if an interrupt occurs, from which MAT the interrupt vector is read is undetermined. Perform MAT switching in accordance with the description in section 21.6, Switching between User MAT and User Boot MAT.

Except for MAT switching, the programming procedure is the same as that in user program mode.

The area that can be executed in the steps of the user procedure program (on-chip RAM, user MAT, and external space) is shown in section 21.4.4, Procedure Program and Storable Area for Programming Data.

(3) User MAT Erasing in User Boot Mode

For erasing the user MAT in user boot mode, additional processing made by setting FMATS are required: switching from user-boot-MAT selection state to user-MAT selection state, and switching back to user-boot-MAT selection state after erasing completes.

Figure 21.14 shows the procedure for erasing the user MAT in user boot mode.

Section 25 List of Registers

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
TCR_4	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU_4
TMDR_4	_	_	_	_	MD3	MD2	MD1	MD0	-
TIOR_4	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	-
TIER_4	TTGE		TCIEU	TCIEV			TGIEB	TGIEA	-
TSR_4	TCFD		TCFU	TCFV			TGFB	TGFA	-
TCNT_4	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	-
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
TGRA_4	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	-
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
TGRB_4	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	-
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
TCR_5	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU_5
TMDR_5	_	_	_	_	MD3	MD2	MD1	MD0	-
TIOR_5	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	-
TIER_5	TTGE		TCIEU	TCIEV			TGIEB	TGIEA	-
TSR_5	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	-
TCNT_5	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	-
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
TGRA_5	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	-
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
TGRB_5	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	-
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
ABWCR	ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0	BSC
ASTCR	AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0	-
WTCRAH		W72	W71	W70		W62	W61	W60	-
WTCRAL	_	W52	W51	W50	_	W42	W41	W40	-
WTCRBH	_	W32	W31	W30	_	W22	W21	W20	-
WTCRBL		W12	W11	W10		W02	W01	W00	-
RDNCR	RDN7	RDN6	RDN5	RDN4	RDN3	RDN2	RDN1	RDN0	-
CSACRH	CSXH7	CSXH6	CSXH5	CSXH4	CSXH3	CSXH2	CSXH1	CSXH0	-
CSACRL	CSXT7	CSXT6	CSXT5	CSXT4	CSXT3	CSXT2	CSXT1	CSXT0	-
BROMCRH	BSRM0	BSTS02	BSTS01	BSTS00		_	BSWD01	BSWD00	-
BROMCRL	BSRM1	BSTS12	BSTS11	BSTS10	_	_	BSWD11	BSWD10	-

Table 26.3DC Characteristics (2)

 $\begin{array}{ll} \mbox{Conditions:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } AV_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } V_{ref} = 3.0 \mbox{ V to } AV_{CC}, \\ & V_{SS} = AV_{SS} = 0 \mbox{ V}^{*1}, \mbox{ } T_a = -20^{\circ}\mbox{C to } +75^{\circ}\mbox{C (regular specifications)}, \\ & T_a = -40^{\circ}\mbox{C to } +85^{\circ}\mbox{C (wide-range specifications)} \end{array}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input leakage	RES	I _{in}		_	10.0	μA	$\begin{array}{l} V_{in}=0.5 \text{ to} \\ V_{CC} -0.5 \text{ V} \end{array}$
current	STBY, NMI, MD2 to MD0		_	_	1.0	μA	
	Port 4, Port 9		—	—	1.0	μA	$\begin{array}{l} V_{in} = 0.5 \text{ to} \\ AV_{CC} - 0.5 \text{ V} \end{array}$
Three-state leakage current (off state)	Ports 1 to 3, P50 to P53, ports 6 and 8, ports A to H	I _{TSI}			1.0	μA	V_{in} = 0.5 to V_{CC} –0.5 V
Input pull-up MOS	Ports A to E	-Ip	10	_	300	μA	$V_{CC} = 3.0$ to 3.6 V
current							$V_{in}=0 \ V$
Input	RES	Cin			30	pF	$V_{in}=0\ V$
capacitance	NMI	-	_		30	pF	f = 1 MHz
	All input pins except RES and NMI	-	_	_	15	рF	$T_a = 25^{\circ}C$
Current consump- tion ^{*2}	Normal operation	I _{CC} ^{*4}		80 (3.3 V)	120	mA	f = 33 MHz
	Sleep mode	-	_	60 (3.3 V)	100	mA	f = 33 MHz
	Standby mode ^{*3}	-	_	0.01	10	μA	$T_a \leq 50^{\circ}C$
			_	_	80	μA	$50^{\circ}C < T_{a}$
Analog power	During A/D and D/A conversion	Alcc	_	0.5 (3.0 V)	2.0	mA	
supply current	Idle	-		0.01	5.0	μΑ	

Table 26.21 Bus Timing (2)

 $\begin{array}{ll} \mbox{Conditions:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}, \mbox{AV}_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}, \mbox{V}_{ref} = 3.0 \mbox{ V to } AV_{CC}, \mbox{V}_{SS} = AV_{SS} = \\ & 0 \mbox{ V}, \mbox{ } \phi = 8 \mbox{ MHz to } 35 \mbox{ MHz}, \mbox{T}_a = -20^{\circ}\mbox{C to } +75^{\circ}\mbox{C} \mbox{ (regular specifications)}, \\ & T_a = -40^{\circ}\mbox{C to } +85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$

Item	Symbol	Min.	Max.	Unit	Test Conditions
WR delay time 1	t _{WRD1}	—	15	ns	Figures 26.7 to
WR delay time 2	t _{WRD2}	—	15	ns	26.20
WR pulse width 1	t _{WSW1}	$1.0\times t_{cyc}{-}13$	_	ns	-
WR pulse width 2	t _{WSW2}	$1.5 \times t_{\text{cyc}}{-}13$	_	ns	-
Write data delay time	t _{WDD}	—	23	ns	-
Write data setup time 1	t _{WDS1}	$0.5 \times t_{\text{cyc}}{-}15$	_	ns	-
Write data setup time 2	t _{WDS2}	$1.0\times t_{cyc}{-}15$		ns	
Write data setup time 3	t _{WDS3}	$1.5 \times t_{\text{cyc}}{-}15$	_	ns	-
Write data hold time 1	t _{WDH1}	$0.5 \times t_{\text{cyc}}{-}13$	_	ns	
Write data hold time 2	t _{WDH2}	$1.0\times t_{cyc}{-}13$	_	ns	-
Write data hold time 3	t _{WDH3}	$1.5 \times t_{\text{cyc}}{-}13$	_	ns	-
Write command setup time 1	t _{WCS1}	$0.5 \times t_{\text{cyc}}{-}10$	_	ns	
Write command setup time 2	t _{WCS2}	$1.0 \times t_{cyc}{-}10$		ns	
Write command hold time 1	t _{WCH1}	$0.5 \times t_{\text{cyc}}{-}10$	_	ns	-
Write command hold time 2	t _{WCH2}	$1.0 \times t_{cyc}{-}10$	_	ns	-
Read command setup time 1	t _{RCS1}	$1.5 \times t_{\text{cyc}}{-}10$		ns	
Read command setup time 2	t _{RCS2}	$2.0\times t_{cyc}{-}10$	_	ns	-
Read command hold time	t _{RCH}	$0.5 \times t_{\text{cyc}}{-}10$	_	ns	-
CAS delay time 1	t _{CASD1}	—	15	ns	-
CAS delay time 2	t _{CASD2}	—	15	ns	
CAS setup time 1	t _{CSR1}	$0.5 \times t_{\text{cyc}}{-}10$	_	ns	-
CAS setup time 2	t _{CSR2}	$1.5\times t_{cyc}{-}10$	_	ns	-
CAS pulse width 1	t _{CASW1}	$1.0 \times t_{cyc}{-}20$	_	ns	-
CAS pulse width 2	t _{CASW2}	$1.5 \times t_{\text{cyc}}{-}20$	_	ns	-
CAS precharge time 1	t _{CPW1}	$1.0 \times t_{\text{cyc}}{-}20$		ns	
CAS precharge time 2	t _{CPW2}	$1.5\times t_{cyc}{-}20$		ns	
OE delay time 1	t _{OED1}	—	15	ns	
OE delay time 2	t _{OED2}	_	15	ns	
Precharge time 1	t _{PCH1}	$1.0 \times t_{\text{cyc}}{-}20$	_	ns	_
Precharge time 2	t _{PCH2}	$1.5 \times t_{\text{cyc}}{-}20$	_	ns	-

Section 26 Electrical Characteristics

Item	Symbol	Min.	Max.	Unit	Test Conditions
Self-refresh precharge time 1	t _{RPS1}	$2.5\times t_{\text{cyc}}{-}20$		ns	Figures 26.21
Self-refresh precharge time 2	t _{RPS2}	$3.0\times t_{\text{cyc}}{-}20$		ns	and 26.22
WAIT setup time	t _{WTS}	25		ns	Figures 26.9 and
WAIT hold time	t _{WTH}	5		ns	26.15
BREQ setup time	t _{BREQS}	30		ns	Figure 26.23
BACK delay time	t _{BACD}	_	15	ns	_
Bus floating time	t _{BZD}	_	40	ns	_
BREQO delay time	t _{BRQOD}	_	25	ns	Figure 26.24

Instruction	1	2	3	4	5	6	7	8	9
BGT d:16	R:W 2nd	1 state of internal operation	R:W EA						
BLE d:16	R:W 2nd	1 state of internal operation	R:W EA						
BCLR #xx:3,Rd	R:W NEXT								
BCLR #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BCLR #xx:3,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BCLR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BCLR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BCLR Rn,Rd	R:W NEXT								
BCLR Rn,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BCLR Rn,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BCLR Rn,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BCLR Rn,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BIAND #xx:3,Rd	R:W NEXT								
BIAND #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT						
BIAND #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT						
BIAND #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W NEXT					
BIAND #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W NEXT				
BILD #xx:3,Rd	R:W NEXT								
BILD #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT						

Instruction	1	2	3	4	5	6	7	8	9
BLD #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT						
BLD #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W NEXT					
BLD #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W NEXT				
BNOT #xx:3,Rd	R:W NEXT								
BNOT #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT #xx:3,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BNOT #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BNOT Rn,Rd	R:W NEXT								
BNOT Rn,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT Rn,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT Rn,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BNOT Rn,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BOR #xx:3,Rd	R:W NEXT								
BOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT						
BOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT						
BOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W NEXT					
BOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W NEXT				
BSET #xx:3,Rd	R:W NEXT								
BSET #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					

Instruction	1	2	3	4	5	6	7	8	9
BTST #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W NEXT				
BTST Rn,Rd	R:W NEXT								
BTST Rn,@ERd	R:W 2nd	R:B EA	R:W NEXT						
BTST Rn,@aa:8	R:W 2nd	R:B EA	R:W NEXT						
BTST Rn,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W NEXT					
BTST Rn,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W NEXT				
BXOR #xx:3,Rd	R:W NEXT								
BXOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT						
BXOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT						
BXOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W NEXT					
BXOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W NEXT				
CLRMAC	R:W NEXT	1 State of internal operation							
CMP.B #xx:8,Rd	R:W NEXT								
CMP.B Rs,Rd	R:W NEXT								
CMP.W #xx:16,Rd	R:W 2nd	R:W NEXT							
CMP.W Rs,Rd	R:W NEXT								
CMP.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
CMP.L ERs,ERd	R:W NEXT								
DAA Rd	R:W NEXT								