

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H8S/2000
Core Size	16-Bit
Speed	34MHz
Connectivity	I ² C, IrDA, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	96
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 6x8b
Oscillator Type	External
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	145-TFLGA
Supplier Device Package	145-TFLGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2374rvlp34v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

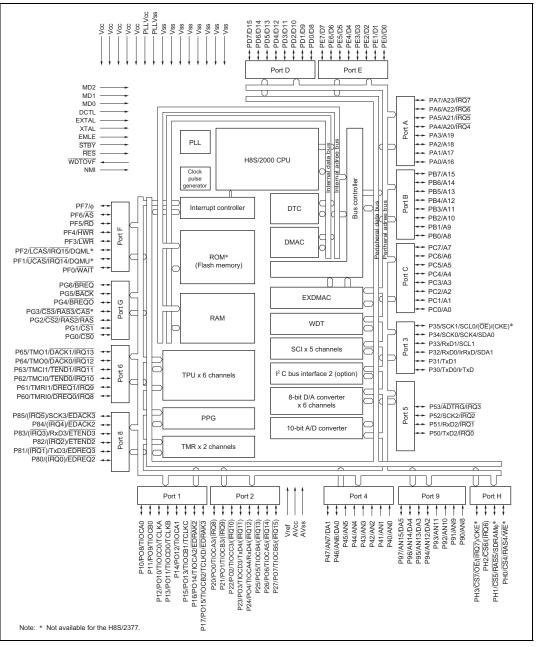


Figure 1.2 Internal Block Diagram for H8S/2377 and H8S/2377R

Туре	Symbol	H8S/2378 0.18μm F-ZTAT Group, H8S/2378R 0.18μm F-ZTAT Group (LQFP-144)	H8S/2378 0.18μm F-ZTAT Group, H8S/2378R 0.18μm F-ZTAT Group (LGA-145)	H8S/2377	H8S/2375 H8S/2373 H8S/2375R H8S/2373R	ı/o	Function
Bus control	RAS/ RAS2 RAS3 to RAS5	109, 110, 35, 36	A12, A13, L1, M1	109, 110, 35, 36	109, 110, 35, 36	Output	Row address strobe signal for the synchronous DRAM interface. RAS signal is a row address strobe signal when areas 2 to 5 are set to the continuous DRAM
	RAS*1	109	A12	109	109	Output	space. Row address strobe signal for the synchronous DRAM of the synchronous DRAM interface.
	CAS*1	110	A13	110	110	Output	Column address strobe signal for the synchronous DRAM of the synchronous DRAM interface.
	WE ^{*1}	35	L1	35	35	Output	Write enable signal for the synchronous DRAM of the synchronous DRAM interface.
	WAIT	84	J11	84	84	Input	Requests insertion of a wait state in the bus cycle when accessing external 3-state address space.

- - -

4.7 Stack Status after Exception Handling

Figure 4.3 shows the stack after completion of trap instruction exception handling and interrupt exception handling.

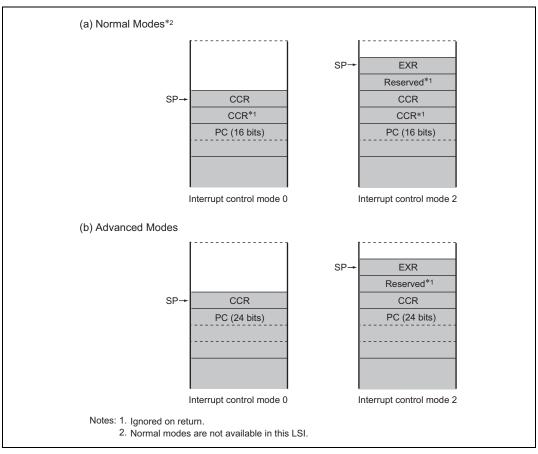
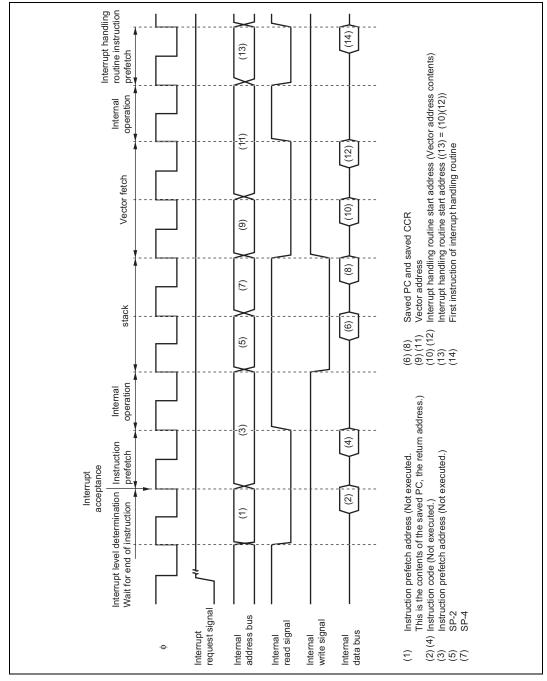



Figure 4.3 Stack Status after Exception Handling

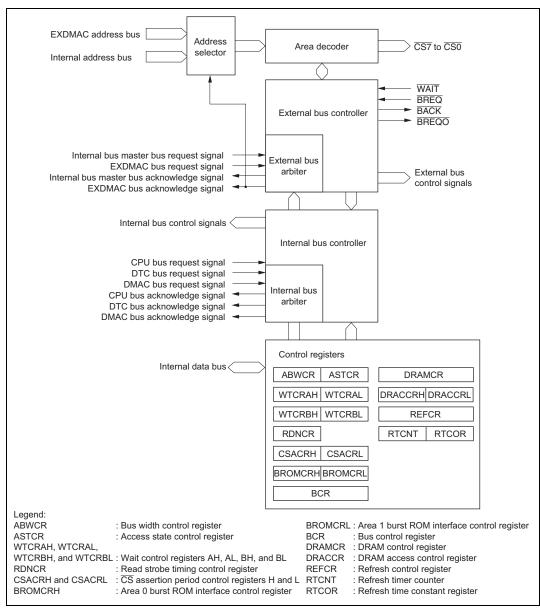


Figure 6.1 Block Diagram of Bus Controller

6.2 Input/Output Pins

Table 6.1 shows the pin configuration of the bus controller.

Table 6.1Pin Configuration

Name	Symbol	I/O	Function
Address strobe	ĀS	Output	Strobe signal indicating that normal space is accessed and address output on address bus is enabled.
Read	RD	Output	Strobe signal indicating that normal space is being read.
High write/write enable	HWR/WE	Output	Strobe signal indicating that normal space is written to, and upper half (D15 to D8) of data bus is enabled or DRAM space write enable signal.
Low write	LWR	Output	Strobe signal indicating that normal space is written to, and lower half (D7 to D0) of data bus is enabled.
Chip select 0	CS0	Output	Strobe signal indicating that area 0 is selected.
Chip select 1	CS1	Output	Strobe signal indicating that area 1 is selected
Chip select 2/ row address strobe 2/ row address strobe ^{*1}	CS2/ RAS2/ RAS ^{*1}	Output	Strobe signal indicating that area 2 is selected, DRAM row address strobe signal when area 2 is DRAM space or areas 2 to 5 are set as continuous DRAM space, or row address strobe signal of the synchronous DRAM when the synchronous DRAM interface is selected.
Chip select 3/ row address strobe 3/ column address strobe ^{*1}	CS3/ RAS3/ CAS ^{*1}	Output	Strobe signal indicating that area 3 is selected, DRAM row address strobe signal when area 3 is DRAM space, or column address strobe signal of the synchronous DRAM when the synchronous DRAM interface is selected.

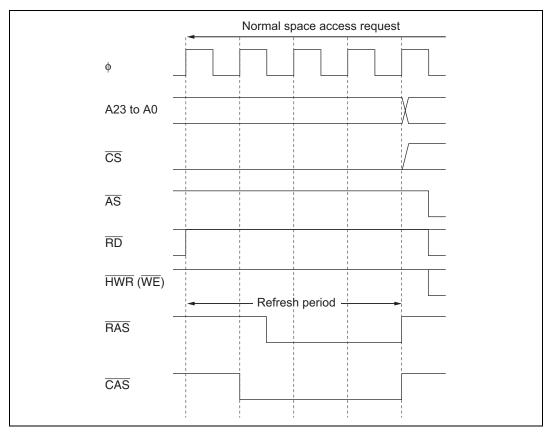


Figure 6.38 Example of CBR Refresh Timing (CBRM = 1)

Self-Refreshing: A self-refresh mode (battery backup mode) is provided for DRAM as a kind of standby mode. In this mode, refresh timing and refresh addresses are generated within the DRAM.

To select self-refreshing, set the RFSHE bit and SLFRF bit to 1 in REFCR. When a SLEEP instruction is executed to enter software standby mode, the \overline{CAS} and \overline{RAS} signals are output and DRAM enters self-refresh mode, as shown in figure 6.39.

When software standby mode is exited, the SLFRF bit is cleared to 0 and self-refresh mode is exited automatically. If a CBR refresh request occurs when making a transition to software standby mode, CBR refreshing is executed, then self-refresh mode is entered.

When using self-refresh mode, the OPE bit must not be cleared to 0 in the SBYCR register.

7.2 Input/Output Pins

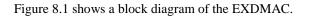

Table 7.1 shows the pin configuration of the interrupt controller.

Table 7.1Pin Configuration

Channel	Pin Name	Symbol	I/O	Function
0	DMA request 0	DREQ0	Input	Channel 0 external request
	DMA transfer acknowledge 0	DACK0	Output	Channel 0 single address transfer acknowledge
	DMA transfer end 0	TEND0	Output	Channel 0 transfer end
1	DMA request 1	DREQ1	Input	Channel 1 external request
	DMA transfer acknowledge 1	DACK1	Output	Channel 1 single address transfer acknowledge
	DMA transfer end 1	TEND1	Output	Channel 1 transfer end

7.3 **Register Descriptions**

- Memory address register_0AH (MAR_0AH)
- Memory address register_0AL (MAR_0AL)
- I/O address register_0A (IOAR_0A)
- Transfer count register_0A (ECTR_0A)
- Memory address register_0BH (MAR_0BH)
- Memory address register_0BL (MAR_0BL)
- I/O address register_0B (IOAR_0B)
- Transfer count register_0B (ECTR_0B)
- Memory address register_1AH (MAR_1AH)
- Memory address register_1AL (MAR_1AL)
- I/O address register_1A (IOAR_1A)
- Transfer count register_1A (ETCR_1B)
- Memory address register_1BH (MAR_1BH)
- Memory address register_1BL (MAR_1BL)
- I/O address register_1B (IOAR_1B)
- Transfer count register_1B (ETCR_1B)
- DMA control register_0A (DMACR_0A)
- DMA control register_0B (DMACR_0B)

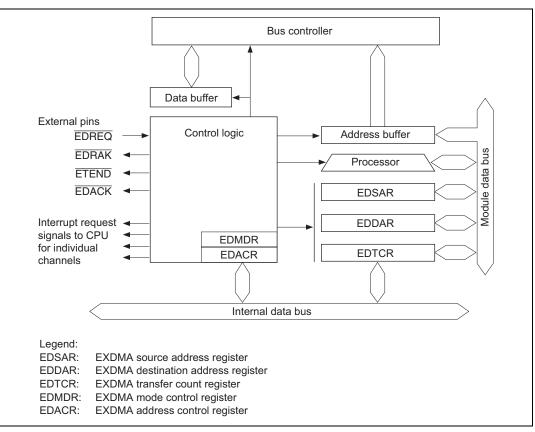


Figure 8.1 Block Diagram of EXDMAC

8.3.4 EXDMA Mode Control Register (EDMDR)

EDMDR controls EXDMAC operations.

Bit	Bit Name	Initial Value	R/W	Description
15	EDA	0	R/(W)	EXDMA Active
				Enables or disables data transfer on the corresponding channel. When this bit is set to 1, this indicates that an EXDMA operation is in progress.
				When auto request mode is specified (by bits MDS1 and MDS0), transfer processing begins when this bit is set to 1. With external requests, transfer processing begins when a transfer request is issued after this bit has been set to 1. When this bit is cleared to 0 during an EXDMA operation, transfer is halted. If this bit is cleared to 0 during an EXDMA operation in block transfer mode, transfer processing is continued for the currently executing one-block transfer, and the bit is cleared on completion of the currently executing one-block transfer.
				If an external source that ends (aborts) transfer occurs, this bit is automatically cleared to 0 and transfer is terminated. Do not change the operating mode, transfer method, or other parameters while this bit is set to 1.
				0: Data transfer disabled on corresponding channel
				[Clearing conditions]
				When the specified number of transfers end
				 When operation is halted by a repeat area overflow interrupt
				 When 0 is written to EDA while EDA = 1 (In block transfer mode, write is effective after end of one-block transfer)
				Reset, NMI interrupt, hardware standby mode
				1: Data transfer enabled on corresponding channel
				Note: The value written in the EDA bit may not be effective immediately.

	1st T	ransfer		2nd Transfer				
CHNE	CHNS	DISEL	CR	CHNE	CHNS	DISEL	CR	DTC Transfer
0		0	Not 0	—	—	—	—	Ends at 1st transfer
0		0	0	_	_	_	—	Ends at 1st transfer
0		1	_	_	_	_	—	Interrupt request to CPU
1	0		_	0	_	0	Not 0	Ends at 2nd transfer
				0	_	0	0	Ends at 2nd transfer
				0	_	1	—	Interrupt request to CPU
1	1	0	Not 0	_	_	_	—	Ends at 1st transfer
1	1		0	0	_	0	Not 0	Ends at 2nd transfer
				0	_	0	0	Ends at 2nd transfer
				0	_	1	_	Interrupt request to CPU
1	1	1	Not 0			_	_	Ends at 1st transfer
								Interrupt request to CPU

Table 9.3 Chain Transfer Conditions

10.2.4 Pin Functions

Port 2 pins also function as PPG outputs, TPU I/Os, and interrupt inputs. The correspondence between the register specification and the pin functions is shown below.

• P27/PO7/TIOCB5/(IRQ15)

The pin function is switched as shown below according to the combination of the TPU channel 5 settings (by bits MD3 to MD0 in TMDR_5, bits IOB3 to IOB0 in TIOR_5, and bits CCLR1 and CCLR0 in TCR_5), bit NDER7 in NDERL, bit P27DDR, and bit ITS15 in ITSR.

TPU channel 5 settings	(1) in table below	(2) in table below					
P27DDR	—	0	1	1			
NDER7	—	_	0	1			
Pin function	TIOCB5 output	P27 input	P27 output	PO7 output			
		TIOCB5 input ^{*1}					
		IRQ5 interrupt input ^{*2}					

Notes: 1. TIOCB5 input when MD3 to MD0 = B'0000 or $B'01 \times x$ and IOB3 = 1.

2. $\overline{\text{IRQ15}}$ input when ITS15 = 1.

TPU channel 5 settings	(2)	(1)	(2)	(2)	(1)	(2)	
MD3 to MD0	B'0000	, B'01××	B'0010		B'0011		
IOB3 to IOB0	B'0000 B'0100 B'1×××	B'0001 to B'0011 B'0101 to B'0111	B'××00	Other than B'××00			
CCLR1, CCLR0					Other than B'10	B'10	
Output function	—	Output compare output			PWM mode 2 output	—	

Legend:

×: Don't care

Figure 11.23 shows examples of PWM waveform output with 0% duty cycle and 100% duty cycle in PWM mode.

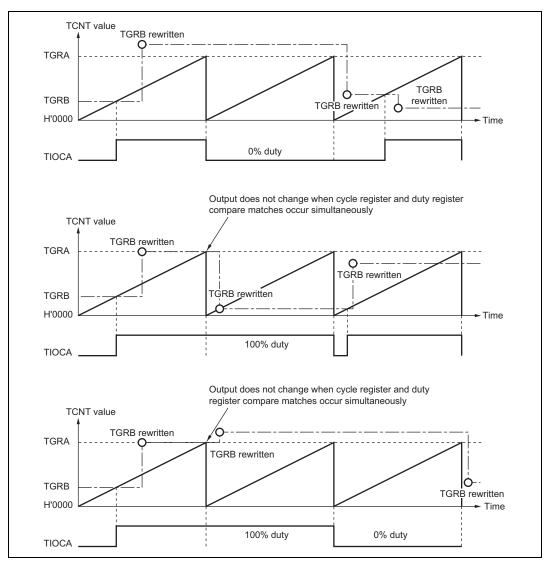
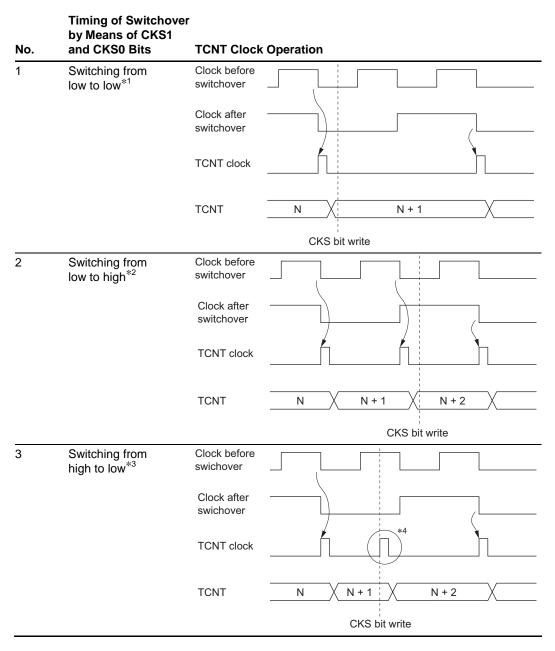



Figure 11.23 Example of PWM Mode Operation (3)

Table 13.5 Switching of Internal Clock and TCNT Operation

Rev.7.00 Mar. 18, 2009 page 674 of 1136 REJ09B0109-0700

Section 18 D/A Converter

18.1 Features

D/A converter features are listed below.

- 8-bit resolution
- Output channels:

Six channels for the H8S/2378 $0.18\mu m$ F-ZTAT Group, H8S/2378R $0.18\mu m$ F-ZTAT Group, H8S/2377, and H8S/2377R

Two channels for the H8S/2375, H8S/2375R, H8S/2373, and H8S/2373R

- Maximum conversion time of 10 µs (with 20 pF load)
- Output voltage of 0 V to Vref
- D/A output hold function in software standby mode
- Setting the module stop mode

	Store		utable Area		Selected	MAT	
	Stora	DIe/Exect	1		Selected		
Item	On-chip RAM	User Boot MAT	External Space (Expanded Mode)	User MAT	User Boot MAT	Embedded Program Storage Area	
Storage Area for Program Data	0	×*1	0				
Operation for Selection of On-chip Program to be Downloaded	0	0	0		0		
Operation for Writing H'A5 to FKEY	0	0	0		0		
Execution of Writing SC0 = 1 to FCCS (Download)	0	×	×			0	
Operation for FKEY Clear	0	0	0		0		
Determination of Download Result	0	0	0		0		
Operation for Download Error	0	0	0		0		
Operation for Settings of Initial Parameter	0	0	0		0		
Execution of Initialization	0	×	×		0		
Determination of Initialization Result	0	0	0		0		
Operation for Initialization Error	0	0	0		0		
NMI Handling Routine	0	×	0		0		
Operation for Interrupt Inhibit	0	0	0		0		
Switching MATs by FMATS	0	×	×	0			
Operation for Writing H'5A to FKEY	0	×	0	0			

Table 21.8 (3) Useable Area for Programming in User Boot Mode

- ERROR: (one byte): Error code
 - H'11: Checksum error
 - H'53: Programming error An error has occurred in programming and programming cannot be continued.

(10) Erasure

Erasure is performed with the erasure selection and block erasure command.

Firstly, erasure is selected by the erasure selection command and the boot program then erases the specified block. The command should be repeatedly executed if two or more blocks are to be erased. Sending a block-erasure command from the host with the block number H'FF will stop the erasure operating. On completion of erasing, the boot program will wait for selection of programming or erasing.

The sequences of the issuing of erasure selection commands and the erasure of data are shown in figure 21.22.

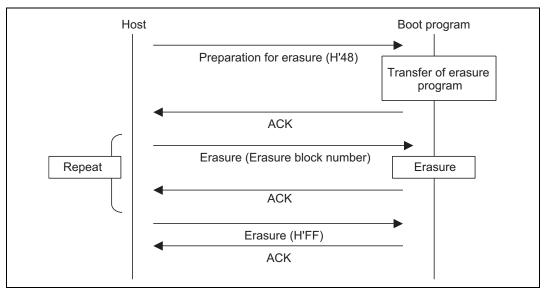


Figure 21.22 Erasure Sequence

(a) Erasure Selection

The boot program will transfer the erasure program. User MAT data is erased by the transferred erasure program.

24.2.2 Sleep Mode

Transition to Sleep Mode: When the SLEEP instruction is executed when the SSBY bit is 0 in SBYCR, the CPU enters the sleep mode. In sleep mode, CPU operation stops but the contents of the CPU's internal registers are retained. Other peripheral functions do not stop.

Exiting Sleep Mode: Sleep mode is exited by any interrupt, or signals at the $\overline{\text{RES}}$, or $\overline{\text{STBY}}$ pins.

• Exiting Sleep Mode by Interrupts:

When an interrupt occurs, sleep mode is exited and interrupt exception processing starts. Sleep mode is not exited if the interrupt is disabled, or interrupts other than NMI are masked by the CPU.

- Exiting Sleep Mode by RES Pin: Setting the RES pin level low selects the reset state. After the stipulated reset input duration, driving the RES pin high starts the CPU performing reset exception processing.
- Exiting Sleep Mode by STBY Pin: When the STBY pin level is driven low, a transition is made to hardware standby mode.

24.2.3 Software Standby Mode

Transition to Software Standby Mode: If a SLEEP instruction is executed when the SSBY bit in SBYCR is set to 1, software standby mode is entered. In this mode, the CPU, on-chip peripheral functions, and oscillator all stop. However, the contents of the CPU's internal registers, RAM data, and the states of on-chip peripheral functions other than the SCI and A/D converter, and I/O ports, are retained. Whether the address bus and bus control signals are placed in the high-impedance state or retain the output state can be specified by the OPE bit in SBYCR.

In this mode the oscillator stops, and therefore power dissipation is significantly reduced.

Clearing Software Standby Mode: Software standby mode is cleared by an external interrupt (NMI pin, or pins $\overline{IRQ0}$ to $\overline{IRQ15}$), or by means of the \overline{RES} pin or \overline{STBY} pin. Setting the SSI bit in SSIER to 1 enables $\overline{IRQ0}$ to $\overline{IRQ15}$ to be used as software standby mode clearing sources.

Clearing with an Interrupt:

When an NMI or IRQ0 to IRQ15 interrupt request signal is input, clock oscillation starts, and after the elapse of the time set in bits STS3 to STS0 in SBYCR, stable clocks are supplied to the entire LSI, software standby mode is cleared, and interrupt exception handling is started.

When clearing software standby mode with an IRQ0 to IRQ15 interrupt, set the corresponding enable bit to 1 and ensure that no interrupt with a higher priority than interrupts IRQ0 to IRQ15 is

24.4.3 EXDMAC, DMAC, and DTC Module Stop

Depending on the operating status of the EXDMAC, DMAC, or DTC, the MSTP14 to MSTP13 and may not be set to 1. Setting of the EXDMAC, DMAC, or DTC module stop mode should be carried out only when the respective module is not activated.

For details, refer to section 8, EXDMA Controller (EXDMAC), section 7, DMA Controller (DMAC), and section 9, Data Transfer Controller (DTC).

Note: The EXDMAC is not supported by the H8S/2375, H8S/2375R, H8S/2373, and H8S/2373R.

24.4.4 On-Chip Peripheral Module Interrupts

Relevant interrupt operations cannot be performed in module stop mode. Consequently, if module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or the DMAC or DTC activation source.

Interrupts should therefore be disabled before entering module stop mode.

Note: The EXDMAC is not supported by the H8S/2375, H8S/2375R, H8S/2373, and H8S/2373R

24.4.5 Writing to MSTPCR, EXMSTPCR

MSTPCR and EXMSTPCR should only be written to by the CPU.

24.4.6 Notes on Clock Division Mode

The following points should be noted in clock division mode.

- Select the clock division ratio specified by the SCK2 to SCK0 bits so that the frequency of φ is within the operation guaranteed range of clock cycle time tcyc shown in the Electrical Characteristics. In other words, the range of φ must be specified to 8 MHz (min); outside of this range (φ < 8 MHz) must be prevented.
- All the on-chip peripheral modules operate on the φ. Therefore, note that the time processing
 of modules such as a timer and SCI differ before and after changing the clock division ratio. In
 addition, wait time for clearing software standby mode differs by changing the clock division
 ratio.
- Note that the frequency of ϕ will be changed by changing the clock division ratio.

(2) Control Signal Timing

Table 26.32 Control Signal Timing

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 8 \text{ MHz}$ to 34 MHz, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Item	Symbol	Min.	Max.	Unit	Test Conditions
RES setup time	t _{RESS}	200	_	ns	Figure 26.5
RES pulse width	t _{RESW}	20	—	t _{cyc}	_
NMI setup time	t _{NMIS}	150	_	ns	Figure 26.6
NMI hold time	t _{NMIH}	10	—	_	
NMI pulse width (in recovery from software standby mode)	t _{NMIW}	200	_	_	
IRQ setup time	t _{IRQS}	150	_	ns	_
IRQ hold time	t _{IRQH}	10	_		
IRQ pulse width (in recovery from software standby mode)	t _{IRQW}	200			

