

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	H8S/2000
Core Size	16-Bit
Speed	33MHz
Connectivity	I ² C, IrDA, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	96
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 6x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2377rvfq33wv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin No.							
Туре	Symbol	H8S/2378 0.18μm F-ZTAT Group, H8S/2378R 0.18μm F-ZTAT Group (LQFP-144)	H8S/2378 0.18μm F-ZTAT Group, H8S/2378R 0.18μm F-ZTAT Group (LGA-145)	H8S/2377	H8S/2375 H8S/2373 H8S/2375R H8S/2373R	1/0	Function
Program- mable pulse generator (PPG)	PO15 to PO0	49 to 42, 58 to 51	N5, M6, L5, M5, N4, L4, M4, L3, M8, N7, K8, K7, K6, N6, M7, L6	49 to 42, 58 to 51	49 to 42, 58 to 51	Output	Pulse output pins.
8-bit timer (TMR)	TMO0 TMO1	105, 106	C12, C13	105, 106	105, 106	Output	Waveform output pins with output compare function.
	TMCI0 TMCI1	83, 104	J10, D10	83, 104	83, 104	Input	External event input pins.
	TMRI0 TMRI1	82, 81	K13, J12	82, 81	82, 81	Input	Counter reset input pins.
Watchdog timer (WDT)	WDTOVF	39	M3	39	39	Output	Counter overflow signal output pin in watchdog timer mode.
Serial commu- nication interface (SCI)/ smart card	TxD4 TxD3 TxD2 TxD1 TxD0/ IrTxD	54, 33, 133, 141, 142	K6, L2, A6, B3, C4	54, 33, 133, 141, 142	54, 33, 133, 141, 142	Output	Data output pins.
interface (SCI_0 with IrDA function)	RxD4 RxD3 RxD2 RxD1 RxD0/ IrRxD	55, 59, 134, 139, 140	K7, L7, B5, C5, A4	55, 59, 134, 139, 140	55, 59, 134, 139, 140	Input	Data input pins.
	SCK4 SCK3 SCK2 SCK1 SCK0	138, 61, 135, 137, 138	B4, N8, C6, A5, B4	138, 61, 135, 137, 138	138, 61, 135, 137, 138	Input/ output	Clock input/output pins.

Туре	Symbol	H8S/2378 0.18μm F-ZTAT Group, H8S/2378R 0.18μm F-ZTAT Group (LQFP-144)	H8S/2378 0.18μm F-ZTAT Group, H8S/2378R 0.18μm F-ZTAT Group (LGA-145)	H8S/2377	H8S/2375 H8S/2373 H8S/2375R H8S/2373R	- I/O	Function
A/D converter, D/A converter	AV _{CC}	111	B11	111	111	Input	The analog power- supply pin for the A/D converter and D/A converter.
							When the A/D converter and D/A converter are not used, this pin should be connected to the system power supply (+3 V).
	AV_{SS}	129	A7	129	129	Input	The ground pin for the A/D converter and D/A converter.
							This pin should be connected to the system power supply (0 V).
	Vref	112	B12	112	112	Input	The reference voltage input pin for the A/D converter and D/A converter.
							When the A/D converter and D/A converter are not used, this pin should be connected to the system power supply (+3 V).

2.2.2 Advanced Mode

Address space

Linear access to a maximum address space of 16 Mbytes is possible.

• Extended registers (En)

The extended registers (E0 to E7) can be used as 16-bit registers. They can also be used as the upper 16-bit segments of 32-bit registers or address registers.

• Instruction set

All instructions and addressing modes can be used.

• Exception vector table and memory indirect branch addresses

In advanced mode, the top area starting at H'00000000 is allocated to the exception vector table in 32-bit units. In each 32 bits, the upper 8 bits are ignored and a branch address is stored in the lower 24 bits (see figure 2.3). For details of the exception vector table, see section 4, Exception Handling.

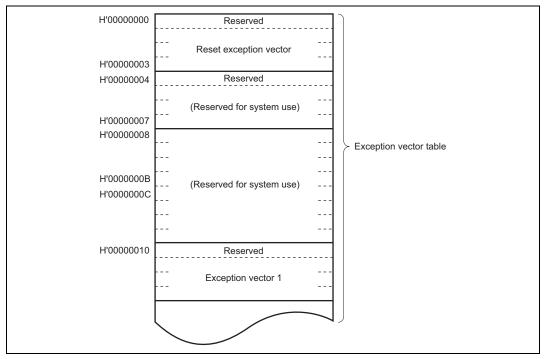


Figure 2.3 Exception Vector Table (Advanced Mode)

2.8 Processing States

The H8S/2000 CPU has five main processing states: the reset state, exception handling state, program execution state, bus-released state, and program stop state. Figure 2.13 indicates the state transitions.

• Reset state

In this state the CPU and internal peripheral modules are all initialized and stopped. When the $\overline{\text{RES}}$ input goes low, all current processing stops and the CPU enters the reset state. All interrupts are masked in the reset state. Reset exception handling starts when the $\overline{\text{RES}}$ signal changes from low to high. For details, refer to section 4, Exception Handling. The reset state can also be entered by a watchdog timer overflow.

• Exception-handling state

The exception-handling state is a transient state that occurs when the CPU alters the normal processing flow due to an exception source, such as, a reset, trace, interrupt, or trap instruction. The CPU fetches a start address (vector) from the exception vector table and branches to that address. For further details, refer to section 4, Exception Handling.

• Program execution state

In this state the CPU executes program instructions in sequence.

Bus-released state

In a product which has a DMA controller and a data transfer controller (DTC), the bus-released state occurs when the bus has been released in response to a bus request from a bus master other than the CPU. While the bus is released, the CPU halts operations.

• Program stop state

This is a power-down state in which the CPU stops operating. The program stop state occurs when a SLEEP instruction is executed or the CPU enters hardware standby mode. For details, refer to section 24, Power-Down Modes.

Bit	Bit Name	Initial Value	R/W	Description
5	RLW1	0	R/W	Refresh Cycle Wait Control
4 RLW0 0 R/V		R/W	These bits select the number of wait states to be inserted in a DRAM interface CAS-before-RAS refresh cycle/synchronous DRAM interface auto- refresh cycle. This setting applies to all areas designated as DRAM/continuous synchronous DRAM space.	
				00: No wait state inserted
				01: 1 wait state inserted
				10: 2 wait states inserted
				11: 3 wait states inserted
3	SLFRF	0	R/W	Self-Refresh Enable
				If this bit is set to 1, DRAM/synchronous DRAM self-refresh mode is selected when a transition is made to the software standby state. This bit is valid when the RFSHE bit is set to 1, enabling refresh operations. It is cleared after recovery from software standby mode.
				0: Self-refreshing is disabled
				1: Self-refreshing is enabled
2	TPCS2	0	R/W	Self-Refresh Precharge Cycle Control
1 0	TPCS1 TPCS0	0 0	R/W R/W	These bits select the number of states in the precharge cycle immediately after self-refreshing.
				The number of states in the precharge cycle immediately after self-refreshing are added to the number of states set by bits TPC1 and TPC0 in DRACCR.
				000: [TPC set value] states
				001: [TPC set value + 1] states
				010: [TPC set value + 2] states
				011: [TPC set value + 3] states
				100: [TPC set value + 4] states
				101: [TPC set value + 5] states
				110: [TPC set value + 6] states
				111: [TPC set value + 7] states

- a refresh operation is initiated in the RAS down state
- self-refreshing is performed
- the chip enters software standby mode
- the external bus is released
- the RCDM bit or BE bit is cleared to 0

If a transition is made to the all-module-clocks-stopped mode in the \overline{RAS} down state, the clock will stop with \overline{RAS} low. To enter the all-module-clocks-stopped mode with \overline{RAS} high, the RCDM bit must be cleared to 0 before executing the SLEEP instruction.

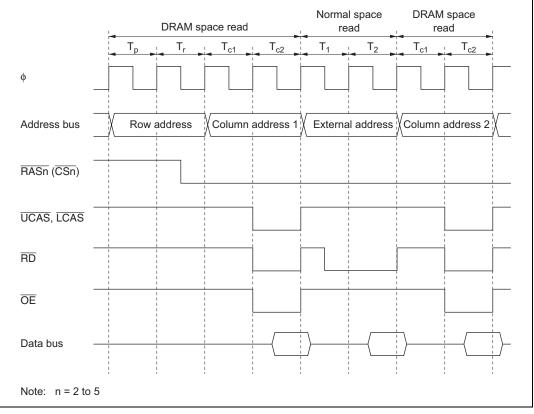


Figure 6.32 Example of Operation Timing in RAS Down Mode (RAST = 0, CAST = 0)

Bit	Bit Name	Initial Value	R/W	Description
Bit 4 3 2 1 0	Bit Name DARA4 DARA3 DARA2 DARA1 DARA0	Initial Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R/W R/W R/W R/W	Destination Address Repeat Area These bits specify the destination address (EDDAR) repeat area. The repeat area function updates the specified lower address bits, leaving the remaining upper address bits always the same. A repeat area size of 2 bytes to 8 Mbytes can be specified. The setting interval is a power-of-two number of bytes. When repeat area overflow results from incrementing or decrementing an address, the lower address is the start address of the repeat area in the case of address incrementing, or the last address of the repeat area in the case of address decrementing. If the DARIE bit is set to 1, an interrupt can be requested when repeat area overflow occurs. 00000: Not designated as repeat area 00001: Lower 1 bit (2-byte area) designated as repeat area
				00010: Lower 2 bits (4-byte area) designated as repeat area 00011: Lower 3 bits (8-byte area) designated as repeat area 00100: Lower 4 bits (16-byte area) designated as
				repeat area
				10011: Lower 19 bits (512-kbyte area) designated as repeat area
				10100: Lower 20 bits (1-Mbyte area) designated as repeat area10101: Lower 21 bits (2-Mbyte area) designated as
				repeat area 10110: Lower 22 bits (4-Mbyte area) designated as
				repeat area
				10111: Lower 23 bits (8-Mbyte area) designated as repeat area
				11×××: Setting prohibited

Legend: ×: Don't care

• P25/PO5/TIOCB4/(IRQ13)

The pin function is switched as shown below according to the combination of the TPU channel 4 settings (by bits MD3 to MD0 in TMDR_4, bits IOB3 to IOB0 in TIOR_4, and bits CCLR1 and CCLR0 in TCR_4), bit NDER5 in NDERL, bit P25DDR, and bit ITS13 in ITSR.

TPU channel 4 settings	(1) in table below	(2) in table below				
P25DDR		0	1	1		
NDER5			0	1		
Pin function	TIOCB4 output	P25 input	P25 output	PO5 output		
			TIOCB4 input ^{*1}			
IRQ13 interrupt input*2						

Notes: 1. TIOCB4 input when MD3 to MD0 = B'0000 or B'01×× and IOB3 to IOB0 = B'10××.

2. $\overline{\text{IRQ13}}$ input when ITS13 = 1.

TPU channel 4 settings	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000	, B'01××	B'0010		B'0011	
IOB3 to IOB0	B'0000 B'0100 B'1×××	B'0001 to B'0011 B'0101 to B'0111		B'××00	Other than	ר B'××00
CCLR1, CCLR0					Other than B'10	B'10
Output function	_	Output compare output			PWM mode 2 output	—

Legend:

×: Don't care

Table	11.13	TIORL	0
-------	-------	-------	---

				Description			
Bit 7 IOD3	Bit 6 IOD2	Bit 5 IOD1	Bit 4 IOD0	TGRD_0 Function	TIOCD0 Pin Function		
0	0	0	0	Output	Output disabled		
			1	compare register ^{*2}	Initial output is 0 output		
				register	0 output at compare match		
		1	0	_	Initial output is 0 output		
					1 output at compare match		
			1	_	Initial output is 0 output		
					Toggle output at compare match		
	1	0	0		Output disabled		
			1		Initial output is 1 output		
					0 output at compare match		
		1	0		Initial output is 1 output		
					1 output at compare match		
			1	_	Initial output is 1 output		
					Toggle output at compare match		
1	0	0	0	Input	Capture input source is TIOCD0 pin		
				capture – register ^{*2}	Input capture at rising edge		
			1		Capture input source is TIOCD0 pin		
					Input capture at falling edge		
		1	×	_	Capture input source is TIOCD0 pin		
					Input capture at both edges		
	1	х	×		Capture input source is channel 1/count clock		
					Input capture at TCNT_1 count-up/count-down*1		

Legend: x: Don't care

Notes: 1. When bits TPSC2 to TPSC0 in TCR_1 are set to B'000 and $\phi/1$ is used as the TCNT_1 count clock, this setting is invalid and input capture is not generated.

2. When the BFB bit in TMDR_0 is set to 1 and TGRD_0 is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

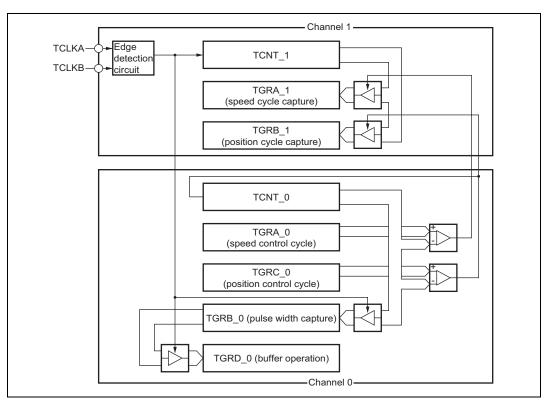


Figure 11.29 Phase Counting Mode Application Example

11.5 Interrupt Sources

There are three kinds of TPU interrupt source: TGR input capture/compare match, TCNT overflow, and TCNT underflow. Each interrupt source has its own status flag and enable/disable bit, allowing generation of interrupt request signals to be enabled or disabled individually.

When an interrupt request is generated, the corresponding status flag in TSR is set to 1. If the corresponding enable/disable bit in TIER is set to 1 at this time, an interrupt is requested. The interrupt request is cleared by clearing the status flag to 0.

Relative channel priorities can be changed by the interrupt controller, but the priority order within a channel is fixed. For details, see section 5, Interrupt Controller.

Table 11.36 lists the TPU interrupt sources.

Renesas

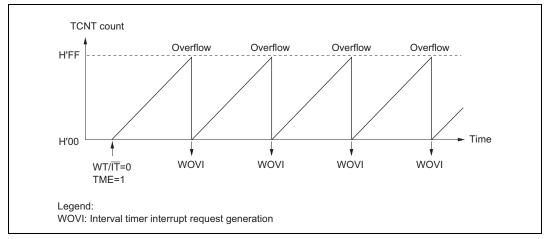


Figure 14.3 Operation in Interval Timer Mode

14.5 Interrupt Source

During interval timer mode operation, an overflow generates an interval timer interrupt (WOVI). The interval timer interrupt is requested whenever the OVF flag is set to 1 in TCSR. OVF must be cleared to 0 in the interrupt handling routine.

Table 14.2WDT Interrupt Source

Name	Interrupt Source	Interrupt Flag	DTC Activation
WOVI	TCNT overflow	OVF	Impossible

14.6 Usage Notes

14.6.1 Notes on Register Access

The watchdog timer's TCNT, TCSR, and RSTCSR registers differ from other registers in being more difficult to write to. The procedures for writing to and reading these registers are given below.

Writing to TCNT, TCSR, and RSTCSR

TCNT and TCSR must be written to by a word transfer instruction. They cannot be written to by a byte transfer instruction.

15.6.4 Serial Data Reception (Clocked Synchronous Mode)

Figure 15.18 shows an example of SCI operation for reception in clocked synchronous mode. In serial reception, the SCI operates as described below.

- 1. The SCI performs internal initialization in synchronization with a synchronization clock input or output, starts receiving data, and stores the received data in RSR.
- 2. If an overrun error (when reception of the next data is completed while the RDRF flag is still set to 1) occurs, the ORER bit in SSR is set to 1. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is generated. Receive data is not transferred to RDR. The RDRF flag remains to be set to 1.
- 3. If reception finishes successfully, the RDRF bit in SSR is set to 1, and receive data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt request is generated. Because the RXI interrupt routine reads the receive data transferred to RDR before reception of the next receive data has finished, continuous reception can be enabled.

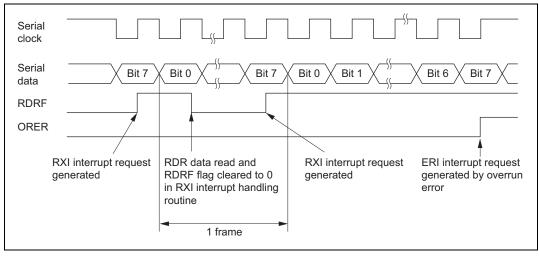


Figure 15.18 Example of SCI Operation in Reception

Transfer cannot be resumed while a receive error flag is set to 1. Accordingly, clear the ORER, FER, PER, and RDRF bits to 0 before resuming reception. Figure 15.19 shows a sample flowchart for serial data reception.

Section 18 D/A Converter

• DACR45 (Available only for the H8S/2377, H8S/2377R, H8S/2378 0.18µm F-ZTAT Group, and H8S/2378R 0.18µm F-ZTAT Group)

Bit	Bit Name	Initial Value	R/W	Description
7	DAOE4	0	R/W	D/A Output Enable 5
				Controls D/A conversion and analog output.
				0: Analog output (DA5) is disabled
				1: Channel 5 D/A conversion is enabled; analog output (DA5) is enabled
6	DAOE5	0	R/W	D/A Output Enable 4
				Controls D/A conversion and analog output.
				0: Analog output (DA4) is disabled
				1: Channel 4 D/A conversion is enabled; analog output (DA4) is enabled
5	DAE	0	R/W	D/A Enable
				Used together with the DAOE4 and DAOE5 bits to control D/A conversion. When the DAE bit is cleared to 0, channel 4 and 5 D/A conversions are controlled independently. When the DAE bit is set to 1, channel 4 and 5 D/A conversions are controlled together.
				Output of conversion results is always controlled independently by the DAOE4 and DAOE5 bits. For details, see table 18.4.
4 to	_	All 1	—	Reserved
0				These bits are always read as 1 and cannot be modified.

Table 18.4 Control of D/A Conversion

Bit 5 DAE	Bit 7 DAOE5	Bit 6 DAOE4	Description
0	0	0 0 D/A conversion disabled	
		1	Channel 4 D/A conversion enabled, channel5 D/A conversion disabled
	1	0	Channel 5 D/A conversion enabled, channel4 D/A conversion disabled
		1	Channel 4 and 5 D/A conversions enabled
1	0	0	D/A conversion disabled
		1	Channel 4 and 5 D/A conversions enabled
	1	0	_
		1	_

21.3 Register Descriptions

The registers/parameters which control flash memory are shown as follows.

- Flash code control status register (FCCS)
- Flash program code select register (FPCS)
- Flash erase code select register (FECS)
- Flash key code register (FKEY)
- Flash MAT select register (FMATS)
- Flash transfer destination address register (FTDAR)
- Download pass and fail result (DPFP)
- Flash pass and fail result (FPFR)
- Flash multipurpose address area (FMPAR)
- Flash multipurpose data destination area (FMPDR)
- Flash erase Block select (FEBS)
- Flash program and erase frequency control (FPEFEQ)
- Flash vector address control register (FVACR)

There are several operating modes for accessing flash memory, for example, read mode/program mode.

There are two memory MATs: user MAT and user boot MAT. The dedicated registers/parameters are allocated for each operating mode and MAT selection. The correspondence of operating modes and registers/parameters for use is shown in table 21.3.

programming/erasing command. The erasure must be used when the specified block is programmed without a reset start after programming is executed in boot mode. When programming can be executed by only one operation, all blocks are erased before the state for waiting programming/erasing/other command is entered. The erasing operation is not required.

— There are many commands other than programming/erasing. Examples are sum check, blank check (erasure check), and memory read of the user MAT/user boot MAT and acquisition of current status information.

Note that memory read of the user MAT/user boot MAT can only read the programmed data after all user MAT/user boot MAT has automatically been erased.

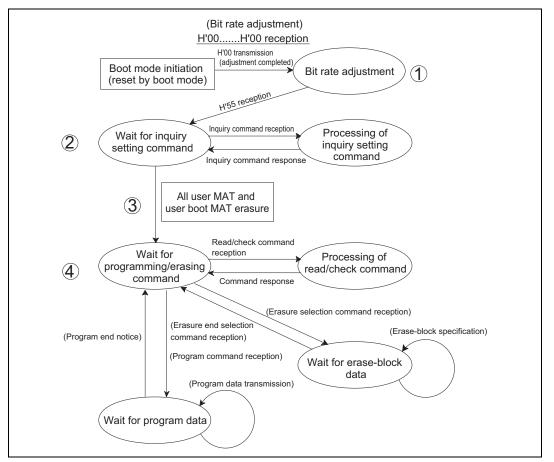


Figure 21.8 Overview of Boot Mode State Transition Diagram

23.5.3 Notes on Board Design

When using the crystal resonator, place the crystal resonator and its load capacitors as close as possible to the XTAL and EXTAL pins. Other signal lines should be routed away from the oscillation circuit to prevent induction from interfering with correct oscillation. See figure 23.6.

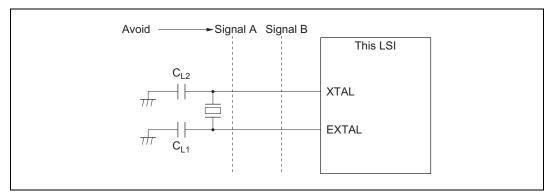


Figure 23.6 Note on Board Design for Oscillation Circuit

Figure 23.7 shows the external circuitry recommended for the PLL circuit. Separate PLLVcc and PLLVss from the other Vcc and Vss lines at the board power supply source, and be sure to insert bypass capacitors CPB and CB close to the pins.

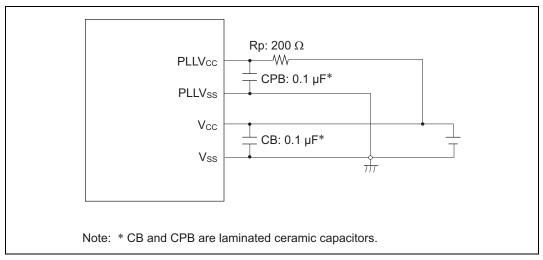


Figure 23.7 Recommended External Circuitry for PLL Circuit

(4) DMAC and EXDMAC Timing

Table 26.22 DMAC and EXDMAC Timing

 $\begin{array}{ll} \mbox{Conditions:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}, \mbox{AV}_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}, \mbox{V}_{ref} = 3.0 \mbox{ V to } AV_{CC}, \mbox{V}_{SS} = AV_{SS} = \\ & 0 \mbox{ V}, \mbox{ } \phi = 8 \mbox{ MHz to } 35 \mbox{ MHz}, \mbox{T}_a = -20^{\circ}\mbox{C to } +75^{\circ}\mbox{C} \mbox{ (regular specifications)}, \\ & T_a = -40^{\circ}\mbox{C to } +85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$

Item	Symbol	Min.	Max.	Unit	Test Conditions
DREQ setup time	t _{DRQS}	25	_	ns	Figure 26.31
DREQ hold time	t _{DRQH}	10	_	_	
TEND delay time	t _{TED}	_	18	ns	Figure 26.30
DACK delay time 1	t _{DACD1}	_	18		Figures 26.28 and 26.29
DACK delay time 2	t _{DACD2}	_	18		
EDREQ setup time	t _{EDRQS}	25	_	ns	Figure 26.31
EDREQ hold time	t _{EDRQH}	10	_		
ETEND delay time	t _{ETED}	—	18	ns	Figure 26.30
EDACK delay time 1	t _{EDACD1}	_	18		Figure 26.28 and 26.29
EDACK delay time 2	t _{EDACD2}		18		
EDRAK delay time	t _{EDRKD}	_	18	ns	Figure 26.32

Instruction	1	2	3	4	5	6	7	8	9
BILD #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT						
BILD #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W NEXT					
BILD #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W NEXT				
BIOR #xx:3,Rd	R:W NEXT								
BIOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT						
BIOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT						
BIOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W NEXT					
BIOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W NEXT				
BIST #xx:3,Rd	R:W NEXT								
BIST #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BIST #xx:3,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BIST #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BIST #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BIXOR #xx:3,Rd	R:W NEXT								
BIXOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT						
BIXOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W NEXT						
BIXOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W NEXT					
BIXOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W NEXT				
BLD #xx:3,Rd	R:W NEXT								
BLD #xx:3,@ERd	R:W 2nd	R:B EA	R:W NEXT						

Instru	ction	1	2	3	4	5	6	7	8	9
JMP @@aa: 8	Advanced	R:W NEXT	R:W:M aa:8	R:W aa:8	1 State of internal operation	R:W EA				
JSR @ERn	Advanced	R:W NEXT	R:W EA	W:W:M Stack (H)	W:W Stack (L)					
JSR @aa:24	Advanced	R:W 2nd	1 State of internal operation	R:W EA	W:W:M Stack (H)	W:W Stack (L)				
JSR @@aa: 8	Advanced	R:W NEXT	R:W:M aa:8	R:W aa:8	W:W:M Stack (H)	W:W Stack (L)	R:W EA			
LDC #xx	:8,CCR	R:W NEXT								
LDC #xx	:8,EXR	R:W 2nd	R:W NEXT							
LDC Rs,	CCR	R:W NEXT								
LDC Rs,	EXR	R:W NEXT								
LDC @ERs,C	CR	R:W 2nd	R:W NEXT	R:W EA						
LDC @ERs,E	XR	R:W 2nd	R:W NEXT	R:W EA						
LDC @(d:16,I CR	ERs),C	R:W 2nd	R:W 3rd	R:W NEXT	R:W EA					
LDC @(d:16,I EXR	ERs),	R:W 2nd	R:W 3rd	R:W NEXT	R:W EA					
LDC @(d:32,I CCR	ERs),	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	R:W EA			
LDC @(d:32,I EXR	ERs),	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	R:W EA			
LDC @ERs+,	CCR	R:W 2nd	R:W NEXT	1 State of internal operation	R:W EA					
LDC @ERs+,	EXR	R:W 2nd	R:W NEXT	1 State of internal operation	R:W EA					

Instruction	1	2	3	4	5	6	7	8	9
SHAL.L #2,ERd	R:W NEXT								
SHAR.B Rd	R:W NEXT								
SHAR.B #2,Rd	R:W NEXT								
SHAR.W Rd	R:W NEXT								
SHAR.W #2,Rd	R:W NEXT								
SHAR.L ERd	R:W NEXT								
SHAR.L #2,ERd	R:W NEXT								
SHLL.B Rd	R:W NEXT								
SHLL.B #2,Rd	R:W NEXT								
SHLL.W Rd	R:W NEXT								
SHLL.W #2,Rd	R:W NEXT								
SHLL.L ERd	R:W NEXT								
SHLL.L #2,ERd	R:W NEXT								
SHLR.B Rd	R:W NEXT								
SHLR.B #2,Rd	R:W NEXT								
SHLR.W Rd	R:W NEXT								
SHLR.W #2,Rd	R:W NEXT								
SHLR.L ERd	R:W NEXT								
SHLR.L #2,ERd	R:W NEXT								