

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	H8S/2000
Core Size	16-Bit
Speed	35MHz
Connectivity	I ² C, IrDA, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	96
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 6x8b
Oscillator Type	External
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2378bvfq35v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Main Revisions for This Edition

Item	Page	Revision (See Manual for Details)
3.4 Memory Map in Each Operating Mode Figure 3.2 Memory Map for H8S/2378 and H8S/2378R (2)	79	Figure amended ROM: 512 kbytes ROM: 512 kbytes RAM: 32 kbytes RAM: 32 kbytes Mode 4 (User boot mode) (Cexpanded mode with on-chip ROM enabled) (User boot mode) H'000000 H'000000 On-chip ROM On-chip ROM
		H080000 H080000 H080000
Figure 3.7 Memory Map for H8S/2374 and H8S/2374R (1)	84	Figure amended H'FF4000 H'FF4000 H'FFC000 H'FFC000 H'FFC000 H'FFC000
Figure 3.15 Memory Map for H8S/2370 and H8S/2370R (2)	92	Figure amended
6.7.11 Byte Access Control	230	Figure amended
Figure 6.51 Example of DQMU and DQML Byte Control		Image: Constraint of the sector of the se
6.9.2 Pin States in Idle Cycle Table 6.12 Pin States in Idle Cycle	268	Pins Pin State EDACKn (n = 3, 2) High
7.3.7 DMA Terminal Control Register (DMATCR)	306	Description amended The TEND pin is available only for channel B in short address mode.

Figure 1.6 Pin Arrangement for H8S/2377 and H8S/2377R

2.5.1 General Register Data Formats

Figure 2.9 shows the data formats of general registers.

Data Type	Register Number	Data Format
1-bit data	RnH	7 6 5 4 3 2 1 0 Don't care
1-bit data	RnL	7 0 Don't care 7 6 5 4 3 2 1 0
4-bit BCD data	RnH	7 4 3 0 Upper Lower Don't care
4-bit BCD data	RnL	7 4 3 0 Don't care Upper Lower
Byte data	RnH	7 0 Don't care MSB LSB
Byte data	RnL	7 0 Don't care MSB LSB

Figure 2.9 General Register Data Formats (1)

7. The CPU generates a vector address for the accepted interrupt and starts execution of the interrupt handling routine at the address indicated by the contents of the vector address in the vector table.

Figure 5.3 Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 0

• WTCRAL

Bit	Bit Name	Initial Value	R/W	Description
7	—	0	R	Reserved
				This bit is always read as 0 and cannot be modified.
6	W52	1	R/W	Area 5 Wait Control 2 to 0
5 W51 4 W50		1 1	R/W R/W	These bits select the number of program wait states when accessing area 5 while AST5 bit in ASTCR = 1.
				000: Program wait not inserted
				001: 1 program wait state inserted
				010: 2 program wait states inserted
				011: 3 program wait states inserted
				100: 4 program wait states inserted
				101: 5 program wait states inserted
				110: 6 program wait states inserted
				111: 7 program wait states inserted
3		0	R	Reserved
				This bit is always read as 0 and cannot be modified.
2	W42	1	R/W	Area 4 Wait Control 2 to 0
1 0	W41 W40	1 1	R/W R/W	These bits select the number of program wait states when accessing area 4 while AST4 bit in ASTCR = 1.
				000: Program wait not inserted
				001: 1 program wait state inserted
				010: 2 program wait states inserted
				011: 3 program wait states inserted
				100: 4 program wait states inserted
				101: 5 program wait states inserted
				110: 6 program wait states inserted
				111: 7 program wait states inserted

6.7.11 Byte Access Control

When synchronous DRAM with a $\times 16$ -bit configuration is connected, DQMU and DQML are used for the control signals needed for byte access.

Figures 6.49 and 6.50 show the control timing for DQM, and figure 6.51 shows an example of connection of byte control by DQMU and DQML.

7.3.1 Memory Address Registers (MARA and MARB)

MAR is a 32-bit readable/writable register that specifies the source address (transfer source address) or destination address (transfer destination address). MAR consists of two 16-bit registers MARH and MARL. The upper 8 bits of MARH are reserved: they are always read as 0, and cannot be modified.

The DMA has four MAR registers: MAR_0A in channel 0 (channel 0A), MAR_0B in channel 0 (channel 0B), MAR_1A in channel 1 (channel 1A), and MAR_1B in channel 1 (channel 1B).

MAR is not initialized by a reset or in standby mode.

Short Address Mode: In short address mode, MARA and MARB operate independently. Whether MAR functions as the source address register or as the destination address register can be selected by means of the DTDIR bit in DMACR.

MAR is incremented or decremented each time a byte or word transfer is executed, so that the address specified by MAR is constantly updated.

Full Address Mode: In full address mode, MARA functions as the source address register, and MARB as the destination address register.

MAR is incremented or decremented each time a byte or word transfer is executed, so that the source or destination address is constantly updated.

7.3.2 I/O Address Registers (IOARA and IOARB)

IOAR is a 16-bit readable/writable register that specifies the lower 16 bits of the source address (transfer source address) or destination address (transfer destination address). The upper 8 bits of the transfer address are automatically set to H'FF.

The DMA has four IOAR registers: IOAR_0A in channel 0 (channel 0A), IOAR_0B in channel 0 (channel 0B), IOAR_1A in channel 1 (channel 1A), and IOAR_1B in channel 1 (channel 1B).

Whether IOAR functions as the source address register or as the destination address register can be selected by means of the DTDIR bit in DMACR.

IOAR is not incremented or decremented each time a data transfer is executed, so the address specified by IOAR is fixed.

IOAR is not initialized by a reset or in standby mode.

IOAR can be used in short address mode but not in full address mode.

Renesas

Section 7	DMA	Controller	(DMAC))
-----------	-----	------------	--------	---

Bit	Bit Name	Initial Value	R/W	Description
4	DTE0	0	R/W	Data Transfer Enable 0
				Enables or disables DMA transfer for the activation source selected by the DTF3 to DTF0 bits in DMACR of channel 0.
				When $DTE0 = 0$, data transfer is disabled and the activation source is ignored. If the activation source is an internal interrupt, an interrupt request is issued to the CPU or DTC. If the DTE0 bit is cleared to 0 when $DTIE0 = 1$, the DMAC regards this as indicating the end of a transfer, and issues a transfer end interrupt request to the CPU.
				When DTE0 = 1 and DTME0 = 1, data transfer is enabled and the DMAC waits for a request by the activation source. When a request is issued by the activation source, DMA transfer is executed.
				[Clearing conditions]
				When initialization is performed
				 When the specified number of transfers have been completed
				 When 0 is written to the DTE0 bit to forcibly suspend the transfer, or for a similar reason
				[Setting condition]
				When 1 is written to the DTE0 bit after reading $DTE0 = 0$
3	DTIE1B	0	R/W	Data Transfer Interrupt Enable 1B
				Enables or disables an interrupt to the CPU or DTC when transfer on channel 1 is interrupted. If the DTME1 bit is cleared to 0 when DTIE1B = 1, the DMAC regards this as indicating a break in the transfer, and issues a transfer break interrupt request to the CPU or DTC.
				A transfer break interrupt can be canceled either by clearing the DTIE1B bit to 0 in the interrupt handling routine, or by performing processing to continue transfer by setting the DTME1 bit to 1.

• P26/PO6/TIOCA5/(<u>IRQ14</u>)

The pin function is switched as shown below according to the combination of the TPU channel 5 settings (by bits MD3 to MD0 in TMDR_5, bits IOA3 to IOA0 in TIOR_5, and bits CCLR1 and CCLR0 in TCR_5), bit NDER6 in NDERL, bit P26DDR, and bit ITS14 in ITSR.

TPU channel 5 settings	(1) in table below	(2) in table below		
P26DDR	—	0	1	1
NDER6	—	_	0	1
Pin function	TIOCA5 output	P26 input	P26 output	PO6 output
			TIOCA5 input ^{*1}	
		IRQ14 inte	rrupt input ^{*2}	

TPU channel 5 settings	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000	, B'01××	B'001×	B'0010	B'00	11
IOA3 to IOA0	B'0000 B'0100 B'1×××	B'0001 to B'0011 B'0101 to B'0111	B'××00	Other than B'××00	Other that	ר B'××00
CCLR1, CCLR0					Other than B'01	B'01
Output function	_	Output compare output		PWM ^{*3} mode 1 output	PWM mode 2 output	_

Legend:

 \times : Don't care

Notes: 1. TIOCA5 input when MD3 to MD0 = B'0000 or B'01 \times and IOA3 = 1.

2. $\overline{\text{IRQ14}}$ input when ITS14 = 1.

3. TIOCB5 output disabled.

Table 11.15 TIOR_2

				Description		
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	TGRB_2 Function	TIOCB2 Pin Function	
0	0	0	0	Output	Output disabled	
			1	compare	Initial output is 0 output	
				register	0 output at compare match	
		1	0		Initial output is 0 output	
					1 output at compare match	
			1		Initial output is 0 output	
1 0					Toggle output at compare match	
		0	0		Output disabled	
			1	_	Initial output is 1 output	
					0 output at compare match	
		1	0		Initial output is 1 output	
				_	1 output at compare match	
1		-	Initial output is 1 output			
					Toggle output at compare match	
1	×	0	0	Input	Capture input source is TIOCB2 pin	
				capture	Input capture at rising edge	
			1		Capture input source is TIOCB2 pin	
					Input capture at falling edge	
		1	×		Capture input source is TIOCB2 pin	
					Input capture at both edges	

Legend: x: Don't care

3. Phase counting mode 3

Figure 11.27 shows an example of phase counting mode 3 operation, and table 11.34 summarizes the TCNT up/down-count conditions.

Table 11.34	Up/Down-Count	Conditions in	Phase	Counting 1	Mode 3
-------------	----------------------	----------------------	-------	------------	--------

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level		Don't care
Low level		Don't care
	Low level	Don't care
	High level	Up-count
High level		Down-count
Low level		Don't care
	High level	Don't care
	Low level	Don't care

Legend:

🕂 : Rising edge

노 : Falling edge

15.10.7 Operation in Case of Mode Transition

Transmission

Operation should be stopped (by clearing TE, TIE, and TEIE to 0) before making a module stop mode or software standby mode transition. TSR, TDR, and SSR are reset. The output pin states in module stop mode or software standby mode depend on the port settings, and become high-level output after the relevant mode is cleared. If a transition is made during transmission, the data being transmitted will be undefined.

When transmitting without changing the transmit mode after the relevant mode is cleared, transmission can be started by setting TE to 1 again, and performing the following sequence: SSR read \rightarrow TDR write \rightarrow TDRE clearance. To transmit with a different transmit mode after clearing the relevant mode, the procedure must be started again from initialization.

Figure 15.36 shows a sample flowchart for mode transition during transmission. Port pin states during mode transition are shown in figures 15.37 and 15.38.

Operation should also be stopped (by clearing TE, TIE, and TEIE to 0) before making a transition from transmission by DTC transfer to module stop mode or software standby mode transition. To perform transmission with the DTC after the relevant mode is cleared, setting TE and TIE to 1 will set the TXI flag and start DTC transmission.

• Reception

Receive operation should be stopped (by clearing RE to 0) before making a module stop mode or software standby mode transition. RSR, RDR, and SSR are reset. If a transition is made during reception, the data being received will be invalid.

To continue receiving without changing the reception mode after the relevant mode is cleared, set RE to 1 before starting reception. To receive with a different receive mode, the procedure must be started again from initialization.

20.4 Input/Output Pins

Table 20.2 shows the pin configuration of the flash memory.

Table 20.2Pin Configuration

Pin Name	I/O	Function
RES	Input	Reset
MD2	Input	Sets this LSI's operating mode
MD1	Input	Sets this LSI's operating mode
MD0	Input	Sets this LSI's operating mode
P52	Input	Sets operating mode in programmer mode
P51	Input	Sets operating mode in programmer mode
P50	Input	Sets operating mode in programmer mode
TxD1	Output	Serial transmit data output
RxD1	Input	Serial receive data input

20.5 Register Descriptions

The flash memory has the following registers. For details on the system control register, refer to section 3.2.2, System Control Register (SYSCR).

- Flash memory control register 1 (FLMCR1)
- Flash memory control register 2 (FLMCR2)
- Erase block register 1 (EBR1)
- Erase block register 2 (EBR2)

20.5.1 Flash Memory Control Register 1 (FLMCR1)

FLMCR1 is a register that makes the flash memory transit to program mode, program-verify mode, erase mode, or erase-verify mode. For details on register setting, refer to section 20.7, Flash Memory Programming/Erasing.

20.5.2 Flash Memory Control Register 2 (FLMCR2)

FLMCR2 is a register that displays the state of flash memory programming/erasing. When the SWE bit in FLMCR1 is cleared to 0, FLMCR2 is initialized to H'00. FLMCR2 is a read-only register, and should not be written to.

Bit	Bit Name	Initial Value	R/W	Description
7	FLER	0	R	Indicates that an error has occurred during an operation on flash memory (programming or erasing). When FLER is set to 1, flash memory goes to the error-protection state.
				See section 20.8.3, Error Protection, for details.
6 to	_	All 0	R	Reserved
0				These bits are always read as 0.

Bit	Bit Name	Initial Value	R/W	Description
2	WD		R/W	Write Data Address Detect
				When the address in the flash memory area is specified as the start address of the storage destination of the program data, an error occurs.
				0: Setting of write data address is normal
				1: Setting of write data address is abnormal
1	WA	—	R/W	Write Address Error Detect
				When the following items are specified as the start address of the programming destination, an error occurs.
				 When the programming destination address in the area other than flash memory is specified
				 When the specified address is not a 128-byte boundary (the value of A6 to A0 is not H'0).
				0: Setting of programming destination address is normal
				1: Setting of programming destination address is abnormal
0	SF	_	R/W	Success/Fail
				Indicates whether the program processing is ended normally or not.
				0: Programming is ended normally (no error)
				1: Programming is ended abnormally (error occurs)

(4) Erasure Execution

When flash memory is erased, the erase-block number on the user MAT must be passed to the erasing program which is downloaded. This is set to the FEBS parameter (general register ER0).

One block is specified from the block number 0 to 15.

For details on the erasing processing procedure, see section 21.4.2, User Program Mode.

The FLER bit is set in the following conditions:

- 1. When an interrupt such as NMI occurs during programming/erasing.
- 2. When the flash memory is read during programming/erasing (including a vector read or an instruction fetch).
- 3. When a SLEEP instruction (including software-standby mode) is executed during programming/erasing.
- 4. When a bus master other than the CPU such as the DMAC or DTC gets bus mastership during programming/erasing.

Error protection is cancelled only by a power-on reset or by hardware-standby mode. Note that the reset should only be released after providing a reset input over a period longer than the normal 100 μ s period. Since high voltages are applied during programming/erasing of the flash memory, some voltage may remain after the error-protection state has been entered. For this reason, it is necessary to reduce the risk of damage to the flash memory by extending the reset period so that the charge is released.

The state-transition diagram in figure 21.15 shows transitions to and from the error-protection state.

Figure 21.15 Transitions to Error-Protection State

26.2.4 A/D Conversion Characteristics

Table 26.24 A/D Conversion Characteristics

 $\begin{array}{ll} \mbox{Conditions:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}, \mbox{AV}_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}, \mbox{V}_{ref} = 3.0 \mbox{ V to } AV_{CC}, \mbox{V}_{SS} = AV_{SS} = \\ & 0 \mbox{ V}, \mbox{ } \phi = 8 \mbox{ MHz to } 35 \mbox{ MHz}, \mbox{ } T_a = -20^{\circ}\mbox{C to } +75^{\circ}\mbox{C} \mbox{ (regular specifications)}, \\ & T_a = -40^{\circ}\mbox{C to } +85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$

Item	Min.	Тур.	Max.	Unit
Resolution	10	10	10	Bit
Conversion time	7.4		_	μS
Analog input capacitance			20	pF
Permissible signal source impedance			5	kΩ
Nonlinearity error	_		±5.5	LSB
Offset error	_		±5.5	LSB
Full-scale error			±5.5	LSB
Quantization error			±0.5	LSB
Absolute accuracy			±6.0	LSB

26.2.5 D/A Conversion Characteristics

Table 26.25 D/A Conversion Characteristics

 $\begin{array}{ll} \mbox{Conditions:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}, \mbox{AV}_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V}, \mbox{V}_{ref} = 3.0 \mbox{ V to } AV_{CC}, \mbox{V}_{SS} = AV_{SS} = \\ & 0 \mbox{ V}, \mbox{ } \phi = 8 \mbox{ MHz to } 35 \mbox{ MHz}, \mbox{ } T_a = -20^{\circ}\mbox{C to } +75^{\circ}\mbox{C} \mbox{ (regular specifications)}, \\ & T_a = -40^{\circ}\mbox{C to } +85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	8	8	8	Bit	
Conversion time	_	_	10	μS	20 pF capacitive load
Absolute accuracy	_	±2.0	±3.0	LSB	2 M Ω resistive load
		_	±2.0	LSB	$4 \text{ M}\Omega$ resistive load

Item	Symbol	Min.	Тур.	Max.	Test Unit Conditions
RAM standby voltage	V_{RAM}	2.5	_		V
V _{CC} start voltage ^{*5}	V _{CCstart}	_	_	0.8	V
V _{CC} rise slope ^{*5}	SV _{CC}	_	_	20	ms/V

Notes: 1. When the A/D and D/A converters are not used, the AV_{CC}, V_{ref}, and AV_{SS} pins should not be open. Connect the AV_{CC} and V_{ref} pins to V_{CC}, and the AV_{SS} pin to V_{SS}.

2. Current consumption values are for $V_{IH}min = V_{CC} - 0.2 \text{ V}$ and $V_{IL}max = 0.2 \text{ V}$ with all output pins unloaded and all input pull-up MOSs in the off state.

- 3. The values are for $V_{RAM} \le V_{CC}$ < 3.0 V, $V_{IH}min = V_{CC} \times 0.9$, and $V_{IL}max = 0.3$ V.
- 4. I_{CC} depends on V_{CC} and f as follows: I_{CC}max = 15 (mA) + 0.37 (mA/(MHz × V)) × V_{CC} × f (normal operation) I_{CC}max = 15 (mA) + 0.20 (mA/(MHz × V)) × V_{CC} × f (sleep mode)

5. Applies when $\overline{\text{RES}}$ pin is low level at power-on.

Table 26.30 Permissible Output Currents

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}^*$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Item		Symbol	Min.	Тур.	Max.	Unit
Permissible output low	SCL0, 1, SDA0, 1	I _{OL}			8.0	mA
current (per pin)	Output pins other than the above			_	2.0	
Permissible output low current (total)	Total of all output pins	ΣI_{OL}			80	mA
Permissible output high current (per pin)	All output pins	-I _{OH}			2.0	mA
Permissible output high current (total)	Total of all output pins	$\Sigma - I_{OH}$			40	mA

Caution: To protect the LSI's reliability, do not exceed the output current values in table 26.30.

Note: * When the A/D and D/A converters are not used, do not leave the AV_{CC}, V_{ref}, and AV_{SS} pins should not be open. Connect the AV_{CC} and V_{ref} pins to V_{CC}, and the AV_{SS} pin to V_{SS}.

Renesas

26.4 Timing Charts

26.4.1 Clock Timing

The clock timings are shown below.

Figure 26.3 SDRAM¢ Timing