

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	17
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f527-e-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16F527 device from Microchip Technology is a low-cost, high-performance, 8-bit, fully-static, Flashbased CMOS microcontroller. It employs a RISC architecture with only 36 single-word/single-cycle instructions. All instructions are single cycle except for program branches, which take two cycles. The PIC16F527 device delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical, resulting in a typical 2:1 code compression over other 8-bit microcontrollers in its class. The easy-to-use and easy to remember instruction set reduces development time significantly.

The PIC16F527 product is equipped with special features that reduce system cost and power requirements. The Power-on Reset (POR) and Device Reset Timer (DRT) eliminate the need for external Reset circuitry. There are several oscillator configurations to choose from, including INTRC Internal Oscillator mode and the power-saving LP (Low-Power) Oscillator mode. Power-Saving Sleep mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The PIC16F527 device is available in the cost-effective Flash programmable version, which is suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in Flash programmable microcontrollers, while benefiting from the Flash programmable flexibility.

The PIC16F527 product is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a 'C' compiler, a low-cost development programmer and a full-featured programmer. All the tools are supported on IBM[®] PC and compatible machines.

1.1 Applications

The PIC16F527 device fits in applications ranging from personal care appliances and security systems to lowpower remote transmitters/receivers. The Flash technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make these microcontrollers perfect for applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16F527 device very versatile, even in areas where no microcontroller use has been considered before (e.g., timer functions, logic and PLDs in larger systems and coprocessor applications).

PIC16F527

		110101 321
Clock	Maximum Frequency of Operation (MHz)	20
Memory	Flash Program Memory	1024
	SRAM Data Memory (bytes)	68
	Flash Data Memory (bytes)	64
Peripherals	Timer Module(s)	TMR0
	Wake-up from Sleep on Pin Change	Yes
eatures	I/O Pins	17
	Input Pins	1
	Internal Pull-ups	Yes
	In-Circuit Serial Programming TM	Yes
	Number of Instructions	36
	Packages	20-pin PDIP, SOIC, SSOP, QFN, UQFN
	Interrupts	Yes

TABLE 1-1:FEATURES AND MEMORY OF PIC16F527

2.0 PIC16F527 DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC16F527 Product Identification System at the back of this data sheet to specify the correct part number.

2.1 Quick Turn Programming (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who choose not to program medium-to-high quantity units and whose code patterns have stabilized. The devices are identical to the Flash devices but with all Flash locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.2 Serialized Quick Turn ProgrammingSM (SQTPSM) Devices

Microchip offers a unique programming service, where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry code, password or ID number.

Name	Function	Input Type	Output Type	Description
RC2/AN6/OP2	RC2	ST	CMOS	Bidirectional I/O port.
	AN6	AN	—	ADC channel input.
	OP2	—	AN	Op amp 2 output.
RC3/AN7/OP1	RC3	ST	CMOS	Bidirectional I/O port.
	AN7	AN	—	ADC channel input.
	OP1	—	AN	Op amp 1 output.
RC4/C2OUT	RC4	ST	CMOS	Bidirectional I/O port.
	C2OUT	—	CMOS	Comparator 2 output.
RC5	RC5	ST	CMOS	Bidirectional I/O port.
RC6/OP1-	RC6	ST	CMOS	Bidirectional I/O port.
	OP1-	AN	—	Op amp 1 inverting input.
RC7/OP1+	RC7	ST	CMOS	Bidirectional I/O port.
	OP1+	AN	—	Op amp 1 non-inverting input.
Vdd	Vdd	—	Р	Positive supply for logic and I/O pins.
Vss	Vss	_	Р	Ground reference for logic and I/O pins.

TABLE 3-2:PIC16F527 PINOUT DESCRIPTION (CONTINUED)

Legend: I = Input, O = Output, I/O = Input/Output, P = Power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input, HV = High Voltage, AN = Analog Voltage

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Value on all other Resets
Bank 2											
N/A	W ⁽²⁾	Working Regi	ister (W)							xxxx xxxx	xxxx xxxx
N/A	TRIS	I/O Control R	egisters (TRIS	A, TRISB,	TRISC)					1111 1111	1111 1111
N/A	OPTION	Contains con	trol bits to conf	igure Time	r0 and Time	r0/WDT pr	escaler			1111 1111	1111 1111
N/A	BSR ⁽²⁾	—	—	—	_	_	_	BSR1	BSR0	000	0uu
40h	INDF	Uses content	s of FSR to add	dress data	memory (no	t a physica	al register)			XXXX XXXX	uuuu uuuu
41h	TMR0	Timer0 modu	Timer0 module Register xxxx xxxx								uuuu uuuu
42h	PCL ⁽¹⁾	Low-order eig	ght bits of PC							1111 1111	1111 1111
43h	STATUS ⁽²⁾	Reserved	Reserved	PA0	TO	PD	z	DC	С	-001 1xxx	-00d dddd
44h	FSR ⁽²⁾	_	Indirect data	memory a	ddress pointe	er	•	•	•	0xxx xxxx	0uuu uuuu
45h	OSCCAL	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	1111 111-	uuuu uuu-
46h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
47h	PORTB	RB7	RB6	RB5	RB4		—	_		xxxx	uuuu
48h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
49h	ADCON0	ADCS1	ADCS0	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	1111 1100	1111 1100
4Ah	ADRES	ADC Convers	sion Result			•	•	•	•	xxxx xxxx	uuuu uuuu
4Bh	INTCON0	ADIF	CWIF	TOIF	RAIF	—	—	-	GIE	00000	00000
Bank 3											
N/A	W ⁽²⁾	Working Regi	ister (W)							xxxx xxxx	xxxx xxxx
N/A	TRIS	I/O Control R	egisters (TRIS	A, TRISB,	TRISC)					1111 1111	1111 1111
N/A	OPTION	Contains con	trol bits to conf	igure Time	r0 and Time	r0/WDT pr	escaler			1111 1111	1111 1111
N/A	BSR ⁽²⁾	_	_	_	_	_	_	BSR1	BSR0	000	0uu
60h	INDF	Uses content	s of FSR to add	dress data	memory (no	t a physica	al register)			xxxx xxxx	uuuu uuuu
61h	IW ⁽³⁾	Interrupt Wor	king Register. (Addressed	d also as W ı	register wh	en within IS	SR)		xxxx xxxx	xxxx xxxx
62h	PCL ⁽¹⁾	Low-order eig	ght bits of PC							1111 1111	1111 1111
63h	STATUS ⁽²⁾	Reserved	Reserved	PA0	TO	PD	Z	DC	С	-001 1xxx	-00d dddd
64h	FSR ⁽²⁾	_	Indirect data	memory a	ddress pointe	ər				0xxx xxxx	0uuu uuuu
65h	INTCON1	ADIE	CWIE	TOIE	RAIE	—	—	-	WUR	00000	00000
66h	ISTATUS ⁽³⁾	Reserved	Reserved	PA0	TO	PD	Z	DC	С	-xxx xxxx	-00d dddd
67h	IFSR ⁽³⁾	_	Indirect data	memory a	ddress pointe	er	•	•	•	0xxx xxxx	Ouuu uuuu
68h	IBSR ⁽³⁾	_	_	—	—			BSR1	BSR0	0xx	0uu
69h	OPACON	_	—	—	—	—	—	OPA2ON	OPA1ON	00	00
6Bh	INTCON0	ADIF	CWIF	TOIF	RAIF	_	—	—	GIE	00000	00000
	x – unknow	ı	ı			·			í	1	1

TABLE 4-1:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED)	1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0' (if applicable), q = value depends on condition.

Shaded cells = unimplemented or unused

Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.6 "Program Counter" for an explanation of how to access these bits.

2: Registers are implemented as two physical registers. When executing from within an ISR, a secondary register is used at the same logical location. Both registers are persistent. See Section 8.11 "Interrupts".

3: These registers show the contents of the registers in the other context: ISR or main line code. See Section 8.11 "Interrupts".

5.0 SELF-WRITABLE FLASH DATA MEMORY CONTROL

Flash Data memory consists of 64 bytes of selfwritable memory and supports a self-write capability that can write a single byte of memory at one time. Data to be written to the self-writable data memory is first written into a write latch before writing the data to Flash memory.

Although each Flash data memory location is 12 bits wide, access is limited to the lower eight bits. The upper four bits will automatically default to '1' in any self-write procedure. The lower eight bits are fully readable and writable during normal operation and throughout the full VDD range.

The self-writable Flash data memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers, EECON, EEDATA and EEADR.

5.1 Reading Flash Data Memory

To read a Flash data memory location the user must:

- Write the EEADR register
- Set the RD bit of the EECON register

The value written to the EEADR register determines which Flash data memory location is read. Setting the RD bit of the EECON register initiates the read. Data from the Flash data memory read is available in the EEDATA register immediately. The EEDATA register will hold this value until another read is initiated or it is modified by a write operation. Program execution is suspended while the read cycle is in progress. Execution will continue with the instruction following the one that sets the WR bit. See Example 5-1 for sample code.

EXAMPLE 5-1: READING FROM FLASH DATA MEMORY

MOVLB	0x01	; Switch to Bank 1
MOVF	DATA_EE_ADDF	R,W;
MOVWF	EEADR	; Data Memory
		; Address to read
BSF	EECON, RD	; EE Read
MOVF	EEDATA, W	; W = EEDATA

Note: Only a BSF command will work to enable the Flash data memory read documented in Example 5-1. No other sequence of commands will work, no exceptions.

- **Note 1:** To prevent accidental corruption of the Flash data memory, an unlock sequence is required to initiate a write or erase cycle. This sequence requires that the bit set instructions used to configure the EECON register happen exactly as shown in Example 5-2 and Example 5-3, depending on the operation requested.
 - 2: In order to prevent any disruptions of selfwrites or row erases performed on the self-writable Flash data memory, interrupts should be disabled prior to executing those routines.

5.1.1 ERASING FLASH DATA MEMORY

A row must be manually erased before writing new data. The following sequence must be performed for a single row erase.

- 1. Load EEADR with an address in the row to be erased.
- 2. Set the FREE bit to enable the erase.
- 3. Set the WREN bit to enable write access to the array.
- 4. Disable interrupts.
- 5. Set the WR bit to initiate the erase cycle.

If the WREN bit is not set in the instruction cycle after the FREE bit is set, the FREE bit will be cleared in hardware.

If the WR bit is not set in the instruction cycle after the WREN bit is set, the WREN bit will be cleared in hardware.

Sample code that follows this procedure is included in Example 5-2.

Program execution is suspended while the erase cycle is in progress. Execution will continue with the instruction following the one that sets the WR bit.

EXAMPLE 5-2:	ERASING A FLASH DATA
	MEMORY ROW

MOVLB	0x01	; Switch to Bank 1
MOVLW	EE_ADR_ERASE	; LOAD ADDRESS OF ROW TO
		; ERASE
MOVWF	EEADR	;
BSF	EECON, FREE	; SELECT ERASE
BSF	EECON, WREN	; ENABLE WRITES
BSF	EECON, WR	; INITITATE ERASE

6.7 I/O Programming Considerations

6.7.1 BIDIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and rewrite the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit 5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (say bit 0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired OR", "wired AND"). The resulting high output currents may damage the chip.

EXAMPLE 6-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT(e.g. PIC16F527)

<pre>;Initial POF ;PORTB<5:3> ;PORTB<2:0> ;</pre>	Inputs	S
; PORTB la	tch PORTB p	pins
;		-
BCF F	PORTB, 5	;01 -ppp11 pppp
BCF F	PORTB, 4	;10 -ppp11 pppp
MOVLW C	007h	;
TRIS P	PORTB	;10 -ppp11 pppp
;		
be '	'00 pppp'.	e expected the pin values to The 2nd BCF caused RB5 to pin value (High).

6.7.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 6-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction causes that file to be read into the CPU. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

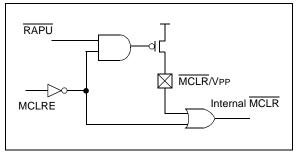

	PC	X PC + 1	(PC + 2)	PC + 3	This example shows a write to PORTE
Instruction Fetched	MOVWF PORTB	MOVF PORTB, W	NOP	NOP	followed by a read from PORTB. Data setup time = (0.25 TCY – TPD)
RB<5:0>			<		where: TCY = instruction cycle.
, , , ,		Port pin written here	Port pin sampled here		TPD = propagation delay Therefore, at higher clock frequencies, a write followed by a read may be problematic
Instruction Executed		MOVWF PORTB (Write to PORTB)	MOVF PORTB,W (Read PORTB)	NOP	

FIGURE 6-2: SUCCESSIVE I/O OPERATION

8.4.1 MCLR ENABLE

This Configuration bit, when set to a '1', enables the external $\overline{\text{MCLR}}$ Reset function. When cleared to '0', the $\overline{\text{MCLR}}$ function is tied to the internal VDD and the pin is assigned to be an input-only pin function. See Figure 8-6.

FIGURE 8-6: MCLR SELECT

8.5 Power-on Reset (POR)

The PIC16F527 device incorporates an on-chip Poweron Reset (POR) circuitry, which provides an internal chip Reset for most power-up situations.

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the internal POR, program the MCLR/VPP pin as MCLR and tie through a resistor to VDD, or program the pin as an input pin. An internal weak pull-up resistor is implemented using a transistor (refer to Table 15-8 for the pull-up resistor ranges). This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Section 15.0 "Electrical Characteristics" for details.

When the device starts normal operation (exit the Reset condition), device operating parameters (volt-age, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating parameters are met.

A simplified block diagram of the on-chip Power-on Reset circuit is shown in Figure 8-7.

The Power-on Reset circuit and the Device Reset Timer (see Section 8.6 "Device Reset Timer (DRT)") circuit are closely related. On power-up, the Reset latch is set and the DRT is reset. The DRT timer begins counting once it detects MCLR to be high. After the time-out period, it will reset the Reset latch and thus end the on-chip Reset signal.

A power-up example where MCLR is held low is shown in Figure 8-8. VDD is allowed to rise and stabilize before bringing MCLR high. The chip will actually come out of Reset TDRT msec after MCLR goes high.

In Figure 8-9, the on-chip Power-on Reset feature is being used (MCLR and VDD are tied together or the pin is programmed to be an input pin). The VDD is stable before the start-up timer times out and there is no problem in getting a proper Reset. However, Figure 8-10 depicts a problem situation where VDD rises too slowly. The time between when the DRT senses that MCLR is high and when MCLR and VDD actually reach their full value, is too long. In this situation, when the start-up timer times out, VDD has not reached the VDD (min) value and the chip may not function correctly. For such situations, we recommend that external RC circuits be used to achieve longer POR delay times (see Figure 8-9).

Note:	When the device starts normal operation
	(exit the Reset condition), device operat-
	ing parameters (voltage, frequency, tem-
	perature, etc.) must be met to ensure
	operation. If these conditions are not met,
	the device must be held in Reset until the
	operating conditions are met.

For additional information, refer to Application Notes *AN522, Power-Up Considerations* (DS00522) and *AN607, Power-up Trouble Shooting* (DS00607).

	In Sleep	GIE	WUR	
Vector or Wake-up and Vector	Х	1	0	
Wake-up Reset	1	Х	1	
Wake-up Inline	1	0	0	
Watchdog Wake-up Inline	1	Х	0	
Watchdog Wake-up Reset	1	Х	1	

TABLE 8-7: INTERRUPT PRIORITIES

REGISTER 9-2: ADRES: A/D CONVERSION RESULTS REGISTER

'1' = Bit is set

R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
Legend:								
bit 7							bit 0	
ADRES7	ADRES6	ADRES5	ADRES4	ADRES3	ADRES2	ADRES1	ADRES0	
R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	

'0' = Bit is cleared

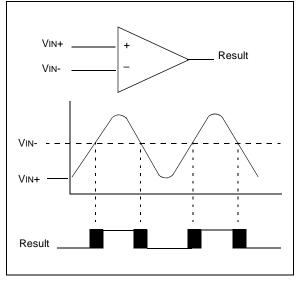
bit 7-0 ADRES<7:0>: ADC Result Register bits

EXAMPLE 9-1: PERFORMING AN ANALOG-TO-DIGITAL CONVERSION

-n = Value at POR

;Sample	code operates out of BANK0
	MOVLW 0xF1 ;configure A/D MOVWF ADCON0
	BSF ADCON0, 1 ;start conversion
-	BTFSC ADCON0, 1; wait for 'DONE' GOTO loop0
	MOVF ADRES, W ;read result
	MOVWF result0 ; save result
	BSF ADCON0, 2 ;setup for read of ;channel 1
	BSF ADCON0, 1 ;start conversion
loopl	BTFSC ADCON0, 1; wait for `DONE' GOTO loop1
	MOVF ADRES, W ;read result
	MOVWF result1 ;save result
	BSF ADCON0, 3 ;setup for read of BCF ADCON0, 2 ;channel 2
	BSF ADCON0, 1 ;start conversion
loop2	BTFSC ADCON0, 1; wait for `DONE' GOTO loop2
	MOVF ADRES, W ;read result
	MOVWF result2 ;save result

EXAMPLE 9-2: CHANNEL SELECTION CHANGE DURING CONVERSION


x = Bit is unknown

	MOVLW 0xF1 MOVWF ADCON0	;configure A/D
	BSF ADCON0, 1	;start conversion
		;setup for read of
		;channel 1
loop0	BTFSC ADCON0,	l;wait for `DONE'
-	GOTO loop0	
	MOVF ADRES, W	;read result
	MOVWF result0	;save result
	BSF ADCON0, 1	;start conversion
	BSF ADCON0, 3	;setup for read of
	BCF ADCON0, 2	;channel 2
loopl	BTFSC ADCON0,	l;wait for `DONE'
	GOTO loop1	
	MOVF ADRES, W	;read result
	MOVWF result1	;save result
	BSF ADCON0, 1	<pre>istart conversion</pre>
loop2	BTFSC ADCON0,	l;wait for `DONE'
	GOTO loop2	
	MOVF ADRES, W	;read result
		;save result
		;optional: returns
		cal mode and turns off
	;the ADC modul	Le

10.1 Comparator Operation

A single comparator is shown in Figure 10-2 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. The shaded area of the output of the comparator in Figure 10-2 represent the uncertainty due to input offsets and response time. See Table 15-2 for Common Mode Voltage.

FIGURE 10-2: SINGLE COMPARATOR

10.2 Comparator Reference

An internal reference signal may be used depending on the comparator operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (see Figure 10-2). Please see Section 11.0 "Comparator Voltage Reference Module" for internal reference specifications.

10.3 Comparator Response Time

Response time is the minimum time after selecting a new reference voltage or input source before the comparator output is to have a valid level. If the comparator inputs are changed, a delay must be used to allow the comparator to settle to its new state. Please see Table 15-7 for comparator response time specifications.

10.4 Comparator Output

The comparator output is read through the CxOUT bit in the CM1CON0 or CM2CON0 register. This bit is read-only. The comparator output may also be used externally, see **Section 10.1** "Comparator Operation".

Note: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

10.5 Comparator Wake-up Flag

The Comparator Wake-up Flag bit, CWIF, in the INTCON0 register, is set whenever all of the following conditions are met:

- <u>C1WU</u> = 0 (CM1CON0<0>) or C2WU = 0 (CM2CON0<0>)
- CM1CON0 or CM2CON0 has been read to latch the last known state of the C1OUT and C2OUT bit (MOVF CM1CON0, W)
- · The output of a comparator has changed state

The wake-up flag may be cleared in software or by another device Reset.

10.6 Comparator Operation During Sleep

When the comparator is enabled it is active. To minimize power consumption while in Sleep mode, turn off the comparator before entering Sleep.

10.7 Effects of Reset

A Power-on Reset (POR) forces the CMxCON0 register to its Reset state. This forces the Comparator input pins to analog Reset mode. Device current is minimized when analog inputs are present at Reset time.

10.8 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 10-3. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

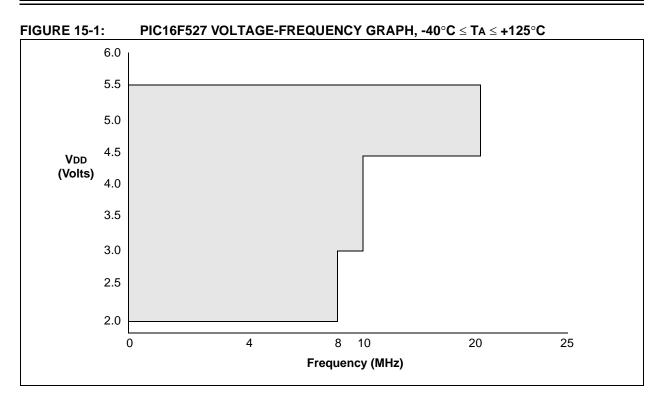
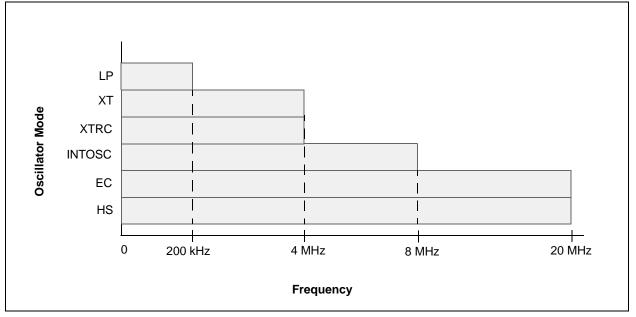



FIGURE 15-2: MAXIMUM OSCILLATOR FREQUENCY TABLE

TABLE 15-1: DC CHARACTERISTICS: PIC16F527 (INDUSTRIAL, EXTENDED) (CONTINUED)

			Standard Operating Conditions (unless otherwise specified)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)						
Param. No.	Sym.	Characteristic	Min. Typ.† Max. Units Conditions						
	Voн	Output High Voltage							
D090		I/O ports/CLKOUT	Vdd - 0.7	-	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С		
D090A			Vdd - 0.7	-	—	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С		
D092		OSC2	Vdd - 0.7	-	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С		
D092A			Vdd - 0.7	-	—	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F527 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: This spec applies to all weak pull-up devices, including the weak pull-up found on MCLR.

TABLE 15-1: DC CHARACTERISTICS: PIC16F527 (INDUSTRIAL, EXTENDED) (CONTINUED)

Param. No.	Sym.	Characteristic	Min. Typ.† Max. Units Conditions						
		Capacitive Loading Specs on Ou	tput Pins						
D100	COSC2	OSC2 pin	—	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.		
D101	CIO	All I/O pins and OSC2	_	—	50	pF			
		Flash Data Memory							
D120	ED	Byte endurance	100K	1M	_	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$		
D120A	ED	Byte endurance	10K	100K	_	E/W	$+85^{\circ}C \le TA \le +125^{\circ}C$		
D121	Vdrw	VDD for read/write	VMIN	—	5.5	V			

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F527 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: This spec applies to all weak pull-up devices, including the weak pull-up found on MCLR.

AC Characteristics			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур.†	Max.	Units	Conditions
F10	Fosc	Internal Calibrated	±1%	7.92	8.00	8.08	MHz	3.5V, 25C
	INTOSC Frequency ⁽¹⁾	INTOSC Frequency ⁽¹⁾	±2%	7.84	8.00	8.16	MHz	$\begin{array}{l} 2.5V \leq V \text{DD} \leq 5.5V \\ 0^\circ C \leq T \text{A} \leq +85^\circ C \end{array}$
			±5%	7.60	8.00	8.40	MHz	$\begin{array}{l} 2.0V \leq VDD \leq 5.5V \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (Ind.)} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (Ext.)} \end{array}$

TABLE 15-7: CALIBRATED INTERNAL RC FREQUENCIES

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 uF and 0.01 uF values in parallel are recommended.

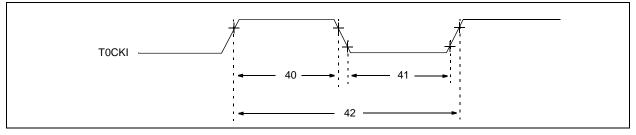
TABLE 15-9:	BOR, POR	, WATCHDOG TIMER	AND DEVICE RESET TIMER
-------------	----------	------------------	------------------------

AC Characteristics			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Sym Characteristic		Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
30	TMCL	MCLR Pulse Width (low)	2000*	_	_	ns	VDD = 5.0V	
31	Twdt	Watchdog Timer Time-out Period (no prescaler)	9* 9*	18* 18	30* 40*	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)	
32	Tdrt	Device Reset Timer Period	9* 9*	18* 18	30* 40*	ms ms	VDD = 5.0V (Industrial) VDD = 5.0V (Extended)	
34	Tioz	I/O High-impedance from MCLR	-	—	2000*	ns		
35	VBOR	Brown-out Reset Voltage	1.95	—	2.25	V	(Note 2)	
36*	VHYST	Brown-out Reset Hysteresis	_	50		mV		
37*	TBOR	Brown-out Reset Minimum Detection Period	100	—		μS	$VDD \leq VBOR$	

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

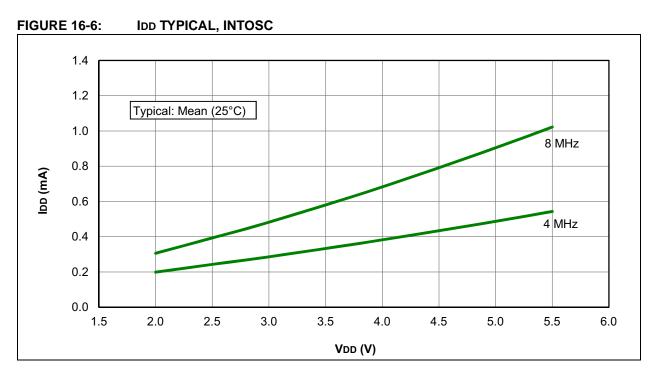

TABLE 15-10:	DRT	(DEVICE RESET TIMER PERIOD)
---------------------	-----	-----------------------------

Oscillator Configuration	POR Reset	Subsequent Resets		
IntRC, ExtRC, and EC	10 μ s (typical) + 18 ms (DRTEN = 1)	10 μ s (typical) + 18 ms (DRTEN = 1)		
XT, HS and LP	18 ms (typical)	18 ms (typical)		

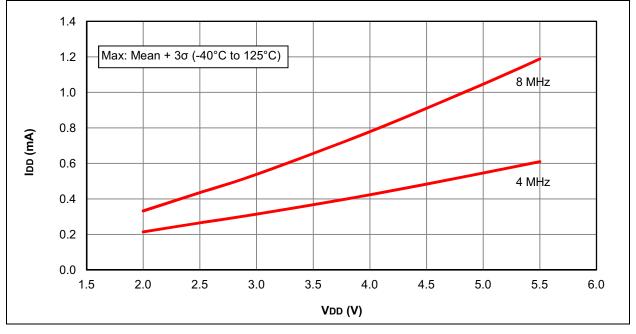
TABLE 15-11: PULL-UP RESISTOR RANGES

VDD (Volts)	Temperature (°C)	Min.	Тур.	Max.	Units
RB0-RB7	· · ·		•	•	•
2.0	-40	73K	105K	186K	Ω
	25	73K	113K	187K	Ω
	85	82K	123K	190K	Ω
	125	86K	132k	190K	Ω
5.5	-40	15K	21K	33K	Ω
	25	15K	22K	34K	Ω
	85	19K	26k	35K	Ω
	125	23K	29K	35K	Ω
MCLR					
2.0	-40	63K	81K	96K	Ω
	25	77K	93K	116K	Ω
	85	82K	96k	116K	Ω
	125	86K	100K	119K	Ω
5.5	-40	16K	20k	22K	Ω
	25	16K	21K	23K	Ω
	85	24K	25k	28K	Ω
	125	26K	27K	29K	Ω

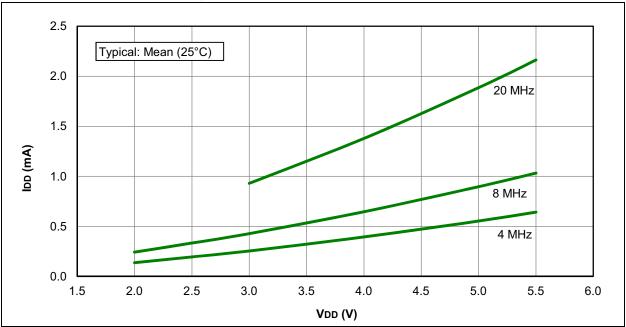
FIGURE 15-8: TIMER0 CLOCK TIMINGS

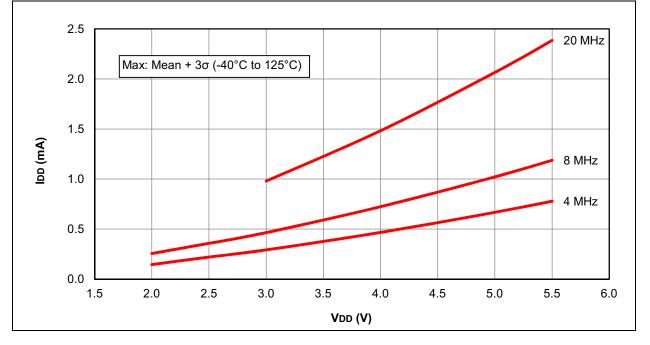

TABLE 15-12: TIMER0 CLOCK REQUIREMENTS

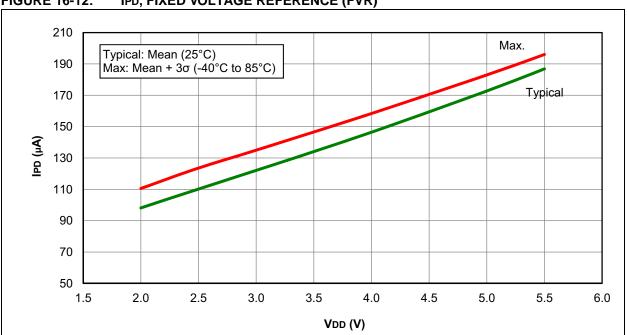
AC Characteristics			Operating Tempe Operating voltage	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Sym.	Sym. Characteristic		Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
40	Tt0H	T0CKI High Pulse	No Prescaler	0.5 TCY + 20*	—	_	ns			
		Width	With Prescaler	10*	—	_	ns			
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 TCY + 20*	—	—	ns			
			With Prescaler	10*	—	_	ns			
42	Tt0P	T0CKI Period		20 or Tcy + 40* N	—	—	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)		

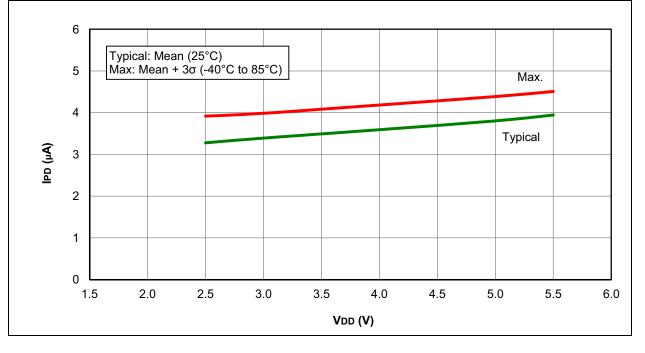

* These parameters are characterized but not tested.

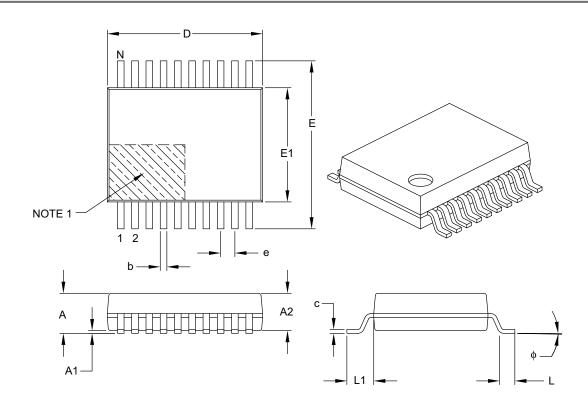
Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


PIC16F527









For the most current package drawings, please see the Microchip Packaging Specification located at

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

http://www.microchip.com/packaging

	Units	MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	20		
Pitch	е	0.65 BSC		
Overall Height	A	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	6.90	7.20	7.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B