

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l443rct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	1	2	3	4	5	6	7	8	9	10	11	12	
А	PE3	PE1	PB8	PH3/BOOT0	PD7	PD5	PB4	PB3	PA15	PA14	PA13	PA12	
в	PE4	PE2	PB9	PB7 PB6 PD6 PD4 PD3 PD1						PC12	PC10	PA11	
с	PC13	PE5	PE0	VDD	VDD PB5 PD2 PD0						VDDUSB	PA10	
D	PC14- OSC32_IN	PE6	VSS							PA9	PA8	PC9	
E	PC15- OSC32_OUT	VBAT	vss			PC8	PC7	PC6					
F	PH0-OSC_IN	VSS		-	UFBGA100								
G	PH1- OSC_OUT	VDD		_)			VDD	VDD	
н	PC0	NRST	VDD							PD15	PD14	PD13	
J	VSSA	PC1	PC2							PD12	PD11	PD10	
к	VREF-	PC3	PA2	PA5	PC4			PD9	PD8	PB15	PB14	PB13	
L	VREF+	PA0	PA3	PA6	PC5	PB2	PE8	PE10	PE12	PB10	PB11	PB12	
м	VDDA	PA1	PA4	PA7	PB0	PB1	PE7	PE9	PE11	PE13	PE14	PE15	
												MSv3	36894V

Figure 6. STM32L443Vx UFBGA100 ballout⁽¹⁾

1. The above figure shows the package top view.

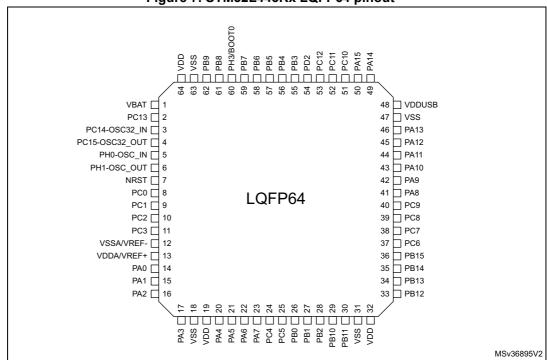


Figure 7. STM32L443Rx LQFP64 pinout⁽¹⁾

1. The above figure shows the package top view.

			Pin N	lum	ber	Tub				pinac		tions (continued) Pin functio	ns
LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
25	25	F1	G3	33	H8	51	L12	PB12	I/O	FT_I	_	TIM1_BKIN, TIM1_BKIN_COMP2, I2C2_SMBA, SPI2_NSS, USART3_CK, LPUART1_RTS_DE, TSC_G1_I01, LCD_SEG12, SWPMI1_IO, SAI1_FS_A, TIM15_BKIN, EVENTOUT	-
26	26	E2	G2	34	G8	52	K12	PB13	I/O	FT_fl	-	TIM1_CH1N, I2C2_SCL, SPI2_SCK, USART3_CTS, LPUART1_CTS, TSC_G1_IO2, LCD_SEG13, SWPMI1_TX, SAI1_SCK_A, TIM15_CH1N, EVENTOUT	-
27	27	E1	G1	35	F8	53	K11	PB14	I/O	FT_fl	-	TIM1_CH2N, I2C2_SDA, SPI2_MISO, USART3_RTS_DE, TSC_G1_IO3, LCD_SEG14, SWPMI1_RX, SAI1_MCLK_A, TIM15_CH1, EVENTOUT	-
28	28	D3	F2	36	F7	54	K10	PB15	I/O	FT_I	-	RTC_REFIN, TIM1_CH3N, SPI2_MOSI, TSC_G1_IO4, LCD_SEG15, SWPMI1_SUSPEND, SAI1_SD_A, TIM15_CH2, EVENTOUT	-
-	-	-	-	-	-	55	K9	PD8	I/O	FT_I	-	USART3_TX, LCD_SEG28, EVENTOUT	-
-	-	-	-	-	-	56	K8	PD9	I/O	FT_I	-	USART3_RX, LCD_SEG29, EVENTOUT	-
-	-	-	-	-	-	57	J12	PD10	I/O	FT_I	-	USART3_CK, TSC_G6_IO1, LCD_SEG30, EVENTOUT	-

Table 13. STM32L443xx pin definitions (continued)

	Table 14. Alternate function AF0 to AF7 (for AF8 to AF15 see Table 15) (continued)													
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7					
Po	ort	SYS_AF	TIM1/TIM2/ LPTIM1	TIM1/TIM2	USART2	12C1/12C2/12C3	SPI1/SPI2	SPI3	USART1/ USART2/ USART3					
	PD0	-	-	-	-	-	SPI2_NSS	-	-					
	PD1	-	-	-	-	-	SPI2_SCK	-	-					
	PD2	-	-	-	-	-	-	-	USART3_RTS_ DE					
	PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS					
	PD4	-	-	-	-	-	SPI2_MOSI	-	USART2_RTS_ DE					
	PD5	-	-	-	-	-	-	-	USART2_TX					
	PD6	-	-	-	-	-	-	-	USART2_RX					
Port D	PD7	-	-	-	-	-	-	-	USART2_CK					
	PD8	-	-	-	-	-	-	-	USART3_TX					
	PD9	-	-	-	-	-	-	-	USART3_RX					
	PD10	-	-	-	-	-	-	-	USART3_CK					
	PD11	-	-	-	-	-	-	-	USART3_CTS					
	PD12	-	-	-	-	-	-	-	USART3_RTS_ DE					
	PD13	-	-	-	-	-	-	-	-					
	PD14	-	-	-	-	-	-	-	-					
	PD15	-	-	-	-	-	-	-	-					
Port E	PE0	-	-	-	-	-	-	-	-					

DocID028739 Rev 2

577

69/207

STM32L443CC STM32L443RC STM32L443VC

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Po	ort	SYS_AF	TIM1/TIM2/ LPTIM1	TIM1/TIM2	USART2	12C1/12C2/12C3	SPI1/SPI2	SPI3	USART1/ USART2/ USART3
	PE1	-	-	-	-	-	-	-	-
	PE2	TRACECK	-	-	-	-	-	-	-
	PE3	TRACED0	-	-	-	-	-	-	-
	PE4	TRACED1	-	-	-	-	-	-	-
	PE5	TRACED2	-	-	-	-	-	-	-
	PE6	TRACED3	-	-	-	-	-	-	-
	PE7	-	TIM1_ETR	-	-	-	-	-	-
	PE8	-	TIM1_CH1N	-	-	-	-	-	-
Port E	PE9	-	TIM1_CH1	-	-	-	-	-	-
	PE10	-	TIM1_CH2N	-	-	-	-	-	-
	PE11	-	TIM1_CH2	-	-	-	-	-	-
	PE12	-	TIM1_CH3N	-	-	-	SPI1_NSS	-	-
	PE13	-	TIM1_CH3	-	-	-	SPI1_SCK	-	-
	PE14	-	TIM1_CH4	TIM1_BKIN2	TIM1_BKIN2_ COMP2	-	SPI1_MISO	-	-
	PE15	-	TIM1_BKIN	-	TIM1_BKIN_ COMP1	-	SPI1_MOSI	-	-
	PH0	-	-	-	-	-	-	-	-
Port H	PH1	-	-	-	-	-	-	-	-
	PH3	_	-	-	_	_	-	-	_

Pinouts and pin description

STM32L443CC STM32L443RC STM32L443VC

DocID028739 Rev 2

5

70/207

Symbol	Parameter	Conditions	Min	Мах	Unit
	Ambient temperature for the	Maximum power dissipation	-40	85	
	suffix 6 version	Low-power dissipation ⁽⁵⁾	-40	105	
Та	Ambient temperature for the	Maximum power dissipation	-40	105	°C
IA	suffix 7 version	Low-power dissipation ⁽⁵⁾	-40	125	
	Ambient temperature for the	Maximum power dissipation	-40	125	
	suffix 3 version	Low-power dissipation ⁽⁵⁾	-40	130	
		Suffix 6 version	-40	105	
Τ _J	Junction temperature range	Suffix 7 version	-40	125	°C
		Suffix 3 version	ower dissipation -40 85dissipation ⁽⁵⁾ -40 105ower dissipation -40 105dissipation ⁽⁵⁾ -40 125ower dissipation -40 125ower dissipation ⁽⁵⁾ -40 130dissipation ⁽⁵⁾ -40 105dissipation -40 125	130	

1. When RESET is released functionality is guaranteed down to $V_{BOR0}\,\text{Min}.$

2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between MIN(V_{DD} , V_{DDA} , V_{DDUSB} , V_{LCD})+3.6 V and 5.5V.

3. For operation with voltage higher than Min (V_{DD}, V_{DDA}, V_{DDUSB}, V_{LCD}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.

4. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.9: Thermal characteristics).

 In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.9: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 21* are derived from tests performed under the ambient temperature condition summarized in *Table 20*.

Symbol	Parameter	Conditions	Min	Мах	Unit
t _{VDD}	V _{DD} rise time rate		0	8	
	V _{DD} fall time rate	-	10	∞	μs/V
+	V _{DDA} rise time rate		0	∞	
t _{VDDA}	V _{DDA} fall time rate	-	10	8	
+	V _{DDUSB} rise time rate		0	∞	
^t VDDUSB	V _{DDUSB} fall time rate	-	10	∞	

Table 21. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 22* are derived from tests performed under the ambient temperature conditions summarized in *Table 20: General operating conditions*.

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit	
V	V _{DDA} peripheral voltage	Rising edge	1.61	1.65	1.69	V	
V _{PVM3}	monitoring	Falling edge	1.6	1.64	1.68	v	
V _{PVM4}	V _{DDA} peripheral voltage	Rising edge	1.78	1.82	1.86	V	
	monitoring	Falling edge	1.77	1.81	1.85	v	
V _{hyst_PVM3}	PVM3 hysteresis	-	-	10	-	mV	
V _{hyst_PVM4}	PVM4 hysteresis	-	-	10	-	mV	
I _{DD} (PVM1) (2)	PVM1 consumption from V_{DD}	-	-	0.2	-	μA	
I _{DD} (PVM3/PVM4) (2)	PVM3 and PVM4 consumption from V _{DD}	-	-	2	-	μA	

 Table 22. Embedded reset and power control block characteristics (continued)

1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

2. Guaranteed by design.

3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.

			Conditio	ns	ТҮР		ТҮР					
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit				
			Hz	Reduced code ⁽¹⁾	2.66		102					
			Range 2 _{LK} = 26 MHz	Coremark	2.44		94					
I _{DD} (Run)		f _{HCLK} = f _{HSE} up to	inge = 2(Dhrystone 2.1	2.46	mA	95	µA/MHz				
	Supply current in Run mode	48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable	Ra	Fibonacci	2.27		87					
				While(1)	2.20		84.6					
			Range 1 _{:LK} = 80 MHz	Reduced code ⁽¹⁾	8.56	mA	107	µA/MHz				
				Coremark	8.00		100					
				Dhrystone 2.1	7.98		100					
			Ra fhclk	Fibonacci	7.41		93					
			fHc	While(1)	7.83		98					
				Reduced code ⁽¹⁾	310		155					
	Supply	f _f _0.MI	1-	Coremark	342		171					
I _{DD} (LPRun)	current in Low-power	f _{HCLK} = f _{MSI} = 2 MI all peripherals disa		Dhrystone 2.1	324	μA	162	µA/MHz				
	run			Fibonacci	324		162					
				While(1)	384		192					

Table 28. Typical current consumption in Run and Low-power run modes, with different codesrunning from Flash, ART disable

1. Reduced code used for characterization results provided in *Table 24, Table 25, Table 26.*

Table 29. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1

			Conditio	ons	ТҮР		ТҮР	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
		f _{HCLK} = f _{HSE} up to	2 MHz	Reduced code ⁽¹⁾	2.42		93	
I _{DD} (Run)			≥ S	Coremark	2.18		84	
			ange = 2(Dhrystone 2.1	2.40	mA	92	µA/MHz
	Supply current in Run mode	48 MHz included,	luded, 한 또 Fibonacci 2.40 de While(1) 2.29		92			
		bypass mode PLL ON above			88			
		48 MHz all peripherals disable	e 1 0 MHz	Reduced code ⁽¹⁾	8.63		108	µA/MHz
				Coremark	7.76	mA	97	
			Range 1 _{LK} = 80 I	Dhrystone 2.1	8.55		107	
			Ra f _{HCLK} ⁼	Fibonacci	8.56		107	
			рн	While(1)	8.12		102	
				Reduced code ⁽¹⁾	205		103	
	Supply	6 _6 _0.MI	-	Coremark	188		94	
I _{DD} (LPRun)	current in Low-power run	f _{HCLK} = f _{MSI} = 2 MH all peripherals disa		Dhrystone 2.1	222	μA	111	µA/MHz
			~.~	Fibonacci	204		102]
				While(1)	211		106	

1. Reduced code used for characterization results provided in Table 24, Table 25, Table 26.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 44*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	bol Parameter Conditions ⁽²⁾ Min Ty					Unit
Gymbol		Conditions		-	Max	
f _{OSC_IN}	Oscillator frequency	-	4	8	48	MHz
R_F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	5.5	
I _{DD(HSE)}		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.44	-	
	HSE current consumption	V _{DD} = 3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.45	-	
		V _{DD} = 3 V, Rm = 30 Ω, CL = 5 pF@48 MHz	-	0.68	-	mA
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@48 MHz	-	0.94	-	
		V _{DD} = 3 V, Rm = 30 Ω, CL = 20 pF@48 MHz	-	1.77	-	
G _m	Maximum critical crystal transconductance	Startup	-	-	1.5	mA/V
$t_{\rm SU(HSE)}^{(4)}$	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 44. HSE oscillator characteristics ⁽¹⁾	Table 44.	HSE os	cillator	characteristics ⁽¹⁾
---	-----------	--------	----------	--------------------------------

1. Guaranteed by design.

2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 21*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

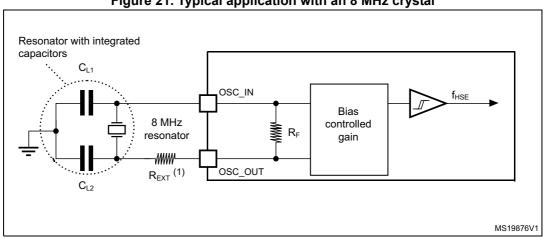


Figure 21. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 45*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit
I _{DD(LSE)}		LSEDRV[1:0] = 00 Low drive capability	-	250	-	
	LSE ourrent consumption	LSEDRV[1:0] = 01 Medium low drive capability	-	315	-	nA
	LSE current consumption	LSEDRV[1:0] = 10 Medium high drive capability	-	500	-	
		LSEDRV[1:0] = 11 High drive capability	-	630	-	
	Maximum critical crystal gm	LSEDRV[1:0] = 00 Low drive capability	-	-	0.5	
Gm		LSEDRV[1:0] = 01 Medium low drive capability	-	-	0.75	
Gm _{critmax}		LSEDRV[1:0] = 10 Medium high drive capability	-	-	1.7	- μΑ/V
		LSEDRV[1:0] = 11 High drive capability	-	-	2.7	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	s

Table 45. LSE oscillator characteristics	s (f _{LSE} = 32.768 kHz) ⁽¹⁾
--	--

6.3.10 Flash memory characteristics

Table 51. Flash memory characteristics									
Symbol	Parameter	Conditions	Тур	Max	Unit				
t _{prog}	64-bit programming time	-	81.69	90.76	μs				
+	one row (32 double	normal programming	2.61	2.90					
t _{prog_row}	word) programming time	fast programming	1.91	2.12					
+	one page (2 Kbyte)	normal programming	20.91	23.24	ms				
t _{prog_page}	programming time	fast programming	15.29	16.98					
t _{ERASE}	Page (2 KB) erase time	-	22.02	24.47					
+	one bank (512 Kbyte) programming time	normal programming	5.35	5.95	s				
t _{prog_bank}		fast programming	3.91	4.35	5				
t _{ME}	Mass erase time (one or two banks)	-	22.13	24.59	ms				
	Average consumption	Write mode	3.4	-					
	from V _{DD}	Erase mode	3.4	-	mA				
I _{DD}	Maximum aurrant (naak)	Write mode	7 (for 2 µs)	-					
	Maximum current (peak)	Erase mode	7 (for 41 µs)	-					

Table 51. Flash memory characteristics⁽¹⁾

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycles
	Data retention	1 kcycle ⁽²⁾ at T _A = 85 °C	30	
		1 kcycle ⁽²⁾ at T _A = 105 °C	15	
+		1 kcycle ⁽²⁾ at T _A = 125 °C	7	Years
t _{RET}		10 kcycles ⁽²⁾ at T _A = 55 °C	30	rears
		10 kcycles ⁽²⁾ at T _A = 85 °C	15	
		10 kcycles ⁽²⁾ at T _A = 105 °C	10	

Table 52. Flash memory endurance and data retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{HCLK}]	Unit
			inequency build	8 MHz/ 80 MHz	
		V _{DD} = 3.6 V, T _A = 25 °C, LQFP100 package compliant with IEC 61967-2	0.1 MHz to 30 MHz	-8	
			30 MHz to 130 MHz	2	dBµV
S _{EMI}	Peak level		130 MHz to 1 GHz	5	υБμν
			1 GHz to 2 GHz	8	
			EMI Level	2.5	-

Table 54. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Symbol	Ratings Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \degree C$, conforming to ANSI/ESDA/JEDEC JS-001	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 $ °C, conforming to ANSI/ESD STM5.3.1	C3	250	v

1. Guaranteed by characterization results.

Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	5	
ET	Total unadjusted		ended	Slow channel (max speed)	-	4	5	
	error		Differential	Fast channel (max speed)	-	3.5	4.5	
			Dillerential	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	1	2.5	
EO	Offset		ended	Slow channel (max speed)	-	1	2.5	
LO	error		Differential	Fast channel (max speed)	-	1.5	2.5	
			Dillerential	Slow channel (max speed)	-	1.5	2.5	
			Single	Fast channel (max speed)	-	2.5	4.5	
EG	Gain error		ended	Slow channel (max speed)	-	2.5	4.5	LSB
EG	Gainenoi		Differential	Fast channel (max speed)	-	2.5	3.5	LOD
			Differential	Slow channel (max speed)	-	2.5	3.5	-
		ferential earity or ADC clock frequency ≤	Single ended	Fast channel (max speed)	-	1	1.5	
ED	Differential			Slow channel (max speed)	-	1	1.5	
	error		Differential	Fast channel (max speed)	-	1	1.2	
				Slow channel (max speed)	-	1	1.2	
		$V_{DDA} = VREF + = 3 V,$ TA = 25 °C	Single ended	Fast channel (max speed)	-	1.5	2.5	-
EL	Integral			Slow channel (max speed)	-	1.5	2.5	
EL	error		Differential	Fast channel (max speed)	-	1	2	
				Slow channel (max speed)	-	1	2	
			Single	Fast channel (max speed)	10.4	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10.4	10.5	-	bits
ENOD	bits		Differential	Fast channel (max speed)	10.8	10.9	-	DILS
			Dillerential	Slow channel (max speed)	10.8	10.9	-	
	Signal to		Single	Fast channel (max speed)	64.4	65	-	
SINAD	Signal-to- noise and		ended	Slow channel (max speed)	64.4	65	-	
distortion ratio		Differential	Fast channel (max speed)	66.8	67.4	-		
	1400		Differential	Slow channel (max speed)	66.8	67.4	-	ЧD
			Single	Fast channel (max speed)	65	66	-	dB
SNR	Signal-to-		ended	Slow channel (max speed)	65	66	-	
SINK	noise ratio		Differential	Fast channel (max speed)	67	68	-	
			Differential	Slow channel (max speed)	67	68	-	

Table 65. ADC accuracy - limited test conditions 1⁽¹⁾⁽²⁾⁽³⁾

	Table 67. Abc accuracy - Innited test conditions 5. A A (continued)									
Sym- bol	Parameter	C	Min	Тур	Max	Unit				
		80 MHz, I Sampling rate ≤ 5.33 Msps, – nonic 1.65 V ≤ V== - = V=== - ≤	Single	Fast channel (max speed)	-	-69	-67			
	Total		ended	Slow channel (max speed)	-	-71	-67			
THD	harmonic distortion			Fast channel (max speed)	-	-72	-71	dB		
		3.6 V, Voltage scaling Range 1	Differential	Slow channel (max speed)	-	-72	-71			

Table 67. ADC accuracy - limited test conditions $3^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.

^{4.} The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
I _{DDA} (VREF BUF)	from Vpp	I _{load} = 0 μA	-	16	25		
		I _{load} = 500 μA	-	18	30	μA	
		I _{load} = 4 mA	-	35	50		

Table 71. VREFBUF characteristics⁽¹⁾ (continued)

1. Guaranteed by design, unless otherwise specified.

 In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which will follow (V_{DDA} drop voltage).

3. Guaranteed by test in production.

4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.

5. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the V_{DDA} voltage should be in the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for V_{RS} = 0 and V_{RS} = 1.

6.3.20 Comparator characteristics

Symbol	Parameter	Co	onditions	Min	Тур	Мах	Unit	
V _{DDA}	Analog supply voltage		-	1.62	-	3.6		
V _{IN}	Comparator input voltage range	-		0	-	V _{DDA}	V	
$V_{BG}^{(2)}$	Scaler input voltage		-		V _{REFINT}	-		
V _{SC}	Scaler offset voltage		-	-	±5	±10	mV	
	Scaler static consumption	BRG_EN=0 (bi	ridge disable)	-	200	300	nA	
I _{DDA} (SCALER)	from V _{DDA}	BRG_EN=1 (bi	ridge enable)	-	0.8	1	μA	
t _{START_SCALER}	Scaler startup time		-	-	100	200	μs	
		High-speed	V _{DDA} ≥ 2.7 V	-	-	5		
	Comparator startup time to	mode	V _{DDA} < 2.7 V	-	-	7		
t _{START}	reach propagation delay	Medium mode	V _{DDA} ≥ 2.7 V	-	-	15	μs	
	specification	medium mode	V _{DDA} < 2.7 V	-	-	25		
		Ultra-low-power mode		-	-	40		
	Propagation delay with 100 mV overdrive	High-speed mode	V _{DDA} ≥ 2.7 V	-	55	80	ns	
t _D (3)			V _{DDA} < 2.7 V	-	65	100		
^L D(*)		Medium mode		-	0.55	0.9		
		Ultra-low-powe	Ultra-low-power mode		4	7	μs	
V _{offset}	Comparator offset error	Full common		-	±5	±20	mV	
		No hysteresis		-	0	-		
M		Low hysteresis	i .	-	8	-	-	
V _{hys}	Comparator hysteresis	Medium hysteresis		-	15	-	mV	
		High hysteresis		-	27	-		
			Static	-	400	600	nA	
		Ultra-low- power mode	With 50 kHz ±100 mV overdrive square signal	-	1200	-		
I _{DDA} (COMP)			Static	-	5	7		
	Comparator consumption from V _{DDA}	Medium mode	With 50 kHz ±100 mV overdrive square signal	-	6	-		
			Static	-	70	100	μA	
		High-speed mode	With 50 kHz ±100 mV overdrive square signal	-	75	-	<u> </u>	

Table 72. COMP characteristics

1. Guaranteed by design, unless otherwise specified.

6.3.22 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{TS} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽²⁾	Average slope	2.3	2.5	2.7	mV/°C
V ₃₀	Voltage at 30°C (±5 °C) ⁽³⁾	0.742	0.76	0.785	V
t _{START} (TS_BUF) ⁽¹⁾	Sensor Buffer Start-up time in continuous mode ⁽⁴⁾	-	8	15	μs
t _{START} ⁽¹⁾	Start-up time when entering in continuous mode ⁽⁴⁾	-	70	120	μs
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	5	-	-	μs
I _{DD} (TS) ⁽¹⁾	Temperature sensor consumption from $V_{DD},$ when selected by ADC	-	4.7	7	μA

Table 74. TS characteristics

1. Guaranteed by design.

2. Guaranteed by characterization results.

3. Measured at V_{DDA} = 3.0 V ±10 mV. The V_{30} ADC conversion result is stored in the TS_CAL1 byte. Refer to *Table 6: Temperature sensor calibration values*.

4. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

6.3.23 V_{BAT} monitoring characteristics

Table 75. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	39	-	kΩ
Q	Ratio on V _{BAT} measurement	-	3	-	-
Er ⁽¹⁾	Error on Q	-10	-	10	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading the VBAT	12	-	-	μs

1. Guaranteed by design.

Table 76. V_{BAT} charging characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	Battery	VBRS = 0	-	5	-	
R _{BC}	charging resistor	VBRS = 1	-	1.5	-	kΩ

Г

Т

Т

Т

SPI characteristics

Unless otherwise specified, the parameters given in *Table 82* for SPI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 20: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		Master mode receiver/full duplex 2.7 < V_{DD} < 3.6 V Voltage Range 1			40		
		Master mode receiver/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			16		
		Master mode transmitter 1.71 < V _{DD} < 3.6 V Voltage Range 1			40		
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode receiver 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	-	-	40	MHz
		Slave mode transmitter/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1	ull duplex		37 ⁽²⁾		
		Slave mode transmitter/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			20 ⁽²⁾		
		Voltage Range 2			13		
t _{su(NSS)}	NSS setup time	Slave mode, SPI prescaler = 2	4 _x T _{PCLK}	-	-	ns	
t _{h(NSS)}	NSS hold time	Slave mode, SPI prescaler = 2	2 _x T _{PCLK}	-	-	ns	
$\begin{array}{c}t_{w(SCKH)}\\t_{w(SCKL)}\end{array}$	SCK high and low time	Master mode	T _{PCLK} -2	T _{PCLK}	T _{PCLK} +2	ns	
t _{su(MI)}	Data input setup time	Master mode	4	-	-	ns	
t _{su(SI)}		Slave mode	1.5	-	-	115	
t _{h(MI)}	Data input hold time	Master mode		-	-	ns	
t _{h(SI)}		Slave mode	1.5	-	-	115	
t _{a(SO)}	Data output access time	Slave mode	9	-	36	ns	
t _{dis(SO)}	Data output disable time	Slave mode	9	-	16	ns	

Table	82.	SPI	characteristics	(1)
-------	-----	-----	-----------------	-----

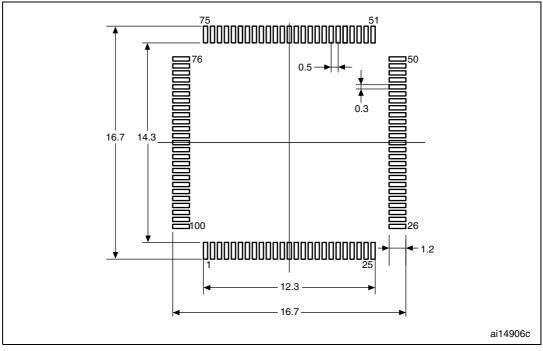


Figure 42. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

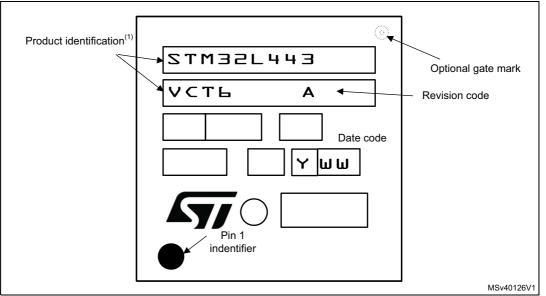
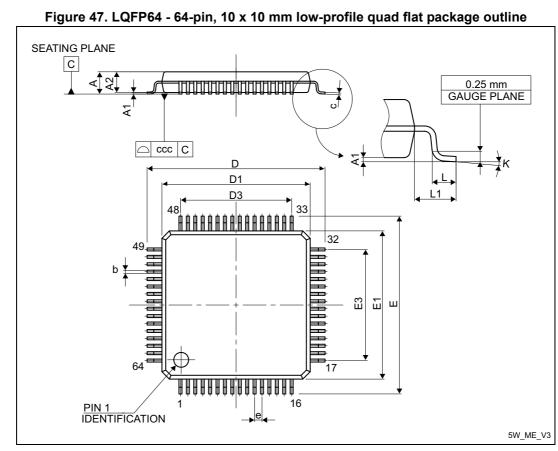



Figure 43. LQFP100 marking (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering

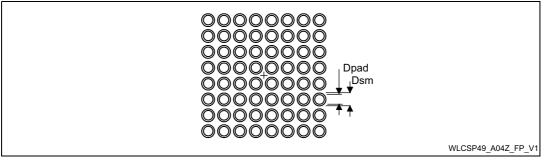
7.3 LQFP64 package information

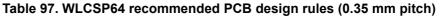
1. Drawing is not to scale.

Table 93. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data

Symbol	millimeters				inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

Symbol	millimeters				inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Мах
b ⁽³⁾	0.190	0.220	0.250	0.0075	0.0087	0.0098
D	3.106	3.141	3.176	0.1223	0.1237	0.1250
E	3.092	3.127	3.162	0.1217	0.1231	0.1245
е	-	0.350	-	-	0.0138	-
e1	-	2.450	-	-	0.0965	-
e2	-	2.450	-	-	0.0965	-
F	-	0.3455	-	-	0.0136	-
G	-	0.3385	-	-	0.0133	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
CCC	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020


Table 96. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale package mechanical data (continued)


1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 54. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale package recommended footprint

Dimension	Recommended values
Pitch	0.35 mm
Dpad	0.210 mm
Dsm	0.275 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.235 mm
Stencil thickness	0.100 mm

DocID028739 Rev 2