

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l443rct6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	STM32L443xx block diagram	. 16
Figure 2.	Power supply overview	. 21
Figure 3.	Clock tree	. 31
Figure 4.	Voltage reference buffer	. 36
Figure 5.	STM32L443Vx LQFP100 pinout ⁽¹⁾	. 51
Figure 6.	STM32L443Vx UFBGA100 ballout ⁽¹⁾	. 52
Figure 7.	STM32L443Rx LQFP64 pinout ⁽¹⁾	. 52
Figure 8.	STM32L443Rx UFBGA64 ballout ⁽¹⁾	. 53
Figure 9.	STM32L443Rx WLCSP64 pinout ⁽¹⁾	. 53
Figure 10.	STM32L443Cx WLCSP49 pinout ⁽¹⁾	. 53
Figure 11.	STM32L443Cx LQFP48 pinout ⁽¹⁾	. 54
Figure 12.	STM32L443Cx UFQFPN48 pinout ⁽¹⁾	. 54
Figure 13.	STM32L443xx memory map	. 77
Figure 14.	Pin loading conditions	. 81
Figure 15.	Pin input voltage	. 81
Figure 16.	Power supply scheme	. 82
Figure 17.	Current consumption measurement scheme	. 83
Figure 18.	VREFINT versus temperature	. 90
Figure 19.	High-speed external clock source AC timing diagram	114
Figure 20.	Low-speed external clock source AC timing diagram	115
Figure 21.	Typical application with an 8 MHz crystal	117
Figure 22.	Typical application with a 32.768 kHz crystal	118
Figure 23.	HSI16 frequency versus temperature	120
Figure 24.	Typical current consumption versus MSI frequency	124
Figure 25.	HSI48 frequency versus temperature	125
Figure 26.	I/O input characteristics	132
Figure 27.	I/O AC characteristics definition ⁽¹⁾	137
Figure 28.	Recommended NRST pin protection	138
Figure 29.	ADC accuracy characteristics	151
Figure 30.	Typical connection diagram using the ADC	151
Figure 31.	12-bit buffered / non-buffered DAC.	154
Figure 32.	SPI timing diagram - slave mode and CPHA = 0	167
Figure 33.	SPI timing diagram - slave mode and CPHA = 1	168
Figure 34.	SPI timing diagram - master mode	168
Figure 35.	Quad SPI timing diagram - SDR mode	171
Figure 36.	Quad SPI timing diagram - DDR mode	171
Figure 37.	SAI master timing waveforms	173
Figure 38.	SAI slave timing waveforms	174
Figure 39.	SDIO high-speed mode	175
Figure 40.	SD default mode	176
Figure 41.	LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline	178
Figure 42.	LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat	
	recommended footprint	180
Figure 43.	LQFP100 marking (package top view)	180
Figure 44.	UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array	
	package outline	181
Figure 45.	UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array	
	package recommended footprint	182

Table 1. STM32L443xx fami	y device features and	peripheral counts	(continued)
---------------------------	-----------------------	-------------------	-------------

Peripheral	STM32L443Vx	STM32L443Rx	STM32L443Cx
Max. CPU frequency		80 MHz	
Operating voltage		1.71 to 3.6 V	
Operating temperature	Ambient operating temperature: -40 to 85 °C / -40 to 105 °C / -40 to 125 °C Junction temperature: -40 to 105 °C / -40 to 125 °C / -40 to 130 °C		
Packages	LQFP100 UFBGA100	WLCSP64 LQFP64 UFBGA64	WLCSP49 LQFP48 UFQFPN48

1. For WLCSP49 package.

	Table 14. Alternate function AF0 to AF7 (for AF8 to AF15 see <i>Table 15</i>) (continued)										
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7		
Port		SYS_AF	TIM1/TIM2/ LPTIM1	TIM1/TIM2	USART2	12C1/12C2/12C3	SPI1/SPI2	SPI3	USART1/ USART2/ USART3		
	PE1	-	-	-	-	-	-	-	-		
	PE2	TRACECK	-	-	-	-	-	-	-		
	PE3	TRACED0	-	-	-	-	-	-	-		
	PE4	TRACED1	-	-	-	-	-	-	-		
	PE5	TRACED2	-	-	-	-	-	-	-		
	PE6	TRACED3	-	-	-	-	-	-	-		
	PE7	-	TIM1_ETR	-	-	-	-	-	-		
	PE8	-	TIM1_CH1N	-	-	-	-	-	-		
Port E	PE9	-	TIM1_CH1	-	-	-	-	-	-		
	PE10	-	TIM1_CH2N	-	-	-	-	-	-		
	PE11	-	TIM1_CH2	-	-	-	-	-	-		
	PE12	-	TIM1_CH3N	-	-	-	SPI1_NSS	-	-		
	PE13	-	TIM1_CH3	-	-	-	SPI1_SCK	-	-		
	PE14	-	TIM1_CH4	TIM1_BKIN2	TIM1_BKIN2_ COMP2	-	SPI1_MISO	-	-		
	PE15	-	TIM1_BKIN	-	TIM1_BKIN_ COMP1	-	SPI1_MOSI	-	-		
	PH0	-	-	-	-	-	-	-	-		
Port H	PH1	-	-	-	-	-	-	-	-		
	PH3	-	-	-	-	-	-	-	-		

Pinouts and pin description

STM32L443CC STM32L443RC STM32L443VC

DocID028739 Rev 2

5

70/207

1	1
	Q
	N
	0
	7

Table 15. Alternate function AF8 to AF15 (for AF0 to AF7 see *Table 14*) (continued)

		AF8 AF9 AF10 AF11 AF12		AF13	AF14	AF15			
Port		LPUART1	CAN1/TSC	USB/QUADSPI	LCD	SDMMC1/ COMP1/ COMP2/ SWPMI1	SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTOUT
	PH0	-	-	-	-	-	-	-	EVENTOUT
Port H	PH1	-	-	-	-	-	-	-	EVENTOUT
	PH3	-	-	-	-	-	-	-	EVENTOUT

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 17: Current consumption measurement scheme*.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted with the minimum wait states number, depending on the f_{HCLK} frequency (refer to the table "Number of wait states according to CPU clock (HCLK) frequency" available in the RM0394 reference manual).
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in *Table 24* to *Table 37* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

Symbol	Parameter	Conditions			Max	Unit
		Pango 1	Wakeup clock MSI = 48 MHz	8.02	9.24	
	Wake up time from Stop 2	Range	Wakeup clock HSI16 = 16 MHz	7.66	8.95	
	mode to Run mode in		Wakeup clock MSI = 24 MHz	8.5	9.54	
	Flash	Range 2	Wakeup clock HSI16 = 16 MHz	7.75	8.95	
+			Wakeup clock MSI = 4 MHz	12.06	13.16	
^I WUSTOP2		Banga 1	Wakeup clock MSI = 48 MHz	5.45	6.79	μs
	Wake up time from Stop 2 mode to Run mode in SRAM1	Range	Wakeup clock HSI16 = 16 MHz	6.9	7.98	
		Range 2	Wakeup clock MSI = 24 MHz	6.3	7.36	
			Wakeup clock HSI16 = 16 MHz	6.9	7.9	
			Wakeup clock MSI = 4 MHz	13.1	13.31	
+	Wakeup time from Standby	Dance 1	Wakeup clock MSI = 8 MHz	12.2	18.35	
^L WUSTBY	mode to Run mode	Range	Wakeup clock MSI = 4 MHz	19.14	25.8	μs
t _{WUSTBY}	Wakeup time from Standby	Banga 1	Wakeup clock MSI = 8 MHz	12.1	18.3	
SRAM2	with SRAM2 to Run mode	Range	Wakeup clock MSI = 4 MHz	19.2	25.87	μs
t _{WUSHDN}	Wakeup time from Shutdown mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	261.5	315.7	μs

 Table 39. Low-power mode wakeup timings⁽¹⁾ (continued)

1. Guaranteed by characterization results.

Table 40. Regulator modes transition times⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{wulprun}	Wakeup time from Low-power run mode to Run mode ⁽²⁾	Code run with MSI 2 MHz	5	7	
t _{VOST}	Regulator transition time from Range 2 to Range 1 or Range 1 to Range 2 ⁽³⁾	Code run with MSI 24 MHz	20	40	μs

1. Guaranteed by characterization results.

2. Time until REGLPF flag is cleared in PWR_SR2.

3. Time until VOSF flag is cleared in PWR_SR2.

Table 41. Wakeup time using USART/LPUART⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
	Wakeup time needed to calculate the	Stop mode 0	-	1.7	
t _{WUUSART} t _{WULPUART}	allowing to wakeup up from stop mode when USART/LPUART clock source is HSI	Stop mode 1/2	-	8.5	μs

1. Guaranteed by design.

Figure 23. HSI16 frequency versus temperature

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table	56.	Electrical	sensitivities
IUNIC	vv .	LICCUITCUI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	Ш

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in *Table* 57.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Symbol	Description	Func susce	Unit	
Symbol	Description	Negative injection	Positive injection	onit
I _{INJ}	Injected current on all pins except PA4, PA5, PE8, PE9, PE10, PE11, PE12	-5	NA	_
	Injected current on PE8, PE9, PE10, PE11, PE12	-0	NA	mA
	Injected current on PA4, PA5 pins	-5	0	

Table 57. I/O current injection susceptibility⁽¹⁾

1. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Min Typ		Мах	Unit	
	Triagon conversion	CKMODE = 00	1.5	2	2.5		
t _{latr}	latency Regular and	CKMODE = 01	-	-	2.0	1/f _{ADC}	
	injected channels without	CKMODE = 10	-	-	2.25		
	conversion abort	CKMODE = 11	-	-	2.125		
	Trianan anna air a	CKMODE = 00	2.5	3	3.5		
	latency Injected channels	CKMODE = 01	-	-	3.0	A 15	
^L ATRINJ	aborting a regular	CKMODE = 10	-	-	3.25	1/1ADC	
	conversion	CKMODE = 11	-	_	3.125		
+	Compling time	f _{ADC} = 80 MHz	0.03125	-	8.00625	μs	
ι _s	Sampling time	-	2.5	-	640.5	1/f _{ADC}	
t _{ADCVREG_STUP}	ADC voltage regulator start-up time	-	-	-	20	μs	
	T-4-1	f _{ADC} = 80 MHz Resolution = 12 bits	0.1875	-	8.1625	μs	
t _{CONV}	(including sampling time)	Resolution = 12 bits	ts + 12.5 cycles for successive approximation = 15 to 653			1/f _{ADC}	
		fs = 5 Msps	-	730	830		
I _{DDA} (ADC)	ADC consumption from	fs = 1 Msps	-	160	220	μA	
		fs = 10 ksps	-	16	50		
	ADC consumption from	fs = 5 Msps	-	130	160		
I _{DDV_S} (ADC)	the V _{REF+} single ended	fs = 1 Msps	-	30	40	μA	
	mode	fs = 10 ksps	-	0.6	2		
	ADC consumption from	fs = 5 Msps	-	260	310		
I _{DDV_D} (ADC)	the V _{REF+} differential	fs = 1 Msps	-	60	70	μA	
_	mode	fs = 10 ksps	-	1.3	3		

Table 63. ADC characteristics ⁽¹⁾ (2)	(continued)
--	-------------

1. Guaranteed by design

2. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when V_{DDA} \geq 2.4 V.

3. V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA} , depending on the package. Refer to Section 4: Pinouts and pin description for further details.

Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	5	5.4	
ст	Total		ended	Slow channel (max speed)	-	4	5	
	error		Differential	Fast channel (max speed)	-	4	5	
			Differential	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	2	4	
FO	Offset		ended	Slow channel (max speed)	-	2	4	
	error		Differential	Fast channel (max speed)	-	2	3.5	
			Dillerential	Slow channel (max speed)	-	2	3.5	
			Single	Fast channel (max speed)	-	4	4.5	
FG	Gain error		ended	Slow channel (max speed)	-	4	4.5	ISB
EG Gain error	Gainento		Differential	Fast channel (max speed)	-	3	4	LOD
	-	Differential	Slow channel (max speed)	-	3	4		
		Single	Fast channel (max speed)	-	1	1.5		
ED linearity error	Differential	tial ADC clock frequency \leq 26 MHz, 1.65 V \leq V _{DDA} = VREF+ \leq 3.6 V,	ended	Slow channel (max speed)	-	1	1.5	
	error		Differential Single	Fast channel (max speed)	-	1	1.2	
				Slow channel (max speed)	-	1	1.2	
				Fast channel (max speed)	-	2.5	3	
Integral		Voltage scaling Range 2	ended	Slow channel (max speed)	-	2.5	3	
EL	error		Differential	Fast channel (max speed)	-	2	2.5	-
				Slow channel (max speed)	-	2	2.5	
			Single	Fast channel (max speed)	10.2	10.5	-	
	Effective		ended	Slow channel (max speed)	10.2	10.5	-	bite
LINOD	bits			Fast channel (max speed)	10.6	10.7	-	DILS
			Differential	Slow channel (max speed)	10.6	10.7	-	
	Signal to		Single	Fast channel (max speed)	63	65	-	
	noise and		ended	Slow channel (max speed)	63	65	-	
SINAD	distortion		Differential	Fast channel (max speed)	65	66	-	
	1010		Differential	Slow channel (max speed)	65	66	-	
			Single	Fast channel (max speed)	64	65	-	uВ
SND	Signal-to-		ended	Slow channel (max speed)	64	65	-	
SINK	noise ratio		Differential	Fast channel (max speed)	66	67	-	
			Differential	Slow channel (max speed)	66	67	-	

Table 68. ADC accuracy - limited test conditions $4^{(1)(2)(3)}$

Symbol	Parameter	Co	Min	Тур	Мах	Unit	
		DAC_OUT	DAC output buffer ON, C _{SH} = 100 nF	-	0.7	3.5	
	Sampling time in sample and hold mode (code transition between the	pin connected	DAC output buffer OFF, C _{SH} = 100 nF	-	10.5	18	ms
t _{SAMP}	lowest input code and the highest input code when DACOUT reaches final value ±1LSB)	DAC_OUT pin not connected (internal connection only)	DAC output buffer OFF	-	2	3.5	μs
I _{leak}	Output leakage current	Sample and ho DAC_OUT pin	old mode, connected	-	-	_(3)	nA
Cl _{int}	Internal sample and hold capacitor		5.2	7	8.8	pF	
t _{TRIM}	Middle code offset trim time	DAC output buffer ON		50	-	-	μs
V a	Middle code offset for 1	V _{REF+} = 3.6 V V _{REF+} = 1.8 V		-	1500	-	цV
voffset	trim code step			-	750	-	μv
	DAC consumption from V _{DDA}	DAC output	No load, middle code (0x800)	-	315	500	
		buffer ON	No load, worst code (0xF1C)	-	450	670	
I _{DDA} (DAC)		DAC output No load, middle - buffer OFF code (0x800)		-	0.2	μA	
		Sample and hold mode, C _{SH} = 100 nF		-	315 x Ton/(Ton +Toff) (4)	670 x Ton/(Ton +Toff) (4)	
		DAC output	No load, middle code (0x800)	-	185	240	
		buffer ON	No load, worst code (0xF1C)	-	340	400	
		DAC output buffer OFF	No load, middle code (0x800)	-	155	205	
I _{DDV} (DAC)	DAC consumption from V _{REF+}	Sample and hold mode, buffer ON, C _{SH} = 100 nF, worst case		-	185 x Ton/(Ton +Toff) (4)	400 x Ton/(Ton +Toff) (4)	μA
		Sample and ho C _{SH} = 100 nF,	_	155 x Ton/(Ton +Toff) (4)	205 x Ton/(Ton +Toff) (4)		

 Table 69. DAC characteristics⁽¹⁾ (continued)

1. Guaranteed by design.

2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

- 1. Guaranteed by design.
- 2. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected.

6.3.25 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
t	Timer resolution time	-	1	-	t _{TIMxCLK}
^r res(TIM)		f _{TIMxCLK} = 80 MHz	12.5	-	ns
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 80 MHz	0	40	MHz
Res _{TIM}	Timer resolution	TIMx (except TIM2)	-	16	bit
		TIM2	-	32	
+	16-bit counter clock	-	1	65536	t _{TIMxCLK}
COUNTER	period	f _{TIMxCLK} = 80 MHz	0.0125	819.2	μs
t	Maximum possible count	_	-	65536 × 65536	t _{TIMxCLK}
'MAX_COUNT	with 32-bit counter	f _{TIMxCLK} = 80 MHz	-	53.68	S

Table 78. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.

Table 79. IWDG IIIII/IIIax timeout periou at 52 km² (LSI)	Table 79. IWDG min/max time	∍out period at 32 kHz (LSI) ⁽	1)
---	-----------------------------	--	----

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit
/4	0	0.125	512	
/8	1	0.250	1024	
/16	2	0.500	2048	
/32	3	1.0	4096	ms
/64	4	2.0	8192	
/128	5	4.0	16384	
/256	6 or 7	8.0	32768	

1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Г

Т

Т

Т

SPI characteristics

Unless otherwise specified, the parameters given in *Table 82* for SPI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 20: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Parameter	Conditions	Min	Тур	Мах	Unit	
	Master mode receiver/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			40		
	Master mode receiver/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			16		
SPI clock frequency	Master mode transmitter 1.71 < V _{DD} < 3.6 V Voltage Range 1			40		
	Slave mode receiver 1.71 < V _{DD} < 3.6 V Voltage Range 1	-			MHz	
	Slave mode transmitter/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			37 ⁽²⁾		
	Slave mode transmitter/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			20 ⁽²⁾	_	
	Voltage Range 2			13		
NSS setup time	Slave mode, SPI prescaler = 2	4 _x T _{PCLK}	-	-	ns	
NSS hold time	Slave mode, SPI prescaler = 2	2 _x T _{PCLK}	-	-	ns	
SCK high and low time	Master mode	T _{PCLK} -2	T _{PCLK}	T _{PCLK} +2	ns	
Data input setup time	Master mode	4	-	-	ne	
	Slave mode	1.5	-	-	113	
Data input hold time	Master mode	6.5	-	-	ne	
	Slave mode	1.5	-	-	115	
Data output access time	Slave mode	9	-	36	ns	
Data output disable time	Slave mode	9	-	16	ns	
	Parameter SPI clock frequency NSS setup time NSS hold time SCK high and low time Data input setup time Data output access time Data output disable time	ParameterConditionsMaster mode receiver/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Master mode receiver/full duplex 1.71 < V_DD < 3.6 V Voltage Range 1Master mode transmitter 1.71 < V_DD < 3.6 V Voltage Range 1SPI clock frequencySlave mode transmitter 1.71 < V_DD < 3.6 V Voltage Range 1SPI clock frequencySlave mode receiver 1.71 < V_DD < 3.6 V Voltage Range 1SPI clock frequencySlave mode receiver 1.71 < V_DD < 3.6 V Voltage Range 1Save mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Slave mode, SPI prescaler = 2NSS setup timeSlave mode, SPI prescaler = 2NSS hold timeSlave mode, SPI prescaler = 2SCK high and low timeMaster modeData input setup timeSlave modeData input hold timeSlave modeData output disable timeSlave modeData output disable timeSlave mode	ParameterConditionsMinMaster mode receiver/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Master mode receiver/full duplex 1.71 < V_DD < 3.6 V Voltage Range 1Master mode receiver/full duplex 1.71 < V_DD < 3.6 V Voltage Range 1SPI clock frequencySlave mode transmitter 1.71 < V_DD < 3.6 V Voltage Range 1Slave mode receiver 1.71 < V_DD < 3.6 V Voltage Range 1Slave mode receiver 1.71 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Slave mode, SPI prescaler = 24xTPCLKNSS hold timeSlave mode, SPI prescaler = 24xTPCLK^2Data input setup time Data input hold timeMaster mode1.5Master mode1.5Data output dicest ime Data output disable timeSlave mode9Data output disable timeSlave mode9	ParameterConditionsMinTypMaster mode receiver/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Master mode receiver/full duplex 1.71 < V_DD < 3.6 V Voltage Range 1 </td <td>ParameterConditionsMinTypMaxMaster mode receiver/full duplex 2.7 < V_DD < 3.6 V Voltage Range 140Master mode receiver/full duplex 1.71 < V_DD < 3.6 V Voltage Range 116Master mode transmitter 1.71 < V_DD < 3.6 V Voltage Range 140SPI clock frequencyMaster mode transmitter 1.71 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1</td>	ParameterConditionsMinTypMaxMaster mode receiver/full duplex 2.7 < V_DD < 3.6 V Voltage Range 140Master mode receiver/full duplex 1.71 < V_DD < 3.6 V Voltage Range 116Master mode transmitter 1.71 < V_DD < 3.6 V Voltage Range 140SPI clock frequencyMaster mode transmitter 1.71 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1Slave mode transmitter/full duplex 2.7 < V_DD < 3.6 V Voltage Range 1	

Table 82. SPI characteristics ⁽¹

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 93. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 52. UFBGA64 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.6 WLCSP49 package information

Figure 56. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

Cumhal	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
с	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.500	-	-	0.2165	-	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.500	-	-	0.2165	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.080	-	-	0.0031	

Table 100. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 61. LQFP48 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.9.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Part numbering*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32L443xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax} = 175 + 272 = 447 mW

Using the values obtained in *Table 102* T_{Jmax} is calculated as follows:

For LQFP64, 46 °C/W

T_{Jmax} = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.562 °C = 102.562 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105$ °C) see Section 8: Part numbering.

In this case, parts must be ordered at least with the temperature range suffix 6 (see Part numbering).

Note: With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (46^{\circ}C/W \times 447 \text{ mW}) = 105-20.562 = 84.438^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (46^{\circ}C/W \times 447 \text{ mW}) = 125-20.562 = 104.438^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

