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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Speed Is Enhanced Two Ways
Delays in LCA-based designs are layout dependent. While
this makes it hard to predict a worst-case guaranteed
performance, there is a rule of thumb designers can
consider — the system clock rate should not exceed one
third to one half of the specified toggle rate. Critical
portions of a design, shift registers and simple counters,
can run faster — approximately two thirds of the specified
toggle rate.

The XC4000 family can run at synchronous system clock
rates of up to 60 MHz. This increase in performance over
the previous families stems from two basic improve-
ments: improved architecture and more abundant routing
resources.

Improved Architecture
More Inputs : The versatility of the CLB function genera-
tors improves system speed significantly. Table 3 shows
how the XC4000 families implement many functions more
efficiently and faster than is possible with XC3000 devices.
A 9-bit parity checker, for example, can be implemented in
one CLB with a propagation delay of 7 ns. Using a
XC3000-family device, the same function requires two
CLBs with a propagation delay of 2 x 5.5 ns = 11 ns. One
XC4000 CLB can determine whether two 4-bit words are
identical, again with a 7-ns propagation delay. The ninth
input can be used for simple ripple expansion of this
identity comparator (25.5 ns over 16 bits, 51.5 ns over
32 bits), or a 2-layer identity comparator can generate the
result of a 32-bit comparison in 15 ns, at the cost of a single
extra CLB. Simpler functions like multiplexers also benefit
from the greater flexibility of the XC4000-families CLB. A
16-input multiplexer uses 5 CLBs and has a delay of only
13.5 ns.

More Outputs:  The CLB can pass the combinatorial
output(s) to the interconnect network, but can also store
the combinatorial result(s) or other incoming data in one or
two flip-flops, and connect their outputs to the interconnect

network as well. With XC3000-families CLBs the designer
has to make a choice, either output the combinatorial
function or the stored value. In the XC4000 families, the flip
flops can be used as registers or shift registers without
blocking the function generators from performing a differ-
ent, perhaps unrelated task. This increases the functional
density of the devices.

When a function generator drives a flip-flop in a CLB, the
combinatorial propagation delay overlaps completely with
the set-up time of the flip-flop. The set-up time is specified
between the function generator inputs and the clock input.
This represents a performance advantage over competing
technologies where combinatorial delays must be added
to the flip-flop set-up time.

Fast Carry:  As described earlier, each CLB includes high-
speed carry logic that can be activated by configuration.
The two 4-input function generators can be configured as
a 2-bit adder with built-in hidden carry that can be ex-
panded to any length. This dedicated carry circuitry is so
fast and efficient that conventional speed-up methods like
carry generate/propagate are meaningless even at the
16-bit level, and of marginal benefit at the 32-bit level.

A 16-bit adder requires nine CLBs and has a combinatorial
carry delay of 20.5 ns. Compare that to the 30 CLBs and
50 ns, or 41 CLBs and 30 ns in the XC3000 family.

The fast-carry logic opens the door to many new applica-
tions involving arithmetic operation, where the previous
generations of FPGAs were not fast and/or not efficient
enough. High-speed address offset calculations in micro-
processor or graphics systems, and high-speed addition in
digital signal processing are two typical applications.

Faster and More Efficient Counters:  The XC4000-fami-
lies fast-carry logic puts two counter bits into each CLB and
runs them at a clock rate of up to 42 MHz for 16 bits,
whether the counters are loadable or not. For a 16-bit

Table 3. Density and Performance for Several Common Circuit Functions

XC3000 (-125) XC4000 (-5)

16-bit Decoder From Input Pad 15 ns 4 CLBs 12 ns 0 CLBs
24-bit Accumulator 17 MHz 46 CLBs 32 MHz 13 CLBs
State Machine Benchmark* 18 MHz 34 CLBs 30 MHz 26 CLBs
16:1 Multiplexer 16 ns 8 CLBs 16 ns 5 CLBs
16-bit Unidirectional Max Density 20 MHz 16 CLBs 40 MHz 8 CLBs

Loadable Counter Max Speed 34 MHz 23 CLBs 42 MHz 9 CLBs
16-bit U/D Counter Max Density 20 MHz 16 CLBs 40 MHz 8 CLBs

Max Speed 30 MHz 27 CLBs 40 MHz 8 CLBs
16-bit Adder Max Density 50 ns 30 CLBs 20.5 ns 9 CLBs

Max Speed 30 ns 41 CLBs 20.5 ns 9 CLBs

 * 16 states, 40 transitions, 10 inputs, 8 outputs
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Figure 4. 16-byte FIFO

inputs could not be driven by all adjacent routing lines. In
the XC4000 families, these constraints have been largely
eliminated. This makes it easier for the software to com-
plete the routing of complex interconnect patterns.

Chip architects and software designers worked closely
together to achieve a solution that is not only inherently
powerful, but also easy to utilize by the software-driven
design tools for Partitioning, Placement and Routing. The
goal was to provide automated push-button software tools
that complete almost all designs, even large and dense
ones, automatically, without operator assistance. But these
tools will still give the designer the option to get involved in
the partitioning, placement and, to a lesser extent, even
the routing of critical parts of the design, if that is needed
to optimize the performance.

On-Chip Memory
The XC4000, XC4000A and XC4000H family devices are
the first programmable logic devices with RAM accessible
to the user.

An optional mode for each CLB makes the memory look-
up tables in the F' and G' function generators usable as
either a 16 x 2 or 32 x 1 bit array of Read/Write memory
cells (Figure 3). The F1-F4 and G1-G4 inputs to the
function generators act as address lines, selecting a
particular memory cell in each look-up table. The function-
ality of the CLB control signals change in this configura-
tion; the H1, DIN, and S/R lines become the two data inputs
and the Write Enable (WE) input for the 16 x 2 memory.
When the 32 x 1 configuration is selected, D1 acts as the
fifth address bit and D0 is the data input. The contents of
the memory cell(s) being addressed are available at the F'
and G' function-generator outputs, and can exit the CLB
through its X and Y outputs, or can be pipelined using the
CLB flip-flop(s).

Configuring the CLB function generators as Read/Write
memory does not affect the functionality of the other
portions of the CLB, with the exception of the redefinition
of the control signals. The H' function generator can be
used to implement Boolean functions of F', G', and D1, and
the D flip-flops can latch the F', G', H', or D0 signals.

The RAMs are very fast; read access is the same as logic
delay, about 5.5 ns; write time is about 8 ns; both are
several times faster than any off-chip solution. Such dis-
tributed RAM is a novel concept, creating new possibilities
in system design: registered arrays of multiple accumula-
tors, status registers, index registers, DMA counters, dis-
tributed shift registers, LIFO stacks, and FIFO buffers. The
data path of a 16-byte FIFO uses four CLBs for storage,
and six CLBs for address counting and multiplexing (Fig-
ure 4). With 32 storage locations per CLB, compared to two
flip-flops per CLB, the cost of intelligent distributed memory
has been reduced by a factor of 16.
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Input/Output Blocks (IOBs), XC4000 and XC4000A
Families  (for XC4000H family, see page 2-82)
User-configurable IOBs provide the interface between
external package pins and the internal logic (Figure 5).
Each IOB controls one package pin and can be defined for
input, output, or bidirectional signals.

Two paths, labeled I1 and I2, bring input signals into the
array. Inputs are routed to an input register that can be
programmed as either an edge-triggered flip-flop or a
level-sensitive transparent latch. Optionally, the data input
to the register can be delayed by several nanoseconds to
compensate for the delay on the clock signal, that first must

Figure 3. CLB Function Generators Can Be Used as
Read/Write Memory Cells
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pass through a global buffer before arriving at the IOB. This
eliminates the possibility of a data hold-time requirement
at the external pin. The I1 and I2 signals that exit the block
can each carry either the direct or registered input signal.

Output signals can be inverted or not inverted, and can
pass directly to the pad or be stored in an edge-triggered
flip-flop. Optionally, an output enable signal can be used to
place the output buffer in a high-impedance state, imple-
menting 3-state outputs or bidirectional I/O. Under con-
figuration control, the output (OUT) and output enable
(OE) signals can be inverted, and the slew rate of the
output buffer can be reduced to minimize power bus
transients when switching non-critical signals. Each
XC4000-families output buffer is capable of sinking 12 mA;
two adjacent output buffers can be wire-ANDed externally
to sink up to 24 mA. In the XC4000A and XC4000H
families, each output buffer can sink 24 mA.

There are a number of other programmable options in the
IOB. Programmable pull-up and pull-down resistors are
useful for tying unused pins to VCC or ground to minimize
power consumption. Separate clock signals are provided
for the input and output registers; these clocks can be
inverted, generating either falling-edge or rising-edge trig-
gered flip-flops. As is the case with the CLB registers, a
global set/reset signal can be used to set or clear the input
and output registers whenever the RESET net is active.

Embedded logic attached to the IOBs contains test struc-
tures compatible with IEEE Standard 1149.1 for boundary-
scan testing, permitting easy chip and board-level testing.

Programmable Interconnect
All internal connections are composed of metal segments
with programmable switching points to implement the
desired routing. An abundance of different routing re-
sources is provided to achieve efficient automated routing.
The number of routing channels is scaled to the size of the
array; i.e., it increases with array size.

In previous generations of LCAs, the logic-block inputs
were located on the top, left, and bottom of the block;
outputs exited the block on the right, favoring left-to-right
data flow through the device. For the third-generation
family, the CLB inputs and outputs are distributed on all
four sides of the block, providing additional routing flexibil-
ity (Figure 6). In general, the entire architecture is more
symmetrical and regular than that of earlier generations,
and is more suited to well-established placement and
routing algorithms developed for conventional mask- pro-
grammed gate-array design.

There are three main types of interconnect, distinguished
by the relative length of their segments: single-length lines,
double-length lines, and Longlines. Note: The number of
routing channels shown in Figures 6 and 9 are for illustra-
tion purposes only; the actual number of routing channels
varies with array size. The routing scheme was designed
for minimum resistance and capacitance of the average
routing path, resulting in significant performance improve-
ments.

The single-length lines are a grid of horizontal and vertical
lines that intersect at a Switch Matrix between each block.
Figure 6 illustrates the single-length interconnect lines

Figure 6. Typical CLB Connections to Adjacent
Single-Length Lines

Figure 5. XC4000 and XC4000A Families
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Figure 9. Longline Routing Resources with
Typical CLB Connections

surrounding one CLB in the array. Each Switch Matrix
consists of programmable n-channel pass transistors used
to establish connections between the single-length lines
(Figure 7). For example, a signal entering on the right side
of the Switch Matrix can be routed to a single-length line on
the top, left, or bottom sides, or any combination thereof,
if multiple branches are required. Single-length lines are
normally used to conduct signals within a localized area
and to provide the branching for nets with fanout greater
than one.

Compared to the previous generations of LCA archi-
tectures, the number of possible connections through the
Switch Matrix has been reduced. This decreases capaci-
tive loading and minimizes routing delays, thus increasing
performance. However, a much more versatile set of
connections between the single-length lines and the CLB
inputs and outputs more than compensate for the reduc-
tion in Switch Matrix options, resulting in overall increased
routability.

The function generator and control inputs to the CLB (F1-
F4, G1-G4, and C1-C4) can be driven from any adjacent
single-length line segment (Figure 6). The CLB clock (K)
input can be driven from one-half of the adjacent single-
length lines. Each CLB output can drive several of the
single-length lines, with connections to both the horizontal
and vertical Longlines.

The double-length lines (Figure 8) consist of a grid of metal
segments twice as long as the single-length lines; i.e, a
double-length line runs past two CLBs before entering a
Switch Matrix. Double-length lines are grouped in pairs
with the Switch Matrices staggered so that each line goes
through a Switch Matrix at every other CLB location in that
row or column. As with single-length lines, all the CLB
inputs except K can be driven from any adjacent double-
length line, and each CLB output can drive nearby double-
length lines in both the vertical and horizontal planes.
Double-length lines provide the most efficient imple-
mentation of intermediate length, point-to-point inter-
connections.

Figure 8. Double-Length Lines

Longlines form a grid of metal interconnect segments that
run the entire length or width of the array (Figure 9).
Additional vertical longlines can be driven by special global
buffers, designed to distribute clocks and other high fanout
control signals throughout the array with minimal skew.
Longlines are intended for high fan-out, time-critical signal
nets. Each Longline has a programmable splitter switch at
its center, that can separate the line into two independent
routing channels, each running half the width or height of
the array. CLB inputs can be driven from a subset of the
adjacent Longlines; CLB outputs are routed to the Lon-
glines via 3-state buffers or the single-length intercon-
nected lines.

Figure 7. Switch Matrix
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Communication between Longlines and single-length lines
is controlled by programmable interconnect points at the
line intersections. Double-length lines do not connect to
other lines.

Three-State Buffers
A pair of 3-state buffers, associated with each CLB in the
array, can be used to drive signals onto the nearest
horizontal Longlines above and below the block. This
feature is also available in the XC3000 generation of LCA
devices. The 3-state buffer input can be driven from any
X, Y, XQ, or YQ output of the neighboring CLB, or from
nearby single-length lines; the buffer enable can come
from nearby vertical single-length or Longlines. Another 3-
state buffer with similar access is located near each I/O
block along the right and left edges of the array. These
buffers can be used to implement multiplexed or bidirec-
tional buses on the horizontal Longlines. Programmable
pull-up resistors attached to both ends of these Longlines
help to implement a wide wired-AND function.

Special Longlines running along the perimeter of the array
can be used to wire-AND signals coming from nearby IOBs
or from internal Longlines.

Taking Advantage of Reconfiguration
LCA devices can be reconfigured to change logic function
while resident in the system. This gives the system de-
signer a new degree of freedom, not available with any
other type of logic. Hardware can be changed as easily as
software. Design updates or modifications are easy. An
LCA device can even be reconfigured dynamically to
perform different functions at different times. Reconfigurable
logic can be used to implement system self diagnostics,
create systems capable of being reconfigured for different
environments or operations, or implement dual-purpose
hardware for a given application. As an added benefit, use
of reconfigurable LCA devices simplifies hardware design
and debugging and shortens product time-to-market.

Development System

The powerful features of the XC4000 device families
require an equally powerful, yet easy-to-use set of devel-
opment tools. Xilinx provides an enhanced version of the
Xilinx Automatic CAE Tools (XACT) optimized for the
XC4000 families.

As with other logic technologies, the basic methodology for
XC4000 FPGA design consists of three inter-related steps:
entry, implementation, and verification. Popular ‘generic’
tools are used for entry and simulation (for example,
Viewlogic System’s ViewDraw schematic editor and
ViewSim simulator), but architecture-specific tools are
needed for implementation.

All Xilinx development system software is integrated under
the Xilinx Design Manager (XDM), providing designers

with a common user interface regardless of their choice of
entry and verification tools. XDM simplifies the selection of
command-line options with pull-down menus and on-line
help text. Application programs ranging from schematic
capture to Partitioning, Placement, and Routing (PPR) can
be accessed from XDM, while the program-command
sequence is generated and stored for documentation prior
to execution. The XMAKE command, a design compilation
utility, automates the entire implementation process, auto-
matically retrieving the design’s input files and performing
all the steps needed to create configuration and report
files.

Several advanced features of the XACT system facilitate
XC4000 FPGA design. The MEMGEN utility, a memory
compiler, implements on-chip RAM within an XC4000
FPGA. Relationally Placed Macros (RPMs) – schematic-
based macros with relative locations constraints to guide
their placement within the FPGA – help ensure an opti-
mized implementation for common logic functions. XACT-
Performance, a feature of the Partition, Place, and Route
(PPR) implementation program, allows designers to enter
their exact performance requirements during design entry,
at the schematic level.

Design Entry
Designs can be entered graphically, using schematic-
capture software, or in any of several text-based formats
(such as Boolean equations, state-machine descriptions,
and high-level design languages).

Xilinx and third-party CAE vendors have developed library
and interface products compatible with a wide variety of
design-entry and simulation environments. A standard
interface-file specification, XNF (Xilinx Netlist File), is
provided to simplify file transfers into and out of the XACT
development system.

Xilinx offers XACT development system interfaces to the
following design environments.

• Viewlogic Systems (ViewDraw, ViewSim)

• Mentor Graphics V7 and V8 (NETED, Quicksim,
Design Architect, Quicksim II)

• OrCAD (SDT , VST)

• Synopsys (Design Compiler, FPGA Compiler)

• Xilinx-ABEL

• X-BLOX

Many other environments are supported by third-party
vendors. Currently, more than 100 packages are sup-
ported.

The schematic library for the XC4000 FPGA reflects the
wide variety of logic functions that can be implemented in
these versatile devices. The library contains over 400
primitives and macros, ranging from 2-input AND gates to
16-bit accumulators, and including arithmetic functions,



XC4000, XC4000A, XC4000H Logic Cell Array Families

2-18

The XACT system also includes XDelay, a static timing
analyzer. XDelay examines a design’s logic and timing to
calculate the performance along signal paths, identify pos-
sible race conditions, and detect set-up and hold-time
violations. Timing analyzers do not require that the user
generate input stimulus patterns or test vectors.

Summary

The result of eight years of FPGA design experience and
feedback from thousands of customers, the XC4000 families
combine architectural versatility, on-chip RAM, increased
speed and gate complexity with abundant routing resources
and new, sophisticated software to achieve fully automated
implementation of complex, high-performance designs.

7400 Equivalents

               # of CLBs
‘138 5
‘139 2
‘147 5
‘148 6
‘150 5
‘151 3
‘152 3
‘153 2
‘154 16
‘157 2
‘158 2
‘160 5
‘161 6
‘162 8
‘163 8
‘164 4
‘165s 9
‘166 5
‘168 7
‘174 3
‘194 5
‘195 3
‘280 3
‘283 8
‘298 2
‘352 2
‘390 3
‘518 3
‘521 3

Barrel Shifters

brlshft4 4
brlshft8 13

4-Bit Counters

cd4ce 3
cd4cle 5
cd4rle 6
cb4ce 3
cb4cle 6
cb4re 5

8- and 16-Bit Counters

cb8ce 6
cb8re 10
cc16ce 10
cc16cle 11
cc16cled 21

Identity Comparators

comp4 1
comp8 2
comp16 5

Magnitude Comparators

compm4 4
compm8 9
compm16 20

Decoders

d2-4e 2
d3-8e 4
d4-16e 16

Multiplexers

m2-1e 1
m4-1e 1
m8-1e 3
m16-1e 5

Registers

rd4r 2
rd8r 4
rd16r 8

Shift Registers

sr8ce 4
sr16re 8

RAMs

ram 16x4 2

Explanation of counter nomenclature

cb = binary counter
cd = BCD counter
cc = cascadable binary counter
d = bidirectional
l = loadable
x = cascadable
e = clock enable
r = synchronous reset
c = asynchronous clear

Figure 10. CLB Count of Selected XC4000 Soft Macros
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Each output buffer can be configured to be either fast or
slew-rate limited, which reduces noise generation and
ground bounce. Each I/O pin can be configured with either
an internal pull-up or pull down resistor, or with no internal
resistor. Independent of this choice, each IOB has a pull-
up resistor during the configuration process.

The 3-state output driver uses a totem pole n-channel
output structure. VOH is one n-channel threshold lower
than VCC, which makes rise and fall delays more
symmetrical.

Per IOB Per IOB Per IOB # Slew
Family Source Sink Pair Sink Modes

XC4000 4 12 24 2
XC4000A 4 24 48 4
XC4000H 4 24* 48 2

*XC4000H devices can sink only 4 mA configured for SoftEdge mode

Figure 11. XC4000 and XC4000A I/O Block

Detailed Functional Description

XC4000 and XC4000A Input/Output Blocks
(For XC4000H family, see page 2-82)
The IOB forms the interface between the internal logic and
the I/O pads of the LCA device. Under configuration con-
trol, the output buffer receives either the logic signal (.out)
routed from the internal logic to the IOB, or the complement
of this signal, or this same data after it has been clocked
into the output flip-flop.

As a configuration option, each flip-flop (CLB or IOB) is
initialized as either set or reset, and is also forced into this
programmable initialization state whenever the global Set/
Reset net is activated after configuration has been com-
pleted. The clock polarity of each IOB flip-flop can be
configured individually, as can the polarity of the 3-state
control for the output buffer.
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The inputs drive TTL-compatible buffers with 1.2-V input
threshold and a slight hysteresis of about 300 mV. These
buffers drive the internal logic as well as the D-input of the
input flip-flop.

Under configuration control, the set-up time of this flip-flop
can be increased so that normal clock routing does not
result in a hold-time problem. Note that the input flip-flop
set-up time is defined between the data measured at the
device I/O pin and the clock input at the IOB. Any clock
routing delay must, therefore, be subtracted from this set-
up time to arrive at the real set-up time requirement on the
device pins. A short specified set-up time might, therefore,
result in a negative set-up time at the device pins, i.e. a
hold-time requirement, which is usually undesirable. The
default long set-up time can tolerate more clock delay
without causing a hold-time requirement. For faster input
register setup time, with non-zero hold, attach a "NODELAY"
property to the flip-flop. The exact method to accomplish
this depends on the design entry tool.

The input block has two connections to the internal logic,
I1 and I2. Each of these is driven either by the incoming
data, by the master or by the slave of the input flip-flop.

Wide Decoders
The periphery of the chip has four wide decoder circuits at
each edge (two in the XC4000A). The inputs to each
decoder are any of the I1 signals on that edge plus one
local interconnect per CLB row or column. Each decoder
generates High output (resistor pull-up) when the AND
condition of the selected inputs, or their complements, is
true. This is analogous to the AND term in typical PAL
devices. Each decoder can be split at its center.

The decoder outputs can drive CLB inputs so they can be
combined with other logic, or to form a PAL-like AND/OR
structure. The decoder outputs can also be routed directly
to the chip outputs. For fastest speed, the output should be
on the same chip edge as the decoder.

Figure 12 . Example of Edge Decoding.  Each row or column of
CLBs provide up to three variables (or their complements)

IOBIOB
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(           C) .....

(A • B • C) .....

(A   B   C) .....

(A   B   C) .....
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Configurable Logic Blocks
Configurable Logic Blocks implement most of the logic in
an LCA device. Two 4-input function generators (F and G)
offer unrestricted versatility. A third function generator (H)
can combine the outputs of F and G with a ninth input
variable, thus implementing certain functions of up to nine
variables, like parity check or expandable-identity com-
parison of two sets of four inputs.

The four control inputs C1 through C4 can each generate
any one of four logic signals, used in the CLB.

• Enable Clock, Asynchronous Preset/Reset, DIN, and
H1, when the memory function is disabled, or

• Enable Clock, Write Enable, D0, and D1, when the
memory function is enabled.

Since the function-generator outputs are brought out inde-
pendently of the flip-flop outputs, and DIN and H1 can be
used as direct inputs to the two flip-flops, the two combina-
torial and the two sequential functions in the CLB can be
used independently. This versatility increases logic den-
sity and simplifies routing.

The asynchronous flip-flop input can be configured as
either set or reset. This configuration option also deter-
mines the state in which the flip-flops become operational
after configuration, as well as the effect of an externally or
internally applied Set/Reset during normal operation.

Fast Carry Logic
The CLBs can generate the arithmetic-carry output for
incoming operands, and can pass this extra output on to
the next CLB function generator above or below. This
connection is independent of normal routing resources
and it is, presently, only supported by Hard Macros. A later
software release will accommodate Soft Macros and will
permit graphic editing of the fast logic circuitry. This fast
carry logic is one of the most significant improvements in
the XC4000 families, speeding up arithmetic and counting
into the 60-MHz range.

Using Function Generators as RAMs
Using XC4000 devices, the designer can write into the
latches that hold the configuration content of the function
generators. Each function generator can thus be used as
a small Read/Write memory, or RAM. The function gen-
erators in any CLB can be configured in three ways.

• Two 16 x 1 RAMs with two data inputs and two data
outputs – identical or, if preferred, different address-
ing for each RAM

• One 32 x 1 RAM with one data input and one data
output

• One 16 x 1 RAM plus one 5-input function generator
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X1027

Interconnects
The XC4000 families use a hierarchy of interconnect
resources.

• General purpose single-length and double-length
lines offer fast routing between adjacent blocks, and
highest flexibility for complex routes, but they incur a
delay every time they pass through a switch matrix.

• Longlines run the width or height of the chip with
negligible delay variations. They are used for signal
distribution over long distances. Some Horizontal
Longlines can be driven by 3-state or open-drain
drivers, and can thus implement bidirectional buses
or wired-AND decoding.

• Global Nets are optimized for the distribution of clock
and time-critical or high-fan-out control signal. Four
pad-driven Primary Global Nets offer shortest delay
and negligible skew. Four pad-driven Secondary
Global Nets have slightly longer delay and more
skew due to heavier loading.

Each CLB column has four dedicated Vertical Longlines,
each of these lines has access to a particular Primary
Global Net, or to any one of the Secondary Global Nets.
The Global Nets avoid clock skew and potential hold-time

3-State Buffers Implement a Multiplexer.  The selection is accomplished by the buffer 3-state signal.

)

DA DB
DC

DA •= DB • ( DCZ …

DD

DE

DF

+DD DE + F )• ( D~5 kΩ ~5 kΩ

+5 V+5 V

Active High T is Identical to
Active Low Output Enable.

T OE

DA

A

DB

B

DC

C

DN

N

DA A• += DB B• + DC C• + DN N•Z … +

“KEEPER”

~100 kΩ

X1006

X1007

Open Drain Buffers Implement a Wired-AND Function.  When all the buffer
 inputs are High the pull-up resistor(s) provide the High output.

Figure 18. TBUFs Driving Horizontal Longlines.

SECONDARY  
GLOBAL NETS

PRIMARY   
GLOBAL NETS

Figure 17. XC4000 Global Net Distribution. Four Lines per
Column; Eight Inputs in the Four Chip Corners.

problems. The user must specify these Global Nets for all
timing-sensitive global signal distribution.
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Device XC4002A XC4003A XC4003/H XC4004A XC4005A XC4005/H XC4006 XC4008 XC4010/D XC4013/D XC4020 XC4025

Gates 2,000 3,000 3,000 4,000 5000 5,000 6,000 8,000 10,000 13,000 20,000 25,000

CLBs 64 100 100 144 196 196 256 324 400 576 784 1,024

(Row x Col) (8 x 8) (10 x 10) (10 x 10) (12 x 12) (14 x 14) (14 x 14) (16 x 16) (18 x 18) (20 x 20) (24 x 24) (28 x 28) (32 x 32)

IOBs 64 80 80/.160 96 112 112 (192) 128 144 160 192 224 256

Flip-flops 256 360 360/300 480 616 616 (392) 768 936 1,120 1,536 2,016 2,560

Horizontal

TBUF Longlines 16 20 20 24 28 28 32 36 40 48 56 64

TBUFs/Longline 10 12 12 14 16 16 18 20 22 26 30 34

Bits per Frame 102 122 126 142 162 166 186 206 226 266 306 346

Frames 310 374 428 438 502 572 644 716 788 932 1,076 1,220

Program Data 31,628 45,636 53,936 62,204 81,332 94,960 119,792 147,504 178,096 247,920 329,264 422,128

PROM size (bits) 31,668 45,676 53,976 62,244 81,372 95,000 119,832 147,544 178,136 247,960 329,304 422,168

XC4000, 4000H: Bits per Frame = (10 x number of Rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits
Number of Frames = (36 x number of Columns) + 26 for the left edge + 41 for the right edge + 1

XC4000A: Bits per Frame = (10 x number of Rows) + 6 for the top + 10 for the bottom + 1 + 1 start bit + 4 error check bits
Number of Frames = (32 x number of Columns) + 21 for the left edge + 32 for the right edge + 1

Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits
PROM Size = Program Data + 40
The user can add more "one" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any
frame, following the four error check bits, but the Length Count value must  be adjusted for all such extra "one" bits,
even for leading extra ones at the beginning of the header.

11111111
0010
< 24-BIT LENGTH COUNT >
1111

0  < DATA FRAME # 001 >  eeee
0  < DATA FRAME # 002 >  eeee
0  < DATA FRAME # 003 >  eeee
               .              .               .
               .              .               .
               .              .               .
               .              .               .

– EIGHT DUMMY BITS MINIMUM
– PREAMBLE CODE
– CONFIGURATION PROGRAM LENGTH (MSB FIRST)
– DUMMY BITS (4 BITS MINIMUM)

(EACH FRAME CONSISTS OF:
A START BIT (0)
A DATA FIELD
FOUR ERROR CHECK BITS (eeee)

POSTAMBLE CODE 

REPEATED FOR EACH LOGIC
CELL ARRAY IN A DAISY CHAIN

0  < DATA FRAME # N-1 >  eeee
0  < DATA FRAME # N >  eeee

0111 1111

HEADER

PROGRAM DATA

X1526

Figure 19.  Internal Configuration Data Structure.

Format
The configuration-data stream begins with a string of ones,
a 0010 preamble code, a 24-bit length count, and a four-
bit separator field of ones. This is followed by the actual
configuration data in frames, each starting with a zero bit
and ending with a four-bit error check. For each XC4XXX
device, the MakeBits software allows a selection of CRC
or non-CRC error checking. The non-CRC error checking
tests for a 0110 end of frame field for each frame of a
selected LCA device. For CRC error checking, MakeBits
software calculates a running CRC of inserts a unique
four-bit partial check at the end of each frame. The 11-bit
CRC check of the last frame of an LCA device includes the

last seven data bits. Detection of an error results in
suspension of data loading and the pulling down of the INIT
pin. In master modes, CCLK and address signals continue
to operate externally. The user must detect INIT and
initialize a new configuration by pulsing the PROGRAM pin
or cycling VCC. The length and number of frames depend
on the device type. Multiple LCA devices can be con-
nected in a daisy chain by wiring their CCLK pins in parallel
and connecting the DOUT of each to the DIN of the next.
The lead-master LCA device and following slaves each
passes resynchronized configuration data coming from a
single source. The Header data, including the length
count, is passed through and is captured by each LCA
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device when it recognizes the 0010 preamble. Following
the length-count data, any LCA device outputs a High on
DOUT until it has received its required number of data
frames.

After an LCA device has received its configuration data, it
passes on any additional frame start bits and configuration
data on DOUT. When the total number of configuration
clocks applied after memory initialization equals the value
of the 24-bit length count, the LCA device(s) begin the
start-up sequence and become operational together.

Configuration Sequence
Configuration Memory Clear
When power is first applied or reapplied to an LCA device,
an internal circuit forces initialization of the configuration
logic. When VCC reaches an operational level, and the
circuit passes the write and read test of a sample pair of
configuration bits, a nominal 16-ms time delay is started
(four times longer when M0 is Low, i.e., in Master mode).
During this time delay, or as long as the PROGRAM input
is asserted, the configuration logic is held in a Configura-
tion Memory Clear state. The configuration-memory frames
are consecutively initialized, using the internal oscillator.
At the end of each complete pass through the frame
addressing, the power-on time-out delay circuitry and the
level of the PROGRAM pin are tested. If neither is as-
serted, the logic initiates one additional clearing of the
configuration frames and then tests the INIT input.

Initialization
During initialization and configuration, user pins HDC,
LDC and INIT provide status outputs for system interface.
The outputs, LDC, INIT and DONE are held Low and HDC
is held High starting at the initial application of power. The
open drain INIT pin is released after the final initialization
pass through the frame addresses. There is a deliberate
delay of 50 to 250 µs before a Master-mode device
recognizes an inactive INIT. Two internal clocks after the
INIT pin is recognized as High, the LCA device samples
the three mode lines to determine the configuration mode.
The appropriate interface lines become active and the
configuration preamble and data can be loaded.

Configuration
The 0010 preamble code indicates that the following
24 bits represent the length count, i.e., the total number of
configuration clocks needed to load the total configuration
data. After the preamble and the length count have been
passed through to all devices in the daisy chain, DOUT is
held High to prevent frame start bits from reaching any
daisy-chained devices. A specific configuration bit, early in
the first frame of a master device, controls the configura-
tion-clock rate and can increase it by a factor of eight. Each
frame has a Low start bit followed by the frame-configura-

Figure 20. Start-up Sequence
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FULL
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STARTUP.GTS         USER NET
GTS   INVERT
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GSR  ENABLE
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Figure 22.  Start-up Logic

CONTROLLED BY STARTUP SYMBOL
IN THE USER SCHEMATIC (SEE
LIBRARIES GUIDE)

X1528

All Xilinx FPGAs of the XC2000, XC3000, XC4000 familiies
use a compatible bitstream format and can, therefore, be
connected in a daisy-chain in an arbitrary sequence. There
is however one limitation. The lead device must belong to
the highest family in the chain. If the chain contains
XC4000 devices, the master cannot be an XC2000 or
XC3000 device; if the daisy-chain contains XC3000 de-
vices, the master cannot be an XC2000 device. The
reason for this rule is shown in Figure 21 on the previous
page. Since all devices in the chain store the same length
count value and generate or receive one common se-
quence of CCLK pulses, they all recognize length-count
match on the same CCLK edge, as indicated on the left
edge of Figure 21. The master device will then drive
additional CCLK pulses until it reaches its finish point F.
The different families generate or require different num-
bers of additional CCLK pulses until they reach F.

Not reaching F means that the device does not really finish
its configuration, although DONE may have gone High, the

outputs became active, and the internal RESET was
released. The user has some control over the relative
timing of these events and can, therefore, make sure that
they occur early enough.

But, for XC4000, not reaching F means that READBACK
cannot be initiated and most Boundary Scan instructions
cannot be used.This limitation has been critized by design-
ers who want to use an inexpensive lead device in periph-
eral mode and have the more precious I/O pins of the
XC4000 devices all available for user I/O. Here is a
solution for that case.

One CLB and one IOB in the lead XC3000 device are used
to generate the additional CCLK pulse required by the
XC4000 devices. When the lead device removes the
internal RESET signal, the 2-bit shift register responds to
its clock input and generates an active Low output signal
for the duration of the subsequent clock period. An exter-
nal connection between this output and CCLK thus creates
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Output
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to CCLK
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0
0
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Reset

X5223
etc

Active Low Output
Active High Output

data on the RDBK.DATA net. Readback data does not
include the preamble, but starts with five dummy bits (all
High) followed by the Start bit (Low) of the first frame. The
first two data bits of the first frame are always High.

Note that, in the XC4000 families, data is not inverted with
respect to configuration the way it is in XC2000 and
XC3000 families.

Each frame ends with four error check bits. They are read
back as High. The last seven bits of the last frame are also
read back as High. An additional Start bit (Low) and an
11-bit Cyclic Redundancy Check (CRC) signature follow,
before RIP returns Low.

Readback options are: Read Capture, Read Abort, and
Clock Select.

Read Capture
When the Readback Capture option is selected, the
readback data stream includes sampled values of CLB
and IOB signals imbedded in the data stream. The rising
edge of RDBK.TRIG located in the lower-left chip corner,
captures, in latches, the inverted values of the four CLB
outputs and the IOB output flip-flops and the input signals
I1, I2 . When the capture option is not selected, the values
of the capture bits reflect the configuration data originally
written to those memory locations. If the RAM capability of
the CLBs is used, RAM data are available in readback,
since they directly overwrite the F and G function-table
configuration of the CLB.

Read Abort
When the Readback Abort option is selected, a High-to-
Low transition on RDBK.TRIG terminates the readback
operation and prepares the logic to accept another trigger.
After an aborted readback, additional clocks (up-to-one
readback clock per configuration frame) may be required
to re-initialize the control logic. The status of readback is
indicated by the output control net (RDBK.RIP).

Clock Select
Readback control and data are clocked on rising edges of
RDBK.CLK located in the lower right chip corner. CCLK is
an optional clock. If Readback must be inhibited for secu-
rity reasons, the readback control nets are simply not
connected.

XChecker
The XChecker Universal Download/Readback Cable and
Logic Probe uses the Readback feature for bitstream
verification and for display of selected internal signals on
the PC or workstation screen, effectively as a low-cost in-
circuit emulator.

the extra CCLK pulse. This solution requires one CLB, one
IOB and pin, and an internal oscillator with a frequency of
up to 5 MHz as available clock source. Obviously, this
XC3000 master device must be configured with late Inter-
nal Reset, which happens to be the default option.

Using Global Set/Reset and Global 3-State Nets
The global Set/Reset (STARTUP.GSR) net can be driven
by the user at any time to re-initialize all CLBs and IOBs to
the same state they had at the end of configuration. For
CLBs that is the same state as the one driven by the
individually programmable asynchronous Set/Reset in-
puts. The global 3-state net (STARTUP.GTS), whenever
activated after configuration is completed, forces all LCA
outputs to the high-impedance state, unless Boundary
Scan is enabled and is executing an EXTEST instruction.

Readback

The user can read back the content of configuration
memory and the level of certain internal nodes without
interfering with the normal operation of the device.

Readback reports not only the downloaded configuration
bits, but can also include the present state of the device
represented by the content of all used flip-flops and latches
in CLBs and IOBs, as well as the content of function
generators used as RAMs.

XC4000 Readback does not use any dedicated pins, but
uses four internal nets (RDBK.TRIG, RDBK.DATA,
RDBK.RIP and RDBK.CLK ) that can be routed to any IOB.

After Readback has been initiated by a Low-to-High tran-
sition on RDBK.TRIG, the RDBK.RIP (Read In Progress)
output goes High on the next rising edge of RDBK.CLK.
Subsequent rising edges of this clock shift out Readback
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Slave Serial Mode Programming Switching Characteristics

Description Symbol Min Max Units

CCLK DIN setup 1 TDCC 20 ns
DIN hold 2 TCCD 0 ns
to DOUT 3 TCCO 30 ns
High time 4 TCCH 45 ns
Low time 5 TCCL 45 ns
Frequency FCC 10 MHz

Note: Configuration must be delayed until the INIT of all daisy-chained LCA devices is High.

4 TCCH

Bit n Bit n + 1

Bit nBit n - 1

3 TCCO

5 TCCL2 TCCD1 TDCC

DIN

CCLK

DOUT
(Output)

X5379
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Master Parallel Mode
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In Master Parallel mode, the lead LCA device directly ad-
dresses an industry-standard byte-wide EPROM, and ac-
cepts eight data bits right before incrementing (or
decrementing) the address outputs.

The eight data bits are serialized in the lead LCA device,
which then presents the preamble data ( and all data that
overflows the lead device ) on the DOUT pin. There is an
internal delay of 1.5 CCLK periods, after the rising CCLK
edge that accepts a byte of data (and also changes the
EPROM address) until the falling CCLK edge that makes
the LSB (D0) of this byte appear at DOUT. This means that
DOUT changes on the falling CCLK edge, and the next
LCA device in the daisy-chain accepts data on the subse-
quent rising CCLK edge.

How to Delay Configuration After Power-Up
There are two methods to delay configuration after power-
up: Put a logic Low on the PROGRAM input, or pull the
bidirectional INIT pin Low, using an open-collector (open-
drain) driver. (See also Figure 20 on page 2-27).

A Low on the PROGRAM input is the more radical ap-
proach, and is recommended when the power-supply rise
time is excessive or poorly defined. As long as PROGRAM
is Low, the XC4000 device keeps clearing its configuration
memory. When PROGRAM goes High, the configuration
memory is cleared one more time, followed by the begin-
ning of configuration, provided the INIT input is not exter-
nally held Low. Note that a Low on the PROGRAM input
automatically forces a Low on the INIT output.
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Using an open-collector or open-drain driver to hold INIT
Low before the beginning of configuration, causes the LCA
device to wait after having completed the configuration
memory clear operation. When INIT is no longer held Low
externally, the device determines its configuration mode by

capturing its status inputs, and is ready to start the configura-
tion process. A master device waits an additional max 250 µs
to make sure that all slaves in the potential daisy-chain have
seen INIT being High.

Master Parallel Mode Programming Switching Characteristics

Description Symbol Min Max Units

RCLK Delay to Address valid 1 TRAC 0 200 ns
Data setup time 2 TDRC 60 ns
Data hold  time 3 TRCD 0 ns

Notes: 1. At power-up, VCC must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration using PROGRAM

until VCC is valid.

2. Configuration can be delayed by holding INIT Low with or until after the INIT of all daisy-chain slave mode devices
is High.

3. The first Data byte is loaded and CCLK starts at the end of the first RCLK active cycle (rising edge).

This timing diagram shows that the EPROM requirements are extremely relaxed: EPROM access time can be longer than
500 ns. EPROM data output has no hold-time requirements.

Address for Byte n

Byte 

2 TDRC

Address for Byte n + 1

D7D6

A0-A17
(output)

D0-D7

RCLK
(output)

CCLK
(output)

DOUT
(output)

1 TRAC

7 CCLKs CCLK

3 TRCD

Byte n - 1 X6078
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Synchronous Peripheral Mode

Synchronous Peripheral mode can also be considered
Slave Parallel mode. An external signal drives the CCLK
input(s) of the LCA device(s). The first byte of parallel
configuration data must be available at the D inputs of the
lead LCA device a short set-up time before the rising CCLK
edge. Subsequent data bytes are clocked in on every
eighth consecutive rising CCLK edge. The same CCLK
edge that accepts data, also causes the RDY/BUSY
output to go High for one CCLK period. The pin name is a
misnomer. In Synchronous Peripheral mode it is really an
ACKNOWLEDGE signal. Synchronous operation does
not require this response, but it is a meaningful signal for
test purposes.

The lead LCA device serializes the data and presents the
preamble data ( and all data that overflows the lead device)
on its DOUT pin. There is an internal delay of 1.5 CCLK
periods, which means that DOUT changes on the falling
CCLK edge, and the next LCA device in the daisy-chain
accepts data on the subsequent rising CCLK edge. In
order to complete the serial shift operation, 10 additional
CCLK rising edges are required after the last data byte has
been loaded, plus one more CCLK cycle for each daisy-
chained device.

How to Delay Configuration After Power-Up
There are two methods to delay configuration after power-
up: Put a logic Low on the PROGRAM input, or pull the
bidirectional INIT pin Low, using an open-collector (open-
drain) driver. (See also Figure 20 on page 2-27).

A Low on the PROGRAM input is the more radical ap-
proach, and is recommended when the power-supply rise
time is excessive or poorly defined. As long as PROGRAM
is Low, the XC4000 device keeps clearing its configuration
memory. When PROGRAM goes High, the configuration
memory is cleared one more time, followed by the begin-
ning of configuration, provided the INIT input is not exter-
nally held Low. Note that a Low on the PROGRAM input
automatically forces a Low on the INIT output.

Using an open-collector or open-drain driver to hold INIT
Low before the beginning of configuration, causes the LCA
device to wait after having completed the configuration
memory clear operation. When INIT is no longer held Low
externally, the device determines its configuration mode
by capturing its status inputs, and is ready to start the
configuration process. A master device waits an additional
max 250 µs to make sure that all slaves in the potential
daisy-chain have seen INIT being High.

X6079
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Asynchronous Peripheral Mode
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X3396

Write to LCA
Asynchronous Peripheral mode uses the trailing edge of
the logic AND condition of the CS0, CS1 and WS inputs to
accept byte-wide data from a microprocessor bus. In the
lead LCA device, this data is loaded into a double-buffered
UART-like parallel-to-serial converter and is serially shifted
into the internal logic. The lead LCA device presents the
preamble data (and all data that overflows the lead device)
on the DOUT pin.

The RDY/BUSY output from the lead LCA device acts as
a handshake signal to the microprocessor. RDY/BUSY
goes Low when a byte has been received, and goes High
again when the byte-wide input buffer has transferred its
information into the shift register, and the buffer is ready to
receive new data. The length of the BUSY signal depends
on the activity in the UART. If the shift register had been
empty when the new byte was received, the BUSY signal
lasts for only two CCLK periods. If the shift register was still
full when the new byte was received, the BUSY signal can
be as long as nine CCLK periods.

Note that after the last byte has been entered, only seven
of its bits are shifted out. CCLK remains High with DOUT
equal to bit 6 (the next-to-last bit) of the last byte entered.
The READY/BUSY handshake can be ignored if the delay
from any one Write to the end of the next Write is guaran-
teed to be longer than 10 CCLK periods,i.e. longer than 20
µs.

Status Read

The logic AND condition of the CS0, CS1and RS inputs
puts the device status on the Data bus.

D7 = High indicates Ready
D7 - Low indicates Busy
D0 through D6 go unconditionally High

It is mandatory that the whole start-up sequence be started
and completed by one byte-wide input. Otherwise, the pins
used as Write Strobe or Chip Enable might become active
outputs and inteffere with the final byte transfer. If this
transfer does not occur, the start-up sequence will not be
completed all the way to the finish (point F in Figure 21 on
page 2-29). At worst, the internal reset will not be released;
at best, Readback and Boundary Scan will be inhibited.
The length-count value, as generated by MAKEPROM, is
supposed to ensure that these problems never occur.

Although RDY/BUSY is brought out as a separate signal,
microprocessors can more easily read this information on
one of the data lines. For this purpose, D7 represents the
RDY/BUSY status when RS is Low, WS is High, and the
two chip select lines are both active.

How to Delay Configuration After Power-Up
There are two methods to delay configuration after power-
up: Put a logic Low on the PROGRAM input, or pull the
bidirectional INIT pin Low, using an open-collector (open-
drain) driver. (See also Figure 20 on page 2-27).
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Symbol Min Max Units

Power-On-Reset M0 = High TPOR 10 40 ms
M0 = Low TPOR 40 130 ms

Program Latency TPI 30 200 µs per
CLB column

CCLK (output) Delay TICCK 40 250 µs
     period (slow) TCCLK 640 2000 ns
     period (fast) TCCLK 100 250 ns

Symbol Min Max Units

Power-On-Reset TPOR 10 33 ms

Program Latency TPI 30 200 µs per
CLB column

CCLK (input) Delay (required) TICCK 4 µs
      period (required) TCCLK 100 ns

Note: At power-up, VCC must rise from 2.0 V to VCC min in less than 25 ms,
otherwise delay configuration using PROGRAM until VCC is valid.

General LCA Switching Characteristics

Master Modes

Slave and Peripheral Modes

VALID

PROGRAM

INIT

Vcc

PIT

PORT

ICCKT CCLKT

CCLK OUTPUT or INPUT

M0, M1, M2

I/O

DONE RESPONSE

<300 ns

<300 ns

>300 ns

RE-PROGRAM

X1532

(Required)
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Pin Functions During Configuration

Before and during configuration, all outputs that are not used for the configuration process are 3-stated with
a 50 kΩ to 100 k Ω pull-up resistor.

X6081

Represents a 50 kΩ to 100 kΩ pull-up before and during configuration

INIT is an open-drain output during configuration
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DATA 6 (I)
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A11

A5
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DONE
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I/OI/O
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I/O
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CCLK (I)
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I/O

I/O
I/O
I/O
I/O
I/O
I/O
I/O

MASTER-SER
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CONFIGURATION MODE:  <M2:M1:M0> 

SLAVE
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SYN.PERIPH
<0:1:1>

ASYN.PERIPH
<1:0:1>

MASTER-HIGH
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USER
OPERATION

A4A4

DIN (I)

SGI-I/O

I/O

I/O

I/O

(I)

MASTER-LOW
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A16 A16
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TCK
TMS
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TDI
TCK
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TDI
TCK
TMS

TDI
TCK
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PGI-I/O
I/O
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TCK-I/O
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M0 (LOW) (I)
M2 (HIGH) (I)
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PROGRAM (I)
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PROGRAM

DATA 6 (I)
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DATA 7 (I)
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I/O
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ALL OTHERS

DATA 4 (I)


