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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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XC4000 Compared to XC3000A
For those readers already familiar with the XC3000A
family of Xilinx Field Programmable Gate Arrays, here is a
concise list of the major new features in the XC4000 family.

CLB has two independent  4-input function generators.
A third  function generator combines the outputs of the
two other function generators with a ninth input.
All function inputs are swappable, all have full access;
none are mutually exclusive.

CLB has very fast  arithmetic  carry  capability.
CLB function generator look-up table can also be used as

high-speed RAM.
CLB flip-flops have asynchronous set or  reset.
CLB has four  outputs , two flip-flops, two combinatorial.
CLB connections symmetrically located on all four  edges.

IOB has more versatile clocking polarity options.
IOB has programmable input set-up time:

long to avoid potential hold time problems,
short to improve performance.

IOB has Longline access through its own TBUF.
Outputs are n-channel  only , lower V

OH increases speed.
XC4000 outputs can be paired to double sink current to

24 mA. XC4000A and XC4000H outputs can each
sink 24 mA, can be paired for 48 mA  sink current.

IEEE 1149.1- type boundary scan is supported in the I/O.

Wide  decoders  on all four edges of the LCA device.

Increased number of interconnect resources.
All CLB inputs and outputs have access to most inter-

connect lines.
Switch Matrices are simplified to increase speed.
Eight  global nets can be used for clocking or distributing

logic signals.
TBUF output configuration is more versatile and 3-state

control less confined.

Program is single-function input pin,overrides everything.
INIT pin also acts as Configuration Error output.

Peripheral Synchronous Mode  (8 bit) has been added.
Peripheral Asynchronous Mode  has improved hand-

shake.
Start-up  can be synchronized  to any user clock (this is a

configuration option).
No Powerdown, but instead a Global 3-state input  that

does not reset any flip-flops.
No on-chip crystal oscillator  amplifier.

Configuration Bit Stream includes CRC error checking.
Configuration Clock  can be increased to >8 MHz.
Configuration Clock is fully static , no constraint on the

maximum Low time.

Readback  either ignores flip-flop content (avoids need for
masking) or it takes a snapshot  of all flip-flops at the
start of Readback.

Readback has same polarity  as Configuration and can be
aborted.

Table 2. Three Generations of Xilinx Field-Programmable Gate Array Families

Parameter XC4025 XC3195A XC2018

Number of flip-flops 2,560 1,320 174

Max number of user I/O 256 176 74

Max number of RAM bits 32,768 0 0

Function generators per CLB 3 2 2

Number of logic inputs per CLB 9 5 4

Number of logic outputs per CLB 4 2 2

Number of low-skew global nets 8 2 2

Dedicated decoders yes no no

Fast carry logic yes no no

Internal 3-state drivers yes yes no

Output slew-rate control yes yes no

Power-down option no yes yes

Crystal oscillator circuit no yes yes
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Architectural Overview

The XC4000 families achieve high speed through ad-
vanced semiconductor technology and through improved
architecture, and supports system clock rates of up to 50
MHz. Compared to older Xilinx FPGA families, the XC4000
families are more powerful, offering on-chip RAM and
wide-input decoders. They are more versatile in their
applications, and design cycles are faster due to a combi-
nation of increased routing resources and more sophisti-
cated software. And last, but not least, they more than
double the available complexity, up to the 20,000-gate
level.

The XC4000 families have 16 members, ranging in com-
plexity from 2,000 to 25,000 gates.

Logic Cell Array Families
Xilinx high-density user-programmable gate arrays in-
clude three major configurable elements: configurable
logic blocks (CLBs), input/output blocks (IOBs), and inter-
connections. The CLBs provide the functional elements
for constructing the user’s logic. The IOBs provide the
interface between the package pins and internal signal
lines. The programmable interconnect resources provide
routing paths to connect the inputs and outputs of the CLBs
and IOBs onto the appropriate networks. Customized
configuration is established by programming internal static
memory cells that determine the logic functions and inter-
connections implemented in the LCA device.

The first generation of LCA devices, the XC2000 family,
was introduced in 1985. It featured logic blocks consisting
of a combinatorial function generator capable of imple-
menting 4-input Boolean functions and a single storage
element. The XC2000 family has two members ranging in
complexity from 800 to 1500 gates.

In the second-generation XC3000A LCA devices, intro-
duced in 1987, the logic block was expanded to implement
wider Boolean functions and to incorporate a second flip-
flop in each logic block. Today, the XC3000 devices range
in complexity from 1,300 to 10,000 usable gates. They
have a maximum guaranteed toggle frequency ranging
from 70 to 270 MHz, equivalent to maximum system clock
frequencies of up to 80 MHz.

The third generation of LCA devices further extends this
architecture with a yet more powerful and flexible logic
block. I/O block functions and interconnection options
have also been enhanced with each successive genera-
tion, further extending the range of applications that can be
implemented with an LCA device.

This third-generation architecture forms the basis of the
XC4000 families of devices that feature logic densities up
to 25,000 usable gates and support system clock rates of

up to 50 MHz. The use of an advanced, sub-micron CMOS
process technology as well as architectural improvements
contribute to this increase in FPGA capabilities. However,
achieving these high logic-density and performance levels
also requires new and more powerful automated design
tools. IC and software engineers collaborated during the
definition of the third-generation LCA architecture to meet
an important performance goal — an FPGA architecture
and companion design tools for completely automatic
placement and routing of 95% of all designs, plus a
convenient way to complete the remaining few designs.

Configurable Logic Blocks
A number of architectural improvements contribute to the
increased logic density and performance levels of the
XC4000 families. The most important one is a more
powerful and flexible CLB surrounded by a versatile set of
routing resources, resulting in more “effective gates per
CLB.” The principal CLB elements are shown in Figure 1.
Each new CLB also packs a pair of flip-flops and two
independent 4-input function generators. The two function
generators offer designers plenty of flexibility because
most combinatorial logic functions need less than four
inputs. Consequently, the design-software tools can deal
with each function generator independently, thus improv-
ing cell usage.

Thirteen CLB inputs and four CLB outputs provide access
to the function generators and flip-flops. More than double
the number available in the XC3000 families, these inputs
and outputs connect to the programmable interconnect
resources outside the block. Four independent inputs are
provided to each of two function generators (F1 – F4 and
G1 –  G4). These function generators, whose outputs are
labeled F' and G', are each capable of implementing any
arbitrarily defined Boolean function of their four inputs. The
function generators are implemented as memory look-up
tables; therefore, the propagation delay is independent of
the function being implemented. A third function genera-
tor, labeled H', can implement any Boolean function of its
three inputs: F' and G' and a third input from outside the
block (H1). Signals from the function generators can exit
the CLB on two outputs; F' or H' can be connected to the
X output, and G' or H' can be connected to the Y output.
Thus, a CLB can be used to implement any two independ-
ent functions of up-to-four variables, or any single function
of five variables, or any function of four variables together
with some functions of five variables , or it can implement
even some functions of up to nine variables. Implementing
wide functions in a single block reduces both the number
of blocks required and the delay in the signal path, achiev-
ing both increased density and speed.

The two storage elements in the CLB are edge-triggered
D-type flip-flops with common clock (K) and clock enable
(EC) inputs. A third common input (S/R) can be pro-
grammed as either an asynchronous set or reset signal
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independently for each of the two registers; this input also
can be disabled for either flip-flop. A separate global Set/
Reset line (not shown in Figure 1) sets or clears each
register during power-up, reconfiguration, or when a dedi-
cated Reset net is driven active. This Reset net does not
compete with other routing resources; it can be connected
to any package pin as a global reset input.

Each flip-flop can be triggered on either the rising or falling
clock edge. The source of a flip-flop data input is program-
mable: it is driven either by the functions F', G', and H', or
the Direct In (DIN) block input . The flip-flops drive the XQ
and YQ CLB outputs.

In addition, each CLB F' and G' function generator con-
tains dedicated arithmetic logic for the fast generation of
carry and borrow signals, greatly increasing the efficiency

and performance of adders, subtracters, accumulators,
comparators and even counters.

Multiplexers in the CLB map the four control inputs, la-
beled C1 through C4 in Figure 1, into the four internal
control signals (H1, DIN, S/R, and EC) in any arbitrary
manner.

The flexibility and symmetry of the CLB architecture facili-
tates the placement and routing of a given application.
Since the function generators and flip-flops have inde-
pendent inputs and outputs, each can be treated as a
separate entity during placement to achieve high packing
density. Inputs, outputs, and the functions themselves can
freely swap positions within a CLB to avoid routing conges-
tion during the placement and routing operation.

Figure 1. Simplified Block Diagram of XC4000-Families Configurable Logic Block
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Speed Is Enhanced Two Ways
Delays in LCA-based designs are layout dependent. While
this makes it hard to predict a worst-case guaranteed
performance, there is a rule of thumb designers can
consider — the system clock rate should not exceed one
third to one half of the specified toggle rate. Critical
portions of a design, shift registers and simple counters,
can run faster — approximately two thirds of the specified
toggle rate.

The XC4000 family can run at synchronous system clock
rates of up to 60 MHz. This increase in performance over
the previous families stems from two basic improve-
ments: improved architecture and more abundant routing
resources.

Improved Architecture
More Inputs : The versatility of the CLB function genera-
tors improves system speed significantly. Table 3 shows
how the XC4000 families implement many functions more
efficiently and faster than is possible with XC3000 devices.
A 9-bit parity checker, for example, can be implemented in
one CLB with a propagation delay of 7 ns. Using a
XC3000-family device, the same function requires two
CLBs with a propagation delay of 2 x 5.5 ns = 11 ns. One
XC4000 CLB can determine whether two 4-bit words are
identical, again with a 7-ns propagation delay. The ninth
input can be used for simple ripple expansion of this
identity comparator (25.5 ns over 16 bits, 51.5 ns over
32 bits), or a 2-layer identity comparator can generate the
result of a 32-bit comparison in 15 ns, at the cost of a single
extra CLB. Simpler functions like multiplexers also benefit
from the greater flexibility of the XC4000-families CLB. A
16-input multiplexer uses 5 CLBs and has a delay of only
13.5 ns.

More Outputs:  The CLB can pass the combinatorial
output(s) to the interconnect network, but can also store
the combinatorial result(s) or other incoming data in one or
two flip-flops, and connect their outputs to the interconnect

network as well. With XC3000-families CLBs the designer
has to make a choice, either output the combinatorial
function or the stored value. In the XC4000 families, the flip
flops can be used as registers or shift registers without
blocking the function generators from performing a differ-
ent, perhaps unrelated task. This increases the functional
density of the devices.

When a function generator drives a flip-flop in a CLB, the
combinatorial propagation delay overlaps completely with
the set-up time of the flip-flop. The set-up time is specified
between the function generator inputs and the clock input.
This represents a performance advantage over competing
technologies where combinatorial delays must be added
to the flip-flop set-up time.

Fast Carry:  As described earlier, each CLB includes high-
speed carry logic that can be activated by configuration.
The two 4-input function generators can be configured as
a 2-bit adder with built-in hidden carry that can be ex-
panded to any length. This dedicated carry circuitry is so
fast and efficient that conventional speed-up methods like
carry generate/propagate are meaningless even at the
16-bit level, and of marginal benefit at the 32-bit level.

A 16-bit adder requires nine CLBs and has a combinatorial
carry delay of 20.5 ns. Compare that to the 30 CLBs and
50 ns, or 41 CLBs and 30 ns in the XC3000 family.

The fast-carry logic opens the door to many new applica-
tions involving arithmetic operation, where the previous
generations of FPGAs were not fast and/or not efficient
enough. High-speed address offset calculations in micro-
processor or graphics systems, and high-speed addition in
digital signal processing are two typical applications.

Faster and More Efficient Counters:  The XC4000-fami-
lies fast-carry logic puts two counter bits into each CLB and
runs them at a clock rate of up to 42 MHz for 16 bits,
whether the counters are loadable or not. For a 16-bit

Table 3. Density and Performance for Several Common Circuit Functions

XC3000 (-125) XC4000 (-5)

16-bit Decoder From Input Pad 15 ns 4 CLBs 12 ns 0 CLBs
24-bit Accumulator 17 MHz 46 CLBs 32 MHz 13 CLBs
State Machine Benchmark* 18 MHz 34 CLBs 30 MHz 26 CLBs
16:1 Multiplexer 16 ns 8 CLBs 16 ns 5 CLBs
16-bit Unidirectional Max Density 20 MHz 16 CLBs 40 MHz 8 CLBs

Loadable Counter Max Speed 34 MHz 23 CLBs 42 MHz 9 CLBs
16-bit U/D Counter Max Density 20 MHz 16 CLBs 40 MHz 8 CLBs

Max Speed 30 MHz 27 CLBs 40 MHz 8 CLBs
16-bit Adder Max Density 50 ns 30 CLBs 20.5 ns 9 CLBs

Max Speed 30 ns 41 CLBs 20.5 ns 9 CLBs

 * 16 states, 40 transitions, 10 inputs, 8 outputs
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pass through a global buffer before arriving at the IOB. This
eliminates the possibility of a data hold-time requirement
at the external pin. The I1 and I2 signals that exit the block
can each carry either the direct or registered input signal.

Output signals can be inverted or not inverted, and can
pass directly to the pad or be stored in an edge-triggered
flip-flop. Optionally, an output enable signal can be used to
place the output buffer in a high-impedance state, imple-
menting 3-state outputs or bidirectional I/O. Under con-
figuration control, the output (OUT) and output enable
(OE) signals can be inverted, and the slew rate of the
output buffer can be reduced to minimize power bus
transients when switching non-critical signals. Each
XC4000-families output buffer is capable of sinking 12 mA;
two adjacent output buffers can be wire-ANDed externally
to sink up to 24 mA. In the XC4000A and XC4000H
families, each output buffer can sink 24 mA.

There are a number of other programmable options in the
IOB. Programmable pull-up and pull-down resistors are
useful for tying unused pins to VCC or ground to minimize
power consumption. Separate clock signals are provided
for the input and output registers; these clocks can be
inverted, generating either falling-edge or rising-edge trig-
gered flip-flops. As is the case with the CLB registers, a
global set/reset signal can be used to set or clear the input
and output registers whenever the RESET net is active.

Embedded logic attached to the IOBs contains test struc-
tures compatible with IEEE Standard 1149.1 for boundary-
scan testing, permitting easy chip and board-level testing.

Programmable Interconnect
All internal connections are composed of metal segments
with programmable switching points to implement the
desired routing. An abundance of different routing re-
sources is provided to achieve efficient automated routing.
The number of routing channels is scaled to the size of the
array; i.e., it increases with array size.

In previous generations of LCAs, the logic-block inputs
were located on the top, left, and bottom of the block;
outputs exited the block on the right, favoring left-to-right
data flow through the device. For the third-generation
family, the CLB inputs and outputs are distributed on all
four sides of the block, providing additional routing flexibil-
ity (Figure 6). In general, the entire architecture is more
symmetrical and regular than that of earlier generations,
and is more suited to well-established placement and
routing algorithms developed for conventional mask- pro-
grammed gate-array design.

There are three main types of interconnect, distinguished
by the relative length of their segments: single-length lines,
double-length lines, and Longlines. Note: The number of
routing channels shown in Figures 6 and 9 are for illustra-
tion purposes only; the actual number of routing channels
varies with array size. The routing scheme was designed
for minimum resistance and capacitance of the average
routing path, resulting in significant performance improve-
ments.

The single-length lines are a grid of horizontal and vertical
lines that intersect at a Switch Matrix between each block.
Figure 6 illustrates the single-length interconnect lines

Figure 6. Typical CLB Connections to Adjacent
Single-Length Lines

Figure 5. XC4000 and XC4000A Families
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Figure 9. Longline Routing Resources with
Typical CLB Connections

surrounding one CLB in the array. Each Switch Matrix
consists of programmable n-channel pass transistors used
to establish connections between the single-length lines
(Figure 7). For example, a signal entering on the right side
of the Switch Matrix can be routed to a single-length line on
the top, left, or bottom sides, or any combination thereof,
if multiple branches are required. Single-length lines are
normally used to conduct signals within a localized area
and to provide the branching for nets with fanout greater
than one.

Compared to the previous generations of LCA archi-
tectures, the number of possible connections through the
Switch Matrix has been reduced. This decreases capaci-
tive loading and minimizes routing delays, thus increasing
performance. However, a much more versatile set of
connections between the single-length lines and the CLB
inputs and outputs more than compensate for the reduc-
tion in Switch Matrix options, resulting in overall increased
routability.

The function generator and control inputs to the CLB (F1-
F4, G1-G4, and C1-C4) can be driven from any adjacent
single-length line segment (Figure 6). The CLB clock (K)
input can be driven from one-half of the adjacent single-
length lines. Each CLB output can drive several of the
single-length lines, with connections to both the horizontal
and vertical Longlines.

The double-length lines (Figure 8) consist of a grid of metal
segments twice as long as the single-length lines; i.e, a
double-length line runs past two CLBs before entering a
Switch Matrix. Double-length lines are grouped in pairs
with the Switch Matrices staggered so that each line goes
through a Switch Matrix at every other CLB location in that
row or column. As with single-length lines, all the CLB
inputs except K can be driven from any adjacent double-
length line, and each CLB output can drive nearby double-
length lines in both the vertical and horizontal planes.
Double-length lines provide the most efficient imple-
mentation of intermediate length, point-to-point inter-
connections.

Figure 8. Double-Length Lines

Longlines form a grid of metal interconnect segments that
run the entire length or width of the array (Figure 9).
Additional vertical longlines can be driven by special global
buffers, designed to distribute clocks and other high fanout
control signals throughout the array with minimal skew.
Longlines are intended for high fan-out, time-critical signal
nets. Each Longline has a programmable splitter switch at
its center, that can separate the line into two independent
routing channels, each running half the width or height of
the array. CLB inputs can be driven from a subset of the
adjacent Longlines; CLB outputs are routed to the Lon-
glines via 3-state buffers or the single-length intercon-
nected lines.

Figure 7. Switch Matrix
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The XACT system also includes XDelay, a static timing
analyzer. XDelay examines a design’s logic and timing to
calculate the performance along signal paths, identify pos-
sible race conditions, and detect set-up and hold-time
violations. Timing analyzers do not require that the user
generate input stimulus patterns or test vectors.

Summary

The result of eight years of FPGA design experience and
feedback from thousands of customers, the XC4000 families
combine architectural versatility, on-chip RAM, increased
speed and gate complexity with abundant routing resources
and new, sophisticated software to achieve fully automated
implementation of complex, high-performance designs.

7400 Equivalents

               # of CLBs
‘138 5
‘139 2
‘147 5
‘148 6
‘150 5
‘151 3
‘152 3
‘153 2
‘154 16
‘157 2
‘158 2
‘160 5
‘161 6
‘162 8
‘163 8
‘164 4
‘165s 9
‘166 5
‘168 7
‘174 3
‘194 5
‘195 3
‘280 3
‘283 8
‘298 2
‘352 2
‘390 3
‘518 3
‘521 3

Barrel Shifters

brlshft4 4
brlshft8 13

4-Bit Counters

cd4ce 3
cd4cle 5
cd4rle 6
cb4ce 3
cb4cle 6
cb4re 5

8- and 16-Bit Counters

cb8ce 6
cb8re 10
cc16ce 10
cc16cle 11
cc16cled 21

Identity Comparators

comp4 1
comp8 2
comp16 5

Magnitude Comparators

compm4 4
compm8 9
compm16 20

Decoders

d2-4e 2
d3-8e 4
d4-16e 16

Multiplexers

m2-1e 1
m4-1e 1
m8-1e 3
m16-1e 5

Registers

rd4r 2
rd8r 4
rd16r 8

Shift Registers

sr8ce 4
sr16re 8

RAMs

ram 16x4 2

Explanation of counter nomenclature

cb = binary counter
cd = BCD counter
cc = cascadable binary counter
d = bidirectional
l = loadable
x = cascadable
e = clock enable
r = synchronous reset
c = asynchronous clear

Figure 10. CLB Count of Selected XC4000 Soft Macros
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Each output buffer can be configured to be either fast or
slew-rate limited, which reduces noise generation and
ground bounce. Each I/O pin can be configured with either
an internal pull-up or pull down resistor, or with no internal
resistor. Independent of this choice, each IOB has a pull-
up resistor during the configuration process.

The 3-state output driver uses a totem pole n-channel
output structure. VOH is one n-channel threshold lower
than VCC, which makes rise and fall delays more
symmetrical.

Per IOB Per IOB Per IOB # Slew
Family Source Sink Pair Sink Modes

XC4000 4 12 24 2
XC4000A 4 24 48 4
XC4000H 4 24* 48 2

*XC4000H devices can sink only 4 mA configured for SoftEdge mode

Figure 11. XC4000 and XC4000A I/O Block

Detailed Functional Description

XC4000 and XC4000A Input/Output Blocks
(For XC4000H family, see page 2-82)
The IOB forms the interface between the internal logic and
the I/O pads of the LCA device. Under configuration con-
trol, the output buffer receives either the logic signal (.out)
routed from the internal logic to the IOB, or the complement
of this signal, or this same data after it has been clocked
into the output flip-flop.

As a configuration option, each flip-flop (CLB or IOB) is
initialized as either set or reset, and is also forced into this
programmable initialization state whenever the global Set/
Reset net is activated after configuration has been com-
pleted. The clock polarity of each IOB flip-flop can be
configured individually, as can the polarity of the 3-state
control for the output buffer.
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X1523

Figure 16. XC4000 Boundary Scan Logic. Includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port
controller, and the Instruction Register with decodes.
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 Mode M2 M1 M0 CCLK Data

Master Serial 0 0 0 output Bit-Serial
Slave Serial 1 1 1 input Bit-Serial

Master Parallel up 1 0 0 output Byte-Wide, 00000 ↑
Master Parallel down 1 1 0 output Byte-Wide, 3FFFF↓

Peripheral Synchr. 0 1 1 input Byte-Wide
Peripheral Asynchr. 1 0 1 output Byte-Wide

Reserved 0 1 0 — —
Reserved 0 0 1 — —

Peripheral Synchronous can be considered Slave Parallel

Oscillator
An internal oscillator is used for clocking of the power-on
time-out, configuration memory clearing, and as the source
of CCLK in Master modes. This oscillator signal runs at a
nominal 8 MHz and varies with process, VCC and
temperature between 10 MHz max and 4 MHz min. This
signal is available on an output control net (OSCO) in the
upper right corner of the chip, if the oscillator-run control bit
is enabled in the configuration memory. Two of four
resynchronized taps of the power-on time-out divider are
also available on OSC1 and OSC2. These taps are at the
fourth, ninth, fourteenth and nineteenth bits of the ripple
divider. This can provide output signals of approximately
500 kHz,16 kHz, 490 Hz and 15 Hz.

Special Purpose Pins
The mode pins are sampled prior to configuration to
determine the configuration mode and timing options. After
configuration, these pins can be used as auxiliary connec-
tions: Mode 0 (MD0.I) and Mode 2 (MD2.I) as inputs and
Mode 1 (MD1.O and MD1.T) as an output. The XACT
development system will not use these resources unless
they are explicitly specified in the design entry. These
dedicated nets are located in the lower left chip corner and
are near the readback nets. This allows convenient routing
if compatibility with the XC2000 and XC3000 family con-
ventions of M0/RT, M1/RD is desired.

Configuration

Configuration is the process of loading design-specific
programming data into one or more LCA devices to define
the functional operation of the internal blocks and their
interconnections. This is somewhat like loading the com-
mand registers of a programmable peripheral chip. The
XC4000 families use about 350 bits of configuration data
per CLB and its associated interconnects. Each configura-
tion bit defines the state of a static memory cell that
controls either a function look-up table bit, a multiplexer
input, or an interconnect pass transistor. The XACT devel-
opment system translates the design into a netlist file. It
automatically partitions, places and routes the logic and
generates the configuration data in PROM format.

Modes
The XC4000 families have six configuration modes se-
lected by a 3- bit input code applied to the M0, M1, and M2
inputs. There are three self-loading Master modes, two
Peripheral modes and the Serial Slave mode used prima-
rily for daisy-chained devices. During configuration, some
of the I/O pins are used temporarily for the configuration
process. See Table 6.

For a detailed description of these configuration modes,
see pages 2-32 through 2-41.

Master
The Master modes use an internal oscillator to generate
CCLK for driving potential slave devices, and to generate
address and timing for external PROM(s) containing the
configuration data. Master Parallel (up or down) modes
generate the CCLK signal and PROM addresses and
receive byte parallel data, which is internally serialized into
the LCA data-frame format. The up and down selection
generates starting addresses at either zero or 3FFFF, to
be compatible with different microprocessor addressing
conventions. The Master Serial mode generates CCLK
and receives the configuration data in serial form from a
Xilinx serial-configuration PROM.

Peripheral
The two Peripheral modes accept byte-wide data from a
bus. A READY/BUSY status is available as a handshake
signal. In the asynchronous mode, the internal oscillator
generates a CCLK burst signal that serializes the byte-
wide data. In the synchronous mode, an externally sup-
plied clock input to CCLK serializes the data.

Serial Slave
In the Serial Slave mode, the LCA device receives serial-
configuration data on the rising edge of CCLK and, after
loading its configuration, passes additional data out,
resynchronized on the next falling edge of CCLK. Multiple
slave devices with identical configurations can be wired
with parallel DIN inputs so that the devices can be config-
ured simultaneously.

Table 6. Configuration Modes
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device when it recognizes the 0010 preamble. Following
the length-count data, any LCA device outputs a High on
DOUT until it has received its required number of data
frames.

After an LCA device has received its configuration data, it
passes on any additional frame start bits and configuration
data on DOUT. When the total number of configuration
clocks applied after memory initialization equals the value
of the 24-bit length count, the LCA device(s) begin the
start-up sequence and become operational together.

Configuration Sequence
Configuration Memory Clear
When power is first applied or reapplied to an LCA device,
an internal circuit forces initialization of the configuration
logic. When VCC reaches an operational level, and the
circuit passes the write and read test of a sample pair of
configuration bits, a nominal 16-ms time delay is started
(four times longer when M0 is Low, i.e., in Master mode).
During this time delay, or as long as the PROGRAM input
is asserted, the configuration logic is held in a Configura-
tion Memory Clear state. The configuration-memory frames
are consecutively initialized, using the internal oscillator.
At the end of each complete pass through the frame
addressing, the power-on time-out delay circuitry and the
level of the PROGRAM pin are tested. If neither is as-
serted, the logic initiates one additional clearing of the
configuration frames and then tests the INIT input.

Initialization
During initialization and configuration, user pins HDC,
LDC and INIT provide status outputs for system interface.
The outputs, LDC, INIT and DONE are held Low and HDC
is held High starting at the initial application of power. The
open drain INIT pin is released after the final initialization
pass through the frame addresses. There is a deliberate
delay of 50 to 250 µs before a Master-mode device
recognizes an inactive INIT. Two internal clocks after the
INIT pin is recognized as High, the LCA device samples
the three mode lines to determine the configuration mode.
The appropriate interface lines become active and the
configuration preamble and data can be loaded.

Configuration
The 0010 preamble code indicates that the following
24 bits represent the length count, i.e., the total number of
configuration clocks needed to load the total configuration
data. After the preamble and the length count have been
passed through to all devices in the daisy chain, DOUT is
held High to prevent frame start bits from reaching any
daisy-chained devices. A specific configuration bit, early in
the first frame of a master device, controls the configura-
tion-clock rate and can increase it by a factor of eight. Each
frame has a Low start bit followed by the frame-configura-

Figure 20. Start-up Sequence
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The XC4000 family introduces an additional option: When
this option is enabled, the user can externally hold the
open-drain DONE output Low, and thus stall all further
progress in the Start-up sequence, until DONE is released
and has gone High. This option can be used to force
synchronization of several LCA devices to a common user
clock, or to guarantee that all devices are successfully
configured before any I/Os go active.

Start-up Sequence
The Start-up sequence begins when the configuration
memory is full, and the total number of configuration clocks
received since INIT went High equals the loaded value of
the length count. The next rising clock edge sets a flip-flop
Q0 (see Figure 22), the leading bit of a 5-bit shift register.

The outputs of this register can be programmed to control
three events.

• The release of the open-drain DONE output,

• The change of configuration-related pins to the

user function, activating all IOBs.

• The termination of the global Set/Reset initialization

of all CLB and IOB storage elements.

The DONE pin can also be wire-ANDed with DONE pins of
other LCA devices or with other external signals, and can
then be used as input to bit Q3 of the start-up register. This
is called “Start-up Timing Synchronous to Done In” and
labeled: CCLK_SYNC or UCLK_SYNC. When DONE is
not used as an input, the operation is called Start-up
Timing Not Synchronous to DONE In, and is labeled
CCLK_NOSYNC or UCLK_NOSYNC. These labels are
not intuitively obvious.

As a configuration option, the start-up control register
beyond Q0 can be clocked either by subsequent CCLK
pulses or from an on-chip user net called STARTUP.CLK.

Start-up from CCLK
If CCLK is used to drive the start-up, Q0 through Q3
provide the timing. Heavy lines in Figure 21 show the
default timing which is compatible with XC2000 and XC3000
devices using early DONE and late Reset.The thin lines
indicate all other possible timing options.

Start-up from a User Clock (STARTUP.CLK)
When, instead of CCLK, a user-supplied start-up clock is
selected, Q1 is used to bridge the unknown phase relation-
ship between CCLK and the user clock. This arbitration
causes an unavoidable one-cycle uncertainty in the timing
of the rest of the start-up sequence.

tion data bits and a 4-bit frame error field. If a frame data
error is detected, the LCA device halts loading, and signals
the error by pulling the open-drain INIT pin Low.

After all configuration frames have been loaded into an
LCA device, DOUT again follows the input data so that the
remaining data is passed on to the next device.

Start-Up

Start-up is the transition from the configuration process to
the intended user operation. This means a change from
one clock source to another, and a change from interfacing
parallel or serial configuration data where most outputs are
3-stated, to normal operation with I/O pins active in the
user-system. Start-up must make sure that the user-logic
“wakes up” gracefully, that the outputs become active
without causing contention with the configuration signals,
and that the internal flip-flops are released from the global
Reset or Set at the right time.

Figure 21 describes Start-up timing for the three Xilinx
families in detail.

The XC2000 family goes through a fixed sequence:

DONE goes High and the internal global Reset is de-
activated one CCLK period after the I/O become active.

The XC3000A family offers some flexibility: DONE can be
programmed to go High one CCLK period before or after
the I/O become active. Independent of DONE, the internal
global Reset is de-activated one CCLK period before or
after the I/O become active.

The XC4000 family offers additional flexibility: The three
events, DONE going High, the internal Reset/Set being
de-activated, and the user I/O going active, can all occur
in any arbitrary sequence, each of them one CCLK period
before or after, or simultaneous with, any of the other.

The default option, and the most practical one, is for DONE
to go High first, disconnecting the configuration data
source and avoiding any contention when the I/Os become
active one clock later. Reset/Set is then released another
clock period later to make sure that user-operation starts
from stable internal conditions. This is the most common
sequence, shown with heavy lines in Figure 21, but the
designer can modify it to meet particular requirements.

The XC4000 family offers another start-up clocking option:
The three events described above don’t have to be trig-
gered by CCLK, they can, as a configuration option, be
triggered by a user clock. This means that the device can
wake up in synchronism with the user system.
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All Xilinx FPGAs of the XC2000, XC3000, XC4000 familiies
use a compatible bitstream format and can, therefore, be
connected in a daisy-chain in an arbitrary sequence. There
is however one limitation. The lead device must belong to
the highest family in the chain. If the chain contains
XC4000 devices, the master cannot be an XC2000 or
XC3000 device; if the daisy-chain contains XC3000 de-
vices, the master cannot be an XC2000 device. The
reason for this rule is shown in Figure 21 on the previous
page. Since all devices in the chain store the same length
count value and generate or receive one common se-
quence of CCLK pulses, they all recognize length-count
match on the same CCLK edge, as indicated on the left
edge of Figure 21. The master device will then drive
additional CCLK pulses until it reaches its finish point F.
The different families generate or require different num-
bers of additional CCLK pulses until they reach F.

Not reaching F means that the device does not really finish
its configuration, although DONE may have gone High, the

outputs became active, and the internal RESET was
released. The user has some control over the relative
timing of these events and can, therefore, make sure that
they occur early enough.

But, for XC4000, not reaching F means that READBACK
cannot be initiated and most Boundary Scan instructions
cannot be used.This limitation has been critized by design-
ers who want to use an inexpensive lead device in periph-
eral mode and have the more precious I/O pins of the
XC4000 devices all available for user I/O. Here is a
solution for that case.

One CLB and one IOB in the lead XC3000 device are used
to generate the additional CCLK pulse required by the
XC4000 devices. When the lead device removes the
internal RESET signal, the 2-bit shift register responds to
its clock input and generates an active Low output signal
for the duration of the subsequent clock period. An exter-
nal connection between this output and CCLK thus creates
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data on the RDBK.DATA net. Readback data does not
include the preamble, but starts with five dummy bits (all
High) followed by the Start bit (Low) of the first frame. The
first two data bits of the first frame are always High.

Note that, in the XC4000 families, data is not inverted with
respect to configuration the way it is in XC2000 and
XC3000 families.

Each frame ends with four error check bits. They are read
back as High. The last seven bits of the last frame are also
read back as High. An additional Start bit (Low) and an
11-bit Cyclic Redundancy Check (CRC) signature follow,
before RIP returns Low.

Readback options are: Read Capture, Read Abort, and
Clock Select.

Read Capture
When the Readback Capture option is selected, the
readback data stream includes sampled values of CLB
and IOB signals imbedded in the data stream. The rising
edge of RDBK.TRIG located in the lower-left chip corner,
captures, in latches, the inverted values of the four CLB
outputs and the IOB output flip-flops and the input signals
I1, I2 . When the capture option is not selected, the values
of the capture bits reflect the configuration data originally
written to those memory locations. If the RAM capability of
the CLBs is used, RAM data are available in readback,
since they directly overwrite the F and G function-table
configuration of the CLB.

Read Abort
When the Readback Abort option is selected, a High-to-
Low transition on RDBK.TRIG terminates the readback
operation and prepares the logic to accept another trigger.
After an aborted readback, additional clocks (up-to-one
readback clock per configuration frame) may be required
to re-initialize the control logic. The status of readback is
indicated by the output control net (RDBK.RIP).

Clock Select
Readback control and data are clocked on rising edges of
RDBK.CLK located in the lower right chip corner. CCLK is
an optional clock. If Readback must be inhibited for secu-
rity reasons, the readback control nets are simply not
connected.

XChecker
The XChecker Universal Download/Readback Cable and
Logic Probe uses the Readback feature for bitstream
verification and for display of selected internal signals on
the PC or workstation screen, effectively as a low-cost in-
circuit emulator.

the extra CCLK pulse. This solution requires one CLB, one
IOB and pin, and an internal oscillator with a frequency of
up to 5 MHz as available clock source. Obviously, this
XC3000 master device must be configured with late Inter-
nal Reset, which happens to be the default option.

Using Global Set/Reset and Global 3-State Nets
The global Set/Reset (STARTUP.GSR) net can be driven
by the user at any time to re-initialize all CLBs and IOBs to
the same state they had at the end of configuration. For
CLBs that is the same state as the one driven by the
individually programmable asynchronous Set/Reset in-
puts. The global 3-state net (STARTUP.GTS), whenever
activated after configuration is completed, forces all LCA
outputs to the high-impedance state, unless Boundary
Scan is enabled and is executing an EXTEST instruction.

Readback

The user can read back the content of configuration
memory and the level of certain internal nodes without
interfering with the normal operation of the device.

Readback reports not only the downloaded configuration
bits, but can also include the present state of the device
represented by the content of all used flip-flops and latches
in CLBs and IOBs, as well as the content of function
generators used as RAMs.

XC4000 Readback does not use any dedicated pins, but
uses four internal nets (RDBK.TRIG, RDBK.DATA,
RDBK.RIP and RDBK.CLK ) that can be routed to any IOB.

After Readback has been initiated by a Low-to-High tran-
sition on RDBK.TRIG, the RDBK.RIP (Read In Progress)
output goes High on the next rising edge of RDBK.CLK.
Subsequent rising edges of this clock shift out Readback
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Slave Serial Mode

In Slave Serial mode, an external signal drives the CCLK
input(s) of the LCA device(s). The serial configuration
bitstream must be available at the DIN input of the lead
LCA device a short set-up time before each rising CCLK
edge. The lead LCA device then presents the preamble
data (and all data that overflows the lead device) on its
DOUT pin.

There is an internal delay of 0.5 CCLK periods, which
means that DOUT changes on the falling CCLK edge, and
the next LCA device in the daisy-chain accepts data on the
subsequent rising CCLK edge.

How to Delay Configuration After Power-Up
There are two methods to delay configuration after power-
up: Put a logic Low on the PROGRAM input, or pull the
bidirectional INIT pin Low, using an open-collector (open-
drain) driver. (See also Figure 20 on page 2-27.)

A Low on the PROGRAM input is the more radical ap-
proach, and is recommended when the power-supply rise
time is excessive or poorly defined. As long as PROGRAM
is Low, the XC4000 device keeps clearing its configuration
memory. When PROGRAM goes High, the configuration
memory is cleared one more time, followed by the begin-
ning of configuration, provided the INIT input is not exter-
nally held Low. Note that a Low on the PROGRAM input
automatically forces a Low on the INIT output.

Using an open-collector or open-drain driver to hold INIT
Low before the beginning of configuration, causes the LCA
device to wait after having completed the configuration
memory clear operation. When INIT is no longer held Low
externally, the device determines its configuration mode
by capturing its status inputs, and is ready to start the
configuration process. A master device waits an additional
max 250 µs to make sure that all slaves in the potential
daisy-chain have seen INIT being High.
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Description Symbol Min Max Units

 CCLK INIT (High) Setup time required 1 TIC 5 µs

D0-D7 Setup time required 2 TDC 60 ns

D0-D7 Hold time required 3 TCD 0 ns

CCLK High time TCCH 50 ns

CCLK Low time TCCL 60 ns

CCLK Frequency FCC 8 MHz

Notes: Peripheral Synchronous mode can be considered Slave Parallel mode. An external CCLK provides timing, clocking in
the first  data byte on the second  rising edge of CCLK after INIT goes High. Subsequent data bytes are clocked in on
every eighth consecutive rising edge of CCLK.

The RDY/BUSY line goes High for one CCLK period after data has been clocked in, although synchronous operation
does not require such a response.

The pin name RDY/BUSY is a misnomer; in Synchronous Peripheral mode this is really an ACKNOWLEDGE signal.

Note that data starts to shift out serially on the DOUT pin 0.5 CLK periods after it was loaded in parallel. This obviously
requires additional CCLK pulses after the last byte has been loaded.

Synchronous Peripheral Mode Programming Switching Characteristics
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Write to LCA
Asynchronous Peripheral mode uses the trailing edge of
the logic AND condition of the CS0, CS1 and WS inputs to
accept byte-wide data from a microprocessor bus. In the
lead LCA device, this data is loaded into a double-buffered
UART-like parallel-to-serial converter and is serially shifted
into the internal logic. The lead LCA device presents the
preamble data (and all data that overflows the lead device)
on the DOUT pin.

The RDY/BUSY output from the lead LCA device acts as
a handshake signal to the microprocessor. RDY/BUSY
goes Low when a byte has been received, and goes High
again when the byte-wide input buffer has transferred its
information into the shift register, and the buffer is ready to
receive new data. The length of the BUSY signal depends
on the activity in the UART. If the shift register had been
empty when the new byte was received, the BUSY signal
lasts for only two CCLK periods. If the shift register was still
full when the new byte was received, the BUSY signal can
be as long as nine CCLK periods.

Note that after the last byte has been entered, only seven
of its bits are shifted out. CCLK remains High with DOUT
equal to bit 6 (the next-to-last bit) of the last byte entered.
The READY/BUSY handshake can be ignored if the delay
from any one Write to the end of the next Write is guaran-
teed to be longer than 10 CCLK periods,i.e. longer than 20
µs.

Status Read

The logic AND condition of the CS0, CS1and RS inputs
puts the device status on the Data bus.

D7 = High indicates Ready
D7 - Low indicates Busy
D0 through D6 go unconditionally High

It is mandatory that the whole start-up sequence be started
and completed by one byte-wide input. Otherwise, the pins
used as Write Strobe or Chip Enable might become active
outputs and inteffere with the final byte transfer. If this
transfer does not occur, the start-up sequence will not be
completed all the way to the finish (point F in Figure 21 on
page 2-29). At worst, the internal reset will not be released;
at best, Readback and Boundary Scan will be inhibited.
The length-count value, as generated by MAKEPROM, is
supposed to ensure that these problems never occur.

Although RDY/BUSY is brought out as a separate signal,
microprocessors can more easily read this information on
one of the data lines. For this purpose, D7 represents the
RDY/BUSY status when RS is Low, WS is High, and the
two chip select lines are both active.

How to Delay Configuration After Power-Up
There are two methods to delay configuration after power-
up: Put a logic Low on the PROGRAM input, or pull the
bidirectional INIT pin Low, using an open-collector (open-
drain) driver. (See also Figure 20 on page 2-27).
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Description Symbol Min Max Units

Write Effective Write time required 1 TCA 100 ns
(CS0, WS = Low,  RS, CS1 = High)

DIN Setup time required 2 TDC 60 ns
DIN Hold time required 3 TCD 0 ns

RDY/BUSY delay after end of 4 TWTRB 60 ns
Write or Read
RDY/BUSY active after begining of 7
Read 60 ns

RDY Earliest next WS after end of BUSY 5 TRBWT 0 ns

BUSY Low output (Note 4) 6 TBUSY 2 9 CCLK

Notes: 1. Configuration must be delayed until the INIT of all LCA devices is High.
2. Time from end of WS to CCLK cycle for the new byte of data depends on completion of previous byte processing and

 the phase of the internal timing generator for CCLK.
3. CCLK and DOUT timing is tested in slave mode.
4. TBUSY indicates that the double-buffered parallel-to-serial converter is not yet ready to receive new data.

The shortest TBUSY occurs when a byte is loaded into an empty parallel-to-serial converter. The longest TBUSY occurs
when a new word is loaded into the input register before the second-level buffer has started shifting out data.

A Low on the PROGRAM input is the more radical ap-
proach, and is recommended when the power-supply rise
time is excessive or poorly defined. As long as PROGRAM
is Low, the XC4000 device keeps clearing its configuration
memory. When PROGRAM goes High, the configuration
memory is cleared one more time, followed by the begin-
ning of configuration, provided the INIT input is not exter-
nally held Low. Note that a Low on the PROGRAM input
automatically forces a Low on the INIT output.

This timing diagram shows very relaxed requirements:
Data need not be held beyond the rising edge of WS. BUSY will go active within 60 ns after the end of WS.

WS may be asserted immediately after the end of BUSY.

Using an open-collector or open-drain driver to hold INIT
Low before the beginning of configuration, causes the LCA
device to wait after having completed the configuration
memory clear operation. When INIT is no longer held Low
externally, the device determines its configuration mode
by capturing its status inputs, and is ready to start the
configuration process. A master device waits an additional
max 250 µs to make sure that all slaves in the potential
daisy-chain have seen INIT being High.

Periods

Asynchronous Peripheral Mode Programming Switching Characteristics

Previous Byte D6 D7 D0 D1 D2

1 TCA

2 TDC

4TWTRB

3 TCD

6 TBUSY

READY

BUSY

RS, CS0

WS, CS1 

D7 

WS/CS0

RS, CS1

D0-D7

CCLK

RDY/BUSY

DOUT

Write to LCA Read Status

X6097

7 4
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For a detailed description of the device architecture, see page 2-9 through 2-31.

For a detailed description of the configuration modes and their timing, see pages 2-32 through 2-55.

For detailed lists of package pinouts, see pages 2-57 through 2-67, 2-70, 2-81 through 2-85, and 2-100 through 2-101.

For package physical dimensions and thermal data, see Section 4.

Ordering Information

Device Type

Component Availability

Example: XC4010-5PG191C

Package Type

Number of Pins

Temperature Range

Speed Grade

PINS 84 100 120 144 156 160 164 191 196 208 223 225 240 299 3 0 4
TOP TOP TOP

TYPE PLAST. PLAST. PLAST. BRAZED CERAM. PLAST. CERAM PLAST. BRAZED CERAM. BRAZED PLAST. METAL CERAM. PLAST. PLAST. METAL METAL HI
PLCC PQFP VQFP CQFP PGA TQFP PGA PQFP CQFP PGA CQFP PQFP PQFP PGA BGA PQFP PQFP PQFP QUAD

CODE PC84 PQ100 VQ100 CB100 PG120 TQ144 PG156 PQ160 CB164 PG191 CB196 PQ208 MQ208 PG223 BG225 PQ240 MQ240 PG299 HQ304
-6 C I  C I C I

XC4003 -5 C C C

-4 C C C

-10 M B M B

XC4005 -6  C I  C I C I M B  C I M B  C I

-5  C I  C I  C I  C I  C I

-4 C C C C C

-6  C I  C I  C I  C I

XC4006 -5  C I  C I  C I  C I

-4 C C C C

-6  C I  C I  C I C I  C I

XC4008 -5  C I  C I C I C I  C I

-4 C C C C C

-10 M B M B

XC4010 -6  C I   C I C I M B M B C I  C I  C I

-5  C I  C I  C I C I  C I  C I

-4 C C C C C C

-6  C I  C I  C I  C I

XC4010D -5  C I  C I  C I  C I

-4 C C C

-6  C I   C I C I CI (M B)  C I CI C I

XC4013 -5  C I  C I C I  C I  C I  C I  C I

-4 C C C C C CI C

-6  C I  C I  C I  C I

XC4013D -5  C I  C I  C I  C I

-4 C C C C

-6  (C I) (C I) (C I) (C I)

XC4020 -5 (C I) (C I) (C I) (C I)

-4 (C) (C) (C) (C)

-6 C C I  C I  C I

XC4025 -5 C  C I  C I  C I

-4
-6 C I C I C I C I

XC4002A -5 C C C C

-4
-10 M B M B

XC4003A -6 C I C I C I M B C I M B

-5 C C C C

-4 C C C C

-6 C I C I C I C I

XC4004A -5 C C C C

-4
-6 C I C I C I C I C I

XC4005A -5 C I C I C I C I C I  
-4 C C C C C

XC4003H -6 C I C I
-5 C C

XC4005H -6 C I C I C I
-5 C C C

C = Commercial = 0° to +85° C I = Industrial = -40° to +100° C M = Mil Temp = -55° to +125° C
B = MIL-STD-883C Class B Parentheses indicate future product plans


