E·XFL

AMD Xilinx - XC4013-5PQ208C Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	576
Number of Logic Elements/Cells	1368
Total RAM Bits	18432
Number of I/O	160
Number of Gates	13000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc4013-5pq208c

Email: info@E-XFL.COM

- . ..

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC4000 Compared to XC3000A

For those readers already familiar with the XC3000A family of Xilinx Field Programmable Gate Arrays, here is a concise list of the major new features in the XC4000 family.

CLB has two **independent** 4-input function generators. A **third** function generator combines the outputs of the two other function generators with a ninth input. All function inputs are swappable, all have full access; none are mutually exclusive.

- CLB has very fast arithmetic carry capability.
- CLB function generator look-up table can also be used as high-speed **RAM**.
- CLB flip-flops have asynchronous set or reset.
- CLB has four outputs, two flip-flops, two combinatorial.
- CLB connections symmetrically located on all four edges.
- **IOB** has more versatile clocking polarity options.

IOB has programmable input set-up time: **long** to avoid potential hold time problems,

short to improve performance. **IOB** has Longline access through its own TBUF.

Outputs are **n-channel only**, lower V_{OH} increases speed. XC4000 outputs can be paired to double sink current to **24 mA.** XC4000A and XC4000H outputs can each

sink 24 mA, can be paired for **48 mA** sink current.

IEEE 1149.1- type **boundary scan** is supported in the I/O.

Wide decoders on all four edges of the LCA device.

Increased number of interconnect resources.

All CLB inputs and outputs have access to most interconnect lines.

Switch Matrices are simplified to increase speed.

- **Eight global nets** can be used for clocking or distributing logic signals.
- **TBUF** output configuration is more versatile and 3-state control less confined.

Program is single-function input pin,overrides everything. **INIT** pin also acts as Configuration Error output.

Peripheral Synchronous Mode (8 bit) has been added. Peripheral Asynchronous Mode has improved handshake.

- **Start-up** can be **synchronized** to any user clock (this is a configuration option).
- No Powerdown, but instead a **Global 3-state input** that does not reset any flip-flops.

No on-chip crystal oscillator amplifier.

Configuration Bit Stream includes CRC error checking. Configuration Clock can be increased to >8 MHz.

- Configuration Clock is **fully static**, no constraint on the maximum Low time.
- **Readback** either ignores flip-flop content (avoids need for masking) or it takes a **snapshot** of all flip-flops at the start of Readback.
- Readback has same **polarity** as Configuration and can be **aborted.**

 Table 2. Three Generations of Xilinx Field-Programmable Gate Array Families

Parameter	XC4025	XC3195A	XC2018
Number of flip-flops	2,560	1,320	174
Max number of user I/O	256	176	74
Max number of RAM bits	32,768	0	0
Function generators per CLB	3	2	2
Number of logic inputs per CLB	9	5	4
Number of logic outputs per CLB	4	2	2
Number of low-skew global nets	8	2	2
Dedicated decoders	yes	no	no
Fast carry logic	yes	no	no
Internal 3-state drivers	yes	yes	no
Output slew-rate control	yes	yes	no
Power-down option	no	yes	yes
Crystal oscillator circuit	no	yes	yes

Speed Is Enhanced Two Ways

Delays in LCA-based designs are layout dependent. While this makes it hard to predict a worst-case guaranteed performance, there is a rule of thumb designers can consider — the system clock rate should not exceed one third to one half of the specified toggle rate. Critical portions of a design, shift registers and simple counters, can run faster — approximately two thirds of the specified toggle rate.

The XC4000 family can run at synchronous system clock rates of up to 60 MHz. This increase in performance over the previous families stems from two basic improvements: improved architecture and more abundant routing resources.

Improved Architecture

More Inputs: The versatility of the CLB function generators improves system speed significantly. Table 3 shows how the XC4000 families implement many functions more efficiently and faster than is possible with XC3000 devices. A 9-bit parity checker, for example, can be implemented in one CLB with a propagation delay of 7 ns. Using a XC3000-family device, the same function requires two CLBs with a propagation delay of 2×5.5 ns = 11 ns. One XC4000 CLB can determine whether two 4-bit words are identical, again with a 7-ns propagation delay. The ninth input can be used for simple ripple expansion of this identity comparator (25.5 ns over 16 bits, 51.5 ns over 32 bits), or a 2-layer identity comparator can generate the result of a 32-bit comparison in 15 ns, at the cost of a single extra CLB. Simpler functions like multiplexers also benefit from the greater flexibility of the XC4000-families CLB. A 16-input multiplexer uses 5 CLBs and has a delay of only 13.5 ns.

More Outputs: The CLB can pass the combinatorial output(s) to the interconnect network, but can also store the combinatorial result(s) or other incoming data in one or two flip-flops, and connect their outputs to the interconnect

network as well. With XC3000-families CLBs the designer has to make a choice, either output the combinatorial function or the stored value. In the XC4000 families, the flip flops can be used as registers or shift registers without blocking the function generators from performing a different, perhaps unrelated task. This increases the functional density of the devices.

When a function generator drives a flip-flop in a CLB, the combinatorial propagation delay *overlaps completely* with the set-up time of the flip-flop. The set-up time is specified between the function generator inputs and the clock input. This represents a performance advantage over competing technologies where combinatorial delays must be added to the flip-flop set-up time.

Fast Carry: As described earlier, each CLB includes highspeed carry logic that can be activated by configuration. The two 4-input function generators can be configured as a 2-bit adder with built-in hidden carry that can be expanded to any length. This dedicated carry circuitry is so fast and efficient that conventional speed-up methods like carry generate/propagate are meaningless even at the 16-bit level, and of marginal benefit at the 32-bit level.

A 16-bit adder requires nine CLBs and has a combinatorial carry delay of 20.5 ns. Compare that to the 30 CLBs and 50 ns, or 41 CLBs and 30 ns in the XC3000 family.

The fast-carry logic opens the door to many new applications involving arithmetic operation, where the previous generations of FPGAs were not fast and/or not efficient enough. High-speed address offset calculations in microprocessor or graphics systems, and high-speed addition in digital signal processing are two typical applications.

Faster and More Efficient Counters: The XC4000-families fast-carry logic puts two counter bits into each CLB and runs them at a clock rate of up to 42 MHz for 16 bits, whether the counters are loadable or not. For a 16-bit

		XC300	0 (-125)	XC4000 (-5)		
16-bit Decoder From Input P	ad	15 ns	4 CLBs	12 ns	0 CLBs	
24-bit Accumulator		17 MHz	46 CLBs	32 MHz	13 CLBs	
State Machine Benchmark*		18 MHz	34 CLBs	30 MHz	26 CLBs	
16:1 Multiplexer		16 ns	8 CLBs	16 ns	5 CLBs	
16-bit Unidirectional	Max Density	20 MHz	16 CLBs	40 MHz	8 CLBs	
Loadable Counter	Max Speed	34 MHz	23 CLBs	42 MHz	9 CLBs	
16-bit U/D Counter	Max Density	20 MHz	16 CLBs	40 MHz	8 CLBs	
	Max Speed	30 MHz	27 CLBs	40 MHz	8 CLBs	
16-bit Adder	Max Density	50 ns	30 CLBs	20.5 ns	9 CLBs	
	Max Speed	30 ns	41 CLBs	20.5 ns	9 CLBs	

Table 3. Density and Performance for Several Common Circuit Functions

* 16 states, 40 transitions, 10 inputs, 8 outputs

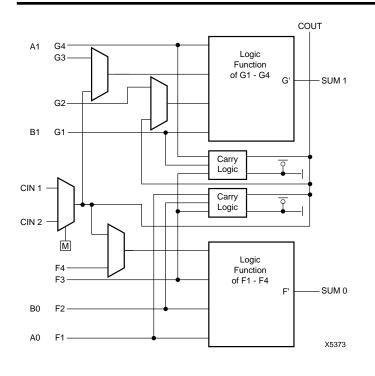


Figure 2. Fast Carry Logic in Each CLB

up/down counter, this means twice the speed in half the number of CLBs, compared with the XC3000 families.

Pipelining Speeds Up The System: The abundance of flip-flops in the CLBs invites pipelined designs. This is a powerful way of increasing performance by breaking the function into smaller subfunctions and executing them in parallel, passing on the results through pipeline flip-flops. This method should be seriously considered wherever total performance is more important than simple through-delay.

Wide Edge Decoding: For years, FPGAs have suffered from the lack of wide decoding circuitry. When the address or data field is wider than the function generator inputs (five bits in the XC3000 families), FPGAs need multi-level decoding and are thus slower than PALs. The XC4000family CLBs have nine inputs; any decoder of up to nine inputs is, therefore, compact and fast. But, there is also a need for much wider decoders, especially for address decoding in large microprocessor systems. The XC4000 family has four programmable decoders located on each edge of each device. Each of these wired-AND gates is capable of accepting up to 42 inputs on the XC4005 and 72 on the XC4013. These decoders may also be split in two when a large number of narrower decoders are required for a maximum of 32 per device. These dedicated decoders accept I/O signals and internal signals as inputs and generate a decoded internal signal in 18 ns, pin-to-pin. The XC4000A family has only two decoder AND gates per edge which, when split provide a maximum of 16 per device. Very large PALs can be emulated by ORing the decoder outputs in a CLB. This decoding feature covers what has long been considered a weakness of FPGAs. Users often resorted to external PALs for simple but fast decoding functions. Now, the dedicated decoders in the XC4000 can implement these functions efficiently and fast.

Higher Output Current: The 4-mA maximum output current specification of today's FPGAs often forces the user to add external buffers, cumbersome especially on bidirectional I/O lines. The XC4000 families solve many of these problems by increasing the maximum output sink current to 12 mA. Two adjacent outputs may be interconnected to increase the output sink current to 24 mA. The FPGA can thus drive short buses on a pc board. The XC4000A and XC4000H outputs can sink 24 mA per output and can double up for 48 mA.

While the XC2000 and XC3000 families used complementary output transistors, the XC4000 outputs are n-channel for both pull-down and pull-up, somewhat analogous to the classical totem pole used in TTL. The reduced output High level (VOH) makes circuit delays more symmetrical for TTL-threshold systems. The XC4000H outputs have an optional p-channel output transistor.

Abundant Routing Resources

Connections between blocks are made by metal lines with programmable switching points and switching matrices. Compared to the previous LCA families, these routing resources have been increased dramatically. The number of globally distributed signals has been increased from two to eight, and these lines have access to any clock or logic input. The designer of synchronous systems can now distribute not only several clocks, but also control signals, all over the chip, without having to worry about any skew.

There are more than twice as many horizontal and vertical Longlines that can carry signals across the length or width of the chip with minimal delay and negligible skew. The horizontal Longlines can be driven by 3-state buffers, and can thus be used as unidirectional or bidirectional data buses; or they can implement wide multiplexers or wired-AND functions.

Single-length lines connect the switching matrices that are located at every intersection of a row and a column of CLBs. These lines provide the greatest interconnect flexibility, but cause a delay whenever they go through a switching matrix. Double-length lines bypass every other matrix, and provide faster signal routing over intermediate distances.

Compared to the XC3000 family, the XC4000 families have more than double the routing resources, and they are arranged in a far more regular fashion. In older devices,

XILINX

inputs could not be driven by all adjacent routing lines. In the XC4000 families, these constraints have been largely eliminated. This makes it easier for the software to complete the routing of complex interconnect patterns.

Chip architects and software designers worked closely together to achieve a solution that is not only inherently powerful, but also easy to utilize by the software-driven design tools for Partitioning, Placement and Routing. The goal was to provide automated push-button software tools that complete almost all designs, even large and dense ones, automatically, without operator assistance. But these tools will still give the designer the option to get involved in the partitioning, placement and, to a lesser extent, even the routing of critical parts of the design, if that is needed to optimize the performance.

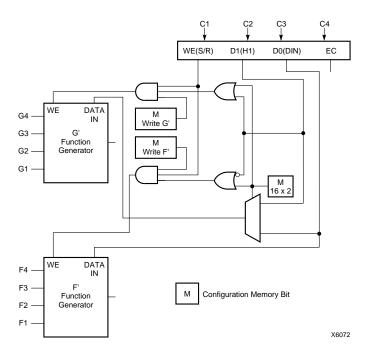
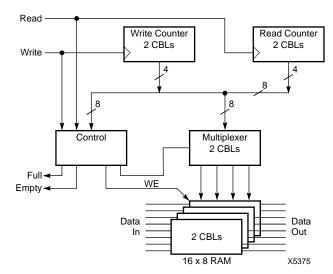
On-Chip Memory

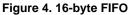
The XC4000, XC4000A and XC4000H family devices are the first programmable logic devices with RAM accessible to the user.

An optional mode for each CLB makes the memory lookup tables in the F' and G' function generators usable as either a 16 x 2 or 32 x 1 bit array of Read/Write memory cells (Figure 3). The F1-F4 and G1-G4 inputs to the function generators act as address lines, selecting a particular memory cell in each look-up table. The functionality of the CLB control signals change in this configuration; the H1, DIN, and S/R lines become the two data inputs and the Write Enable (WE) input for the 16 x 2 memory. When the 32 x 1 configuration is selected, D1 acts as the fifth address bit and D0 is the data input. The contents of the memory cell(s) being addressed are available at the F' and G' function-generator outputs, and can exit the CLB through its X and Y outputs, or can be pipelined using the CLB flip-flop(s).

Configuring the CLB function generators as Read/Write memory does not affect the functionality of the other portions of the CLB, with the exception of the redefinition of the control signals. The H' function generator can be used to implement Boolean functions of F', G', and D1, and the D flip-flops can latch the F', G', H', or D0 signals.

The RAMs are very fast; read access is the same as logic delay, about 5.5 ns; write time is about 8 ns; both are several times faster than any off-chip solution. Such distributed RAM is a novel concept, creating new possibilities in system design: registered arrays of multiple accumulators, status registers, index registers, DMA counters, distributed shift registers, LIFO stacks, and FIFO buffers. The data path of a 16-byte FIFO uses four CLBs for storage, and six CLBs for address counting and multiplexing (Figure 4). With 32 storage locations per CLB, compared to two flip-flops per CLB, the cost of intelligent distributed memory has been reduced by a factor of 16.


Figure 3. CLB Function Generators Can Be Used as Read/Write Memory Cells

Input/Output Blocks (IOBs), XC4000 and XC4000A Families (for XC4000H family, see page 2-82) User-configurable IOBs provide the interface between external package pins and the internal logic (Figure 5). Each IOB controls one package pin and can be defined for

input, output, or bidirectional signals.

Two paths, labeled 11 and 12, bring input signals into the array. Inputs are routed to an input register that can be programmed as either an edge-triggered flip-flop or a level-sensitive transparent latch. Optionally, the data input to the register can be delayed by several nanoseconds to compensate for the delay on the clock signal, that first must

comparators, counters, data registers, decoders, encoders, I/O functions, latches, Boolean functions, RAM and ROM memory blocks, multiplexers, shift registers, and barrel shifters.

Designing with macros is as easy as designing with standard SSI/MSI functions. The 'soft macro' library contains detailed descriptions of common logic functions, but does not contain any partitioning or routing information. The performance of these macros depends, therefore, on how the PPR software processes the design. Relationally Placed Macros (RPMs), on the other hand, do contain predetermined partitioning and relative placement information, resulting in an optimized implementation for these functions. Users can create their own library elements – either soft macros or RPMs – based on the macros and primitives of the standard library.

X-BLOX is a graphics-based high-level description language (HDL) that allows designers to use a schematic editor to enter designs as a set of generic modules. The X-BLOX compiler optimizes the modules for the target device architecture, automatically choosing the appropriate architectural resources for each function.

The XACT design environment supports hierarchical design entry, with top-level drawings defining the major functional blocks, and lower-level descriptions defining the logic in each block. The implementation tools automatically combine the hierarchical elements of a design. Different hierarchical elements can be specified with different design entry tools, allowing the use of the most convenient entry method for each portion of the design.

Design Implementation

The design implementation tools satisfy the requirement for an automated design process. Logic partitioning, block placement and signal routing, encompassing the design implementation process, are performed by the Partition, Place, and Route program (PPR). The partitioner takes the logic from the entered design and maps the logic into the architectural resources of the FPGA (such as the logic blocks, I/O blocks, 3-state buffers, and edge decoders). The placer then determines the best locations for the blocks, depending on their connectivity and the required performance. The router finally connects the placed blocks together. The PPR algorithms result in the fully automatic implementation of most designs. However, for demanding applications, the user may exercise various degrees of control over the automated implementation process. Optionally, user-designated partitioning, placement, and routing information can be specified as part of the design entry process. The implementation of highly-structured designs can greatly benefit from the basic floorplanning techniques familiar to designers of large gate arrays.

The PPR program includes XACT-Performance, a feature that allows designers to specify the timing requirements

along entire paths during design entry. Timing path analysis routines in PPR then recognize and accommodate the user-specified requirements. Timing requirements can be entered on the schematic in a form directly relating to the system requirements (such as the targeted minimum clock frequency, or the maximum allowable delay on the data path between two registers). So, while the timing of each individual net is not predictable (nor does it need to be), the overall performance of the system along entire signal paths is automatically tailored to match user-generated specifications.

The automated implementation tools are complemented by the XACT Design Editor (XDE), an interactive graphicsbased editor that displays a model of the actual logic and routing resources of the FPGA. XDE can be used to directly view the results achieved by the automated tools. Modifications can be made using XDE; XDE also performs checks for logic connectivity and possible design-rule violations.

Design Verification

The high development cost associated with common maskprogrammed gate arrays necessitates extensive simulation to verify a design. Due to the custom nature of masked gate arrays, mistakes or last-minute design changes cannot be tolerated. A gate-array designer must simulate and test all logic and timing using simulation software. Simulation describes what happens in a system under worst-case situations. However, simulation is tedious and slow, and simulation vectors must be generated. A few seconds of system time can take weeks to simulate.

Programmable-gate-array users, however, can use incircuit debugging techniques in addition to simulation. Because Xilinx devices are reprogrammable, designs can be verified in the system in real time without the need for extensive simulation vectors.

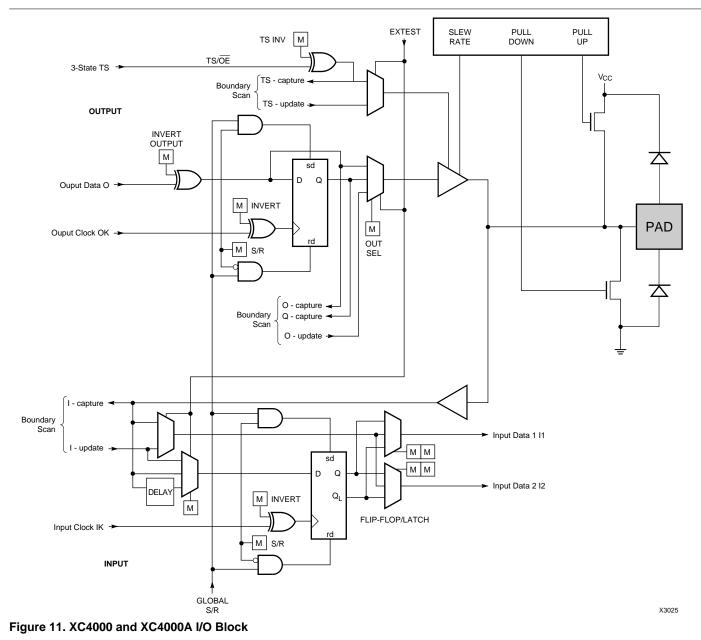
The XACT development system supports both simulation and in-circuit debugging techniques. For simulation, the system extracts the post-layout timing information from the design database. This data can then be sent to the simulator to verify timing-critical portions of the design. Back-annotation – the process of mapping the timing information back into the signal names and symbols of the schematic – eases the debugging effort.

For in-circuit debugging, XACT includes a serial download and readback cable (XChecker) that connects the device in the system to the PC or workstation through an RS232 serial port. The engineer can download a design or a design revision into the system for testing. The designer can also single-step the logic, read the contents of the numerous flip-flops on the device and observe internal logic levels. Simple modifications can be downloaded into the system in a matter of minutes.

Detailed Functional Description

XC4000 and XC4000A Input/Output Blocks

(For XC4000H family, see page 2-82)


The IOB forms the interface between the internal logic and the I/O pads of the LCA device. Under configuration control, the output buffer receives either the logic signal (.out) routed from the internal logic to the IOB, or the complement of this signal, or this same data after it has been clocked into the output flip-flop.

As a configuration option, each flip-flop (CLB or IOB) is initialized as either set or reset, and is also forced into this programmable initialization state whenever the global Set/ Reset net is activated after configuration has been completed. The clock polarity of each IOB flip-flop can be configured individually, as can the polarity of the 3-state control for the output buffer. Each output buffer can be configured to be either fast or slew-rate limited, which reduces noise generation and ground bounce. Each I/O pin can be configured with either an internal pull-up or pull down resistor, or with no internal resistor. Independent of this choice, each IOB has a pullup resistor during the configuration process.

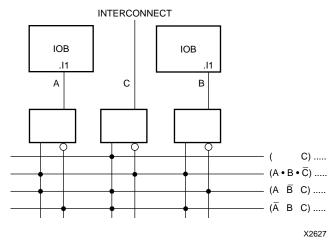
The 3-state output driver uses a totem pole n-channel output structure. $V_{\rm OH}$ is one n-channel threshold lower than $V_{\rm CC},$ which makes rise and fall delays more symmetrical.

Family	Per IOB Source	Per IOB Sink	Per IOB Pair Sink	# Slew Modes
XC4000	4	12	24	2
XC4000A	4	24	48	4
XC4000H	4	24*	48	2

*XC4000H devices can sink only 4 mA configured for SoftEdge mode

2-19

The inputs drive TTL-compatible buffers with 1.2-V input threshold and a slight hysteresis of about 300 mV. These buffers drive the internal logic as well as the D-input of the input flip-flop.


Under configuration control, the set-up time of this flip-flop can be increased so that normal clock routing does not result in a hold-time problem. Note that the input flip-flop set-up time is defined between the data measured at the device I/O pin and the clock input at the IOB. Any clock routing delay must, therefore, be subtracted from this setup time to arrive at the real set-up time requirement on the device pins. A short specified set-up time might, therefore, result in a negative set-up time at the device pins, i.e. a hold-time requirement, which is usually undesirable. The default long set-up time can tolerate more clock delay without causing a hold-time requirement. For faster input register setup time, with non-zero hold, attach a "NODELAY" property to the flip-flop. The exact method to accomplish this depends on the design entry tool.

The input block has two connections to the internal logic, 11 and 12. Each of these is driven either by the incoming data, by the master or by the slave of the input flip-flop.

Wide Decoders

The periphery of the chip has four wide decoder circuits at each edge (two in the XC4000A). The inputs to each decoder are any of the I1 signals on that edge plus one local interconnect per CLB row or column. Each decoder generates High output (resistor pull-up) when the AND condition of the selected inputs, or their complements, is true. This is analogous to the AND term in typical PAL devices. Each decoder can be split at its center.

The decoder outputs can drive CLB inputs so they can be combined with other logic, or to form a PAL-like AND/OR structure. The decoder outputs can also be routed directly to the chip outputs. For fastest speed, the output should be on the same chip edge as the decoder.

Configurable Logic Blocks

Configurable Logic Blocks implement most of the logic in an LCA device. Two 4-input function generators (F and G) offer unrestricted versatility. A third function generator (H) can combine the outputs of F and G with a ninth input variable, thus implementing certain functions of up to nine variables, like parity check or expandable-identity comparison of two sets of four inputs.

The four control inputs C1 through C4 can each generate any one of four logic signals, used in the CLB.

- Enable Clock, Asynchronous Preset/Reset, DIN, and H1, when the memory function is disabled, or
- Enable Clock, Write Enable, D0, and D1, when the memory function is enabled.

Since the function-generator outputs are brought out independently of the flip-flop outputs, and DIN and H1 can be used as direct inputs to the two flip-flops, the two combinatorial and the two sequential functions in the CLB can be used independently. This versatility increases logic density and simplifies routing.

The asynchronous flip-flop input can be configured as either set or reset. This configuration option also determines the state in which the flip-flops become operational after configuration, as well as the effect of an externally or internally applied Set/Reset during normal operation.

Fast Carry Logic

The CLBs can generate the arithmetic-carry output for incoming operands, and can pass this extra output on to the next CLB function generator above or below. This connection is independent of normal routing resources and it is, presently, only supported by Hard Macros. A later software release will accommodate Soft Macros and will permit graphic editing of the fast logic circuitry. This fast carry logic is one of the most significant improvements in the XC4000 families, speeding up arithmetic and counting into the 60-MHz range.

Using Function Generators as RAMs

Using XC4000 devices, the designer can write into the latches that hold the configuration content of the function generators. Each function generator can thus be used as a small Read/Write memory, or RAM. The function generators in any CLB can be configured in three ways.

- Two 16 x 1 RAMs with two data inputs and two data outputs identical or, if preferred, different addressing for each RAM
- One 32 x 1 RAM with one data input and one data output
- One 16 x 1 RAM plus one 5-input function generator

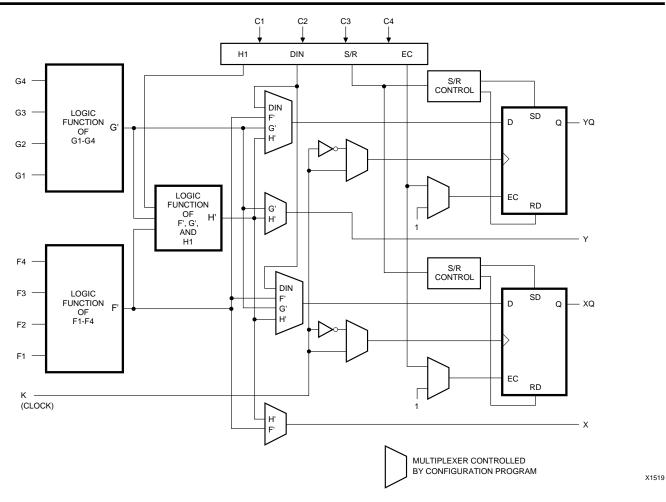


Figure 13. Simplified Block Diagram of XC4000 Configurable Logic Block

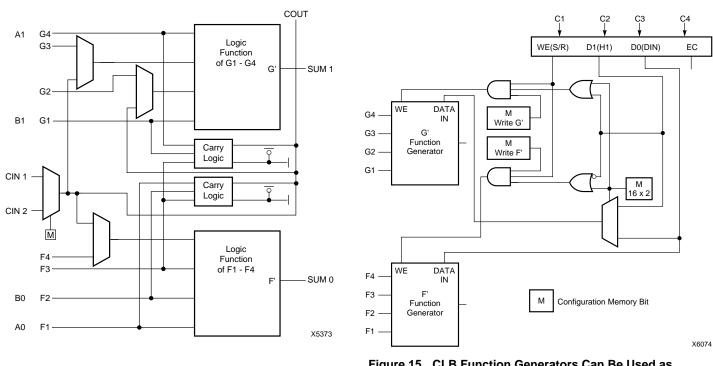


Figure 14. Fast Carry Logic in Each CLB

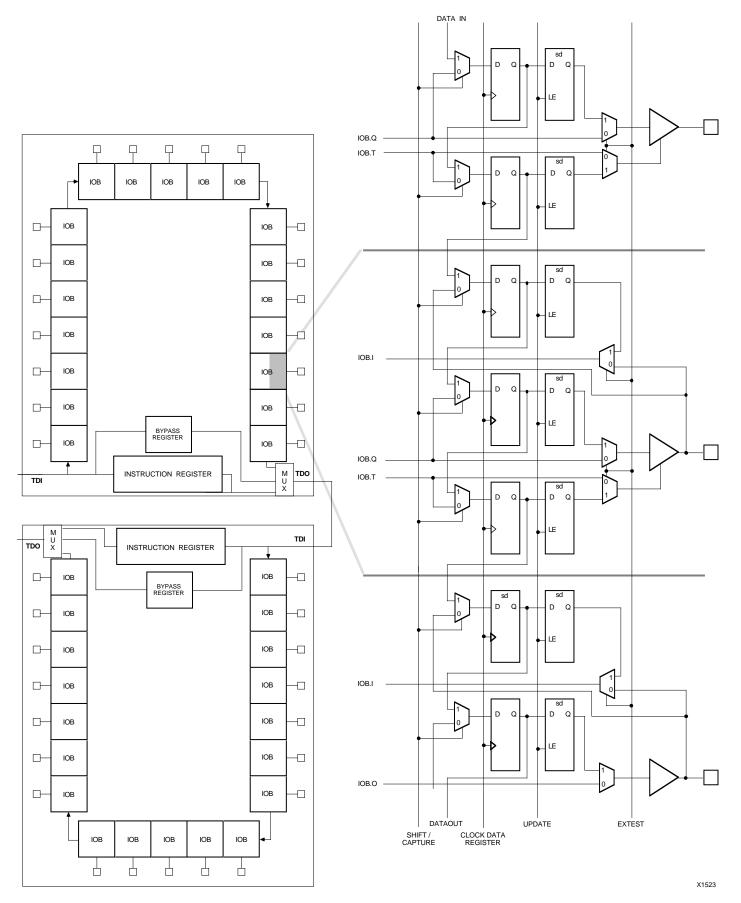
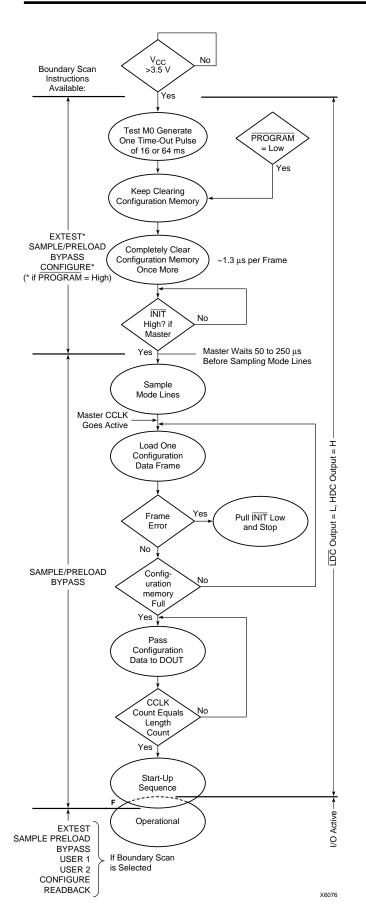



Figure 16. XC4000 Boundary Scan Logic. Includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes.

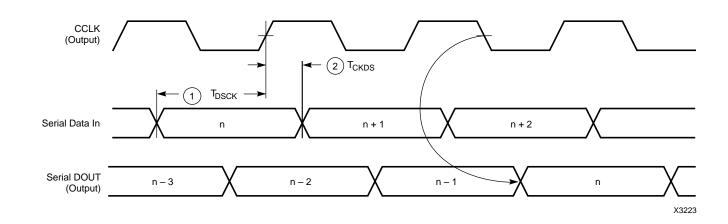
device when it recognizes the 0010 preamble. Following the length-count data, any LCA device outputs a High on DOUT until it has received its required number of data frames.

After an LCA device has received its configuration data, it passes on any additional frame start bits and configuration data on DOUT. When the total number of configuration clocks applied after memory initialization equals the value of the 24-bit length count, the LCA device(s) begin the start-up sequence and become operational together.

Configuration Sequence Configuration Memory Clear

When power is first applied or reapplied to an LCA device, an internal circuit forces initialization of the configuration logic. When V_{CC} reaches an operational level, and the circuit passes the write and read test of a sample pair of configuration bits, a nominal 16-ms time delay is started (four times longer when M0 is Low, i.e., in Master mode). During this time delay, or as long as the <u>PROGRAM</u> input is asserted, the configuration logic is held in a Configuration Memory Clear state. The configuration-memory frames are consecutively initialized, using the internal oscillator. At the end of each complete pass through the frame addressing, the power-on time-out delay circuitry and the level of the <u>PROGRAM</u> pin are tested. If neither is asserted, the logic initiates one additional clearing of the configuration frames and then tests the <u>INIT</u> input.

Initialization

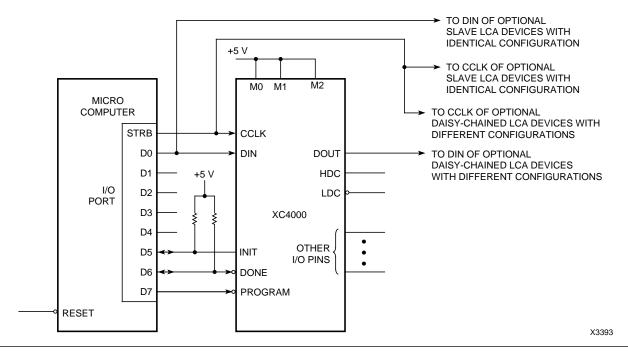

During initialization and configuration, user pins HDC, <u>LDC</u> and <u>INIT</u> provide status outputs for system interface. The outputs, <u>LDC</u>, <u>INIT</u> and DONE are held Low and HDC is held High starting at the initial application of power. The open drain <u>INIT</u> pin is released after the final initialization pass through the frame addresses. There is a deliberate delay of 50 to 250 μ s before a Master-mode device recognizes an inactive <u>INIT</u>. Two internal clocks after the <u>INIT</u> pin is recognized as High, the LCA device samples the three mode lines to determine the configuration mode. The appropriate interface lines become active and the configuration preamble and data can be loaded.

Configuration

The 0010 preamble code indicates that the following 24 bits represent the length count, i.e., the total number of configuration clocks needed to load the total configuration data. After the preamble and the length count have been passed through to all devices in the daisy chain, DOUT is held High to prevent frame start bits from reaching any daisy-chained devices. A specific configuration bit, early in the first frame of a master device, controls the configuration-clock rate and can increase it by a factor of eight. Each frame has a Low start bit followed by the frame-configura-

Figure 20. Start-up Sequence

externally, the device determines its configuration mode by capturing its status inputs, and is ready to start the configuration process. A master device waits an additional up to 250 μs to make sure that all slaves in the potential daisy-chain have seen $\underline{\sf INIT}$ being High.

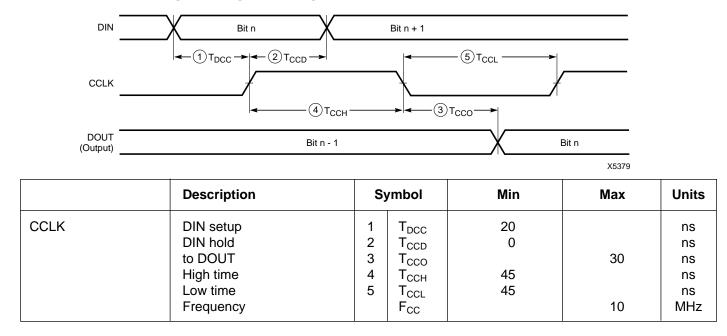

Master Serial Mode Programming Switching Characteristics

	Description	Symbol	Min	Мах	Units
CCLK	Data In setup Data In hold	1 Т _{DSCK} 2 Т _{CKDS}	20 0		ns ns

Notes: 1. At power-up, V_{CC} must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling <u>PROGRAM</u> Low until V_{CC} is valid.

- 2. Configuration can be controlled by holding <u>INIT</u> Low with or until after the <u>INIT</u> of all daisy-chain slave mode devices is High.
- 3. Master-serial-mode timing is based on testing in slave mode.

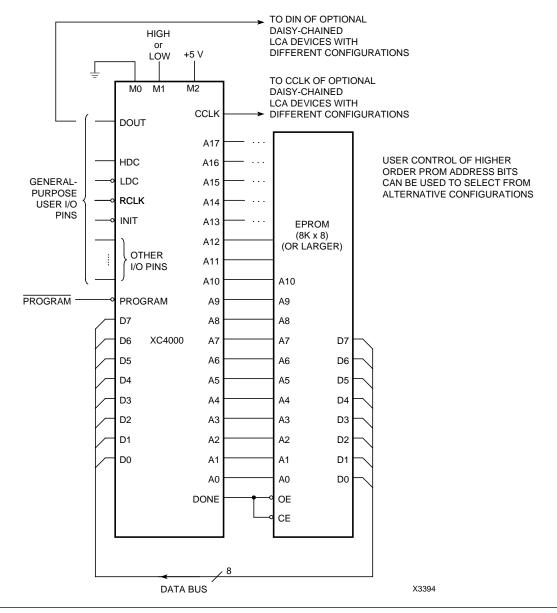
Slave Serial Mode


In Slave Serial mode, an external signal drives the CCLK input(s) of the LCA device(s). The serial configuration bitstream must be available at the DIN input of the lead LCA device a short set-up time before each rising CCLK edge. The lead LCA device then presents the preamble data (and all data that overflows the lead device) on its DOUT pin.

There is an internal delay of 0.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next LCA device in the daisy-chain accepts data on the subsequent rising CCLK edge.

How to Delay Configuration After Power-Up

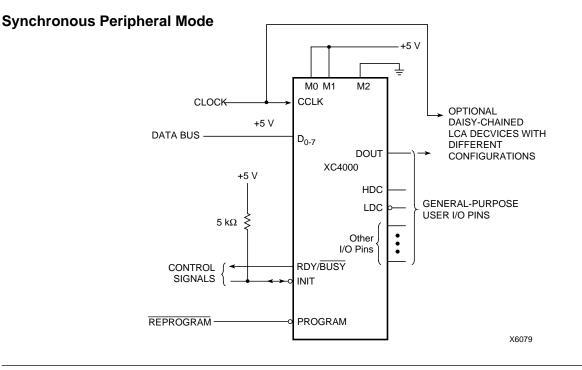
There are two methods to delay configuration after powerup: Put a logic Low on the <u>PROGRAM</u> input, or pull the bidirectional <u>INIT</u> pin Low, using an open-collector (opendrain) driver. (See also Figure 20 on page 2-27.) A Low on the <u>PROGRAM</u> input is the more radical approach, and is recommended when the power-supply rise time is excessive or poorly defined. As long as <u>PROGRAM</u> is Low, the XC4000 device keeps clearing its configuration memory. When <u>PROGRAM</u> goes High, the configuration memory is cleared one more time, followed by the beginning of configuration, provided the INIT input is not externally held Low. Note that a Low on the <u>PROGRAM</u> input automatically forces a Low on the <u>INIT</u> output.


Using an open-collector or open-drain driver to hold <u>INIT</u> Low before the beginning of configuration, causes the LCA device to wait after having completed the configuration memory clear operation. When <u>INIT</u> is no longer held Low externally, the device determines its configuration mode by capturing its status inputs, and is ready to start the configuration process. A master device waits an additional max 250 μ s to make sure that all slaves in the potential daisy-chain have seen <u>INIT</u> being High.

Slave Serial Mode Programming Switching Characteristics

Note: Configuration must be delayed until the <u>INIT</u> of all daisy-chained LCA devices is High.

Master Parallel Mode


In Master Parallel mode, the lead LCA device directly addresses an industry-standard byte-wide EPROM, and accepts eight data bits right before incrementing (or decrementing) the address outputs.

The eight data bits are serialized in the lead LCA device, which then presents the preamble data (and all data that overflows the lead device) on the DOUT pin. There is an internal delay of 1.5 CCLK periods, after the rising CCLK edge that accepts a byte of data (and also changes the EPROM address) until the falling CCLK edge that makes the LSB (D0) of this byte appear at DOUT. This means that DOUT changes on the falling CCLK edge, and the next LCA device in the daisy-chain accepts data on the subsequent rising CCLK edge.

How to Delay Configuration After Power-Up

There are two methods to delay configuration after powerup: Put a logic Low on the <u>PROGRAM</u> input, or pull the bidirectional <u>INIT</u> pin Low, using an open-collector (opendrain) driver. (See also Figure 20 on page 2-27).

A Low on the <u>PROGRAM</u> input is the more radical approach, and is recommended when the power-supply rise time is excessive or poorly defined. As long as <u>PROGRAM</u> is Low, the XC4000 device keeps clearing its configuration memory. When <u>PROGRAM</u> goes High, the configuration memory is cleared one more time, followed by the beginning of configuration, provided the INIT input is not externally held Low. Note that a Low on the <u>PROGRAM</u> input automatically forces a Low on the <u>INIT</u> output.

Synchronous Peripheral mode can also be considered Slave Parallel mode. An external signal drives the CCLK input(s) of the LCA device(s). The first byte of parallel configuration data must be available at the D inputs of the lead LCA device a short set-up time before the rising CCLK edge. Subsequent data bytes are clocked in on every eighth consecutive rising CCLK edge. The same CCLK edge that accepts data, also causes the RDY/BUSY output to go High for one CCLK period. The pin name is a misnomer. In Synchronous Peripheral mode it is really an ACKNOWLEDGE signal. Synchronous operation does not require this response, but it is a meaningful signal for test purposes.

The lead LCA device serializes the data and presents the preamble data (and all data that overflows the lead device) on its DOUT pin. There is an internal delay of 1.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next LCA device in the daisy-chain accepts data on the subsequent rising CCLK edge. In order to complete the serial shift operation, 10 additional CCLK rising edges are required after the last data byte has been loaded, plus one more CCLK cycle for each daisy-chained device.

How to Delay Configuration After Power-Up

There are two methods to delay configuration after powerup: Put a logic Low on the <u>PROGRAM</u> input, or pull the bidirectional <u>INIT</u> pin Low, using an open-collector (opendrain) driver. (See also Figure 20 on page 2-27).

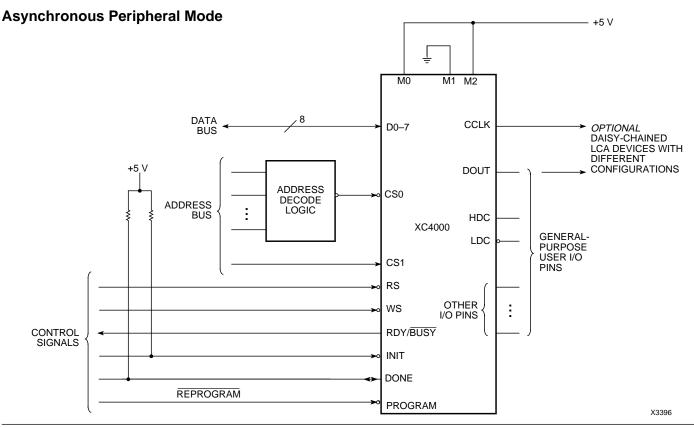
A Low on the <u>PROGRAM</u> input is the more radical approach, and is recommended when the power-supply rise time is excessive or poorly defined. As long as <u>PROGRAM</u> is Low, the XC4000 device keeps clearing its configuration memory. When <u>PROGRAM</u> goes High, the configuration memory is cleared one more time, followed by the beginning of configuration, provided the INIT input is not externally held Low. Note that a Low on the <u>PROGRAM</u> input automatically forces a Low on the <u>INIT</u> output.

Using an open-collector or open-drain driver to hold <u>INIT</u> Low before the beginning of configuration, causes the LCA device to wait after having completed the configuration memory clear operation. When <u>INIT</u> is no longer held Low externally, the device determines its configuration mode by capturing its status inputs, and is ready to start the configuration process. A master device waits an additional max 250 μ s to make sure that all slaves in the potential daisy-chain have seen <u>INIT</u> being High.

CCLK INIT BYTE 0 BYTE BYTE 0 OUT BYTE 1 OUT 2 3 5 0 0 1 4 6 7 DOUT RDY/BUSY

Synchronous Peripheral Mode Programming Switching Characteristics

X6096


	Description	S	ymbol	Min	Мах	Units
CCLK	INIT (High) Setup time required	1	T _{IC}	5		μs
	D0-D7 Setup time required	2	T _{DC}	60		ns
	D0-D7 Hold time required	3	T _{CD}	0		ns
	CCLK High time		Тссн	50		ns
	CCLK Low time		T _{CCL}	60		ns
	CCLK Frequency		F _{cc}		8	MHz

Notes: Peripheral Synchronous mode can be considered Slave Parallel mode. An external CCLK provides timing, clocking in the **first** data byte on the **second** rising edge of CCLK after <u>INIT</u> goes High. Subsequent data bytes are clocked in on every eighth consecutive rising edge of CCLK.

The RDY/<u>BUSY</u> line goes High for one CCLK period after data has been clocked in, although synchronous operation does not require such a response.

The pin name RDY/<u>BUSY</u> is a misnomer; in Synchronous Peripheral mode this is really an ACKNOWLEDGE signal.

Note that data starts to shift out serially on the DOUT pin 0.5 CLK periods after it was loaded in parallel. This obviously requires additional CCLK pulses after the last byte has been loaded.

Write to LCA

Asynchronous Peripheral mode uses the trailing edge of the logic AND condition of the <u>CS0</u>, CS1 and <u>WS</u> inputs to accept byte-wide data from a microprocessor bus. In the lead LCA device, this data is loaded into a double-buffered UART-like parallel-to-serial converter and is serially shifted into the internal logic. The lead LCA device presents the preamble data (and all data that overflows the lead device) on the DOUT pin.

The RDY/<u>BUSY</u> output from the lead LCA device acts as a handshake signal to the microprocessor. RDY/<u>BUSY</u> goes Low when a byte has been received, and goes High again when the byte-wide input buffer has transferred its information into the shift register, and the buffer is ready to receive new data. The length of the <u>BUSY</u> signal depends on the activity in the UART. If the shift register had been empty when the new byte was received, the <u>BUSY</u> signal lasts for only two CCLK periods. If the shift register was still full when the new byte was received, the <u>BUSY</u> signal can be as long as nine CCLK periods.

Note that after the last byte has been entered, only seven of its bits are shifted out. CCLK remains High with DOUT equal to bit 6 (the next-to-last bit) of the last byte entered. The READY/<u>BUSY</u> handshake can be ignored if the delay from any one Write to the end of the next Write is guaranteed to be longer than 10 CCLK periods, i.e. longer than 20 μ s.

Status Read

The logic AND condition of the <u>CS0</u>, CS1and <u>RS</u> inputs puts the device status on the Data bus.

- D7 = High indicates Ready
- D7 Low indicates Busy
- D0 through D6 go unconditionally High

It is mandatory that the whole start-up sequence be started and completed by one byte-wide input. Otherwise, the pins used as Write Strobe or Chip Enable might become active outputs and inteffere with the final byte transfer. If this transfer does not occur, the start-up sequence will not be completed all the way to the finish (point F in Figure 21 on page 2-29). At worst, the internal reset will not be released; at best, Readback and Boundary Scan will be inhibited. The length-count value, as generated by MAKEPROM, is supposed to ensure that these problems never occur.

Although RDY/<u>BUSY</u> is brought out as a separate signal, microprocessors can more easily read this information on one of the data lines. For this purpose, D7 represents the RDY/<u>BUSY</u> status when <u>RS</u> is Low, <u>WS</u> is High, and the two chip select lines are both active.

How to Delay Configuration After Power-Up

There are two methods to delay configuration after powerup: Put a logic Low on the <u>PROGRAM</u> input, or pull the bidirectional <u>INIT</u> pin Low, using an open-collector (opendrain) driver. (See also Figure 20 on page 2-27). A Low on the <u>PROGRAM</u> input is the more radical approach, and is recommended when the power-supply rise time is excessive or poorly defined. As long as <u>PROGRAM</u> is Low, the XC4000 device keeps clearing its configuration memory. When <u>PROGRAM</u> goes High, the configuration memory is cleared one more time, followed by the beginning of configuration, provided the INIT input is not externally held Low. Note that a Low on the <u>PROGRAM</u> input automatically forces a Low on the <u>INIT</u> output.

Using an open-collector or open-drain driver to hold <u>INIT</u> Low before the beginning of configuration, causes the LCA device to wait after having completed the configuration memory clear operation. When <u>INIT</u> is no longer held Low externally, the device determines its configuration mode by capturing its status inputs, and is ready to start the configuration process. A master device waits an additional max 250 μ s to make sure that all slaves in the potential daisy-chain have seen <u>INIT</u> being High.

Asynch	ronous Peripheral Mode Programming Switching Characteristics Write to LCA Read Status
WS/CS0	
RS, CS1	$\begin{array}{c} & & \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \\ \\$
D0-D7	$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$
CCLK	
RDY/BUSY	$\xrightarrow{T_{WTRB}(4) \rightarrow } \underbrace{\leftarrow}_{6} T_{BUSY}$
DOUT	Previous Byte D6 D7 D0 D1 D2

						X6097
	Description	S	ymbol	Min	Max	Units
Write	Effective Write time required $(\underline{CS0}, \underline{WS} = Low, \underline{RS}, CS1 = High)$	1	T _{CA}	100		ns
	DIN Setup time required DIN Hold time required	2 3	T _{DC} T _{CD}	60 0		ns ns
	RDY/ <u>BUSY</u> delay after end of Write or Read RDY/BUSY active after begining of	4	T _{WTRB}		60	ns
	Read				60	ns
RDY	Earliest next <u>WS</u> after end of <u>BUSY</u>	5	T _{RBWT}	0		ns
	BUSY Low output (Note 4)	6	T _{BUSY}	2	9	CCLK Periods

Notes: 1. Configuration must be delayed until the <u>INIT</u> of all LCA devices is High.

- 2. Time from end of <u>WS</u> to CCLK cycle for the new byte of data depends on completion of previous byte processing and the phase of the internal timing generator for CCLK.
 - 3. CCLK and DOUT timing is tested in slave mode.
 - 4. TBUSY indicates that the double-buffered parallel-to-serial converter is not yet ready to receive new data. The shortest TBUSY occurs when a byte is loaded into an empty parallel-to-serial converter. The longest TBUSY occurs when a new word is loaded into the input register before the second-level buffer has started shifting out data.

This timing diagram shows very relaxed requirements:

Data need not be held beyond the rising edge of <u>WS</u>. <u>BUSY</u> will go active within 60 ns after the end of <u>WS</u>. <u>WS</u> may be asserted immediately after the end of <u>BUSY</u>.

HDC

High During Configuration is driven High until configuration is completed. It is available as a control output indicating that configuration is not yet completed. After configuration, this is a user-programmable I/O pin.

LDC

Low During Configuration is driven Low until configuration. It is available as a control output indicating that configuration is not yet completed. After configuration, this is a userprogrammable I/O pin.

<u>INIT</u>

Before and during configuration, this is a bidirectional signal. An external pull-up resistor is recommended.

As an active-Low open-drain output, <u>INIT</u> is held Low during the power stabilization and internal clearing of the configuration memory. As an active-Low input, it can be used to hold the LCA device in the internal WAIT state before the start of configuration. Master mode devices stay in a WAIT state an additional 30 to 300 μ s after <u>INIT</u> has gone High.

During configuration, a Low on this output indicates that a configuration data error has occurred. After configuration, this is a user-programmable I/O pin.

PGCK1 - PGCK4

Four Primary Global Inputs each drive a dedicated internal global net with short delay and minimal skew. If not used for this purpose, any of these pins is a user-programmable I/O.

SGCK1 - SGCK4

Four Secondary Global Inputs can each drive a dedicated internal global net, that alternatively can also be driven from internal logic. If not used for this purpose, any of these pins is a user-programmable I/O pin.

CS0, CS1, WS, RS

These four inputs are used in Peripheral mode. The chip is selected when <u>CS0</u> is Low and CS1 is High. While the chip is selected, a Low on Write Strobe (<u>WS</u>) loads the data present on the D0 - D7 inputs into the internal data buffer; a Low on Read Strobe (<u>RS</u>) changes D7 into a status output: High if Ready, Low if Busy, and D0...D6 are active Low. <u>WS</u> and <u>RS</u> should be mutually exclusive, but if both are Low simultaneously, the Write Strobe overrides. After configuration, these are user-programmable I/O pins.

A0 - A17

During Master Parallel mode, these 18 output pins address the configuration EPROM. After configuration, these are user-programmable I/O pins.

D0 - D7

During Master Parallel and Peripheral configuration modes, these eight input pins receive configuration data. After configuration, they are user-programmable I/O pins.

DIN

During Slave Serial or Master Serial configuration modes, this is the serial configuration data input receiving data on the rising edge of CCLK.

During parallel configuration modes, this is the D0 input. After configuration, DIN is a user-programmable I/O pin.

DOUT

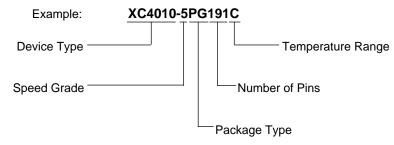
During configuration in any mode, this is the serial configuration data output that can drive the DIN of daisy-chained slave LCA devices. DOUT data changes on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the DIN input. After configuration, DOUT is a user-programmable I/O pin.

Unrestricted User-Programmable I/O Pins

I/O

A pin that can be configured to be input and/or output after configuration is completed. Before configuration is completed, these pins have an internal high-value pull-up resistor that defines the logic level as High.

Before and during configuration, all outputs that are not used for the configuration process are 3-stated with a 50 k Ω to 100 k Ω pull-up resistor.


For a detailed description of the device architecture, see page 2-9 through 2-31.

For a detailed description of the configuration modes and their timing, see pages 2-32 through 2-55.

For detailed lists of package pinouts, see pages 2-57 through 2-67, 2-70, 2-81 through 2-85, and 2-100 through 2-101.

For package physical dimensions and thermal data, see Section 4.

Ordering Information

Component Availability

PINS	84		100		120	144	156	160	164	191	196	20)8	223	225	24	40	299	304
				TOP					TOP		TOP								
TYPE	PLAST. PLCC	PLAST. PQFP	PLAST. VQFP	BRAZED CQFP	CERAM. PGA	PLAST. TQFP	CERAM PGA	PLAST. PQFP	BRAZED CQFP	CERAM. PGA	BRAZED CQFP	PLAST. PQFP	METAL PQFP	CERAM. PGA	PLAST. BGA	PLAST. PQFP	METAL PQFP	METAL PQFP	н
	PLCC	PQFP	VQFP	CQFP	PGA	IQFP	PGA	PQFP	CQFP	PGA	CQFP	PQFP	PQFP	PGA	BGA	PQFP	PQFP	PQFP	QUAD
CODE	PC84		VQ100	CB100		TQ144	PG156	PQ160	CB164	PG191	CB196	PQ208	MQ208	PG223	BG225	PQ240	MQ240	PG299	HQ304
-6	CI	CI			CI														
XC4003 -5 -4	C C	C C			C C														
-10		-			-		MB		MВ										
XC4005 -6		CI					CIMB	CI	MВ			CI							
-5	CI C	C I C					C I C	C I C				CI C							
-6	СІ	-					CI	CI				CI							
XC4006 -5							CI	CI				CI							
-4	C CI						С	C CI		CI		C CI	CI						
XC4008 -5	CI							CI		CI		CI	CI						
-4	С							С		С		С	С						
-10 XC4010 -6								CI		M B CIM B	M B M B	CI	CI		CI				
-5	CI							CI		CI		CI	CI		CI				
-4	С							С		С		С	С		С				
-6 XC4010D -5	CI CI							C I C I				CI CI			C I C I				
-4								c				c			c				
-6								CI				CI	CI	CI (M B)	CI	CI	CI		
XC4013 -5 -4								C I C				CI C	C I C	C I C	C I C	C I CI	C I C		
-6								CI				CI	0	0	CI	CI	0		
XC4013D -5								CI				CI			CI	CI			
-4								С				C (C I)		(C I)	С	C (C I)		(C I)	
XC4020 -5												(CI) (CI)		(CI) (CI)		(C I) (C I)		(CI) (CI)	
-4												(C)		(C)		(C)		(C)	
-6 XC4025 -5														C C			CI	CI	CI
-4														C			01	CT	CT
-6	CI	CI	CI		CI														
XC4002A -5 -4		С	С		С														
-10				MВ	MВ														
XC4003A -6		CI	CI	MВ	СІМВ														
-5	C C	C C	C C		C C														
-6	CI	C	C		CI	CI		CI											
XC4004A -5	С				С	С		С											
-4	CI					CI	CI	CI				01							
-6 XC4005A -5	CI					CI	CI	CI				CI CI							
-4	С					С	С	С		<u><u> </u></u>		С	_						
XC4003H -6 -5										CI C		CI C							
XC4005H -6														CI		CI	CI		
-5		mercial	= 0° to +	85° C	I = Indus	strial = -4	0° to +10	0° C	M = Mil	Temp = -	55° to +1	25° C		С		С	С		
			3C Class				cate futu					_, ,							