# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                          |
|----------------------------|-----------------------------------------------------------------|
| Core Processor             | 8051                                                            |
| Core Size                  | 8-Bit                                                           |
| Speed                      | 50MHz                                                           |
| Connectivity               | EBI/EMI, SMBus (2-Wire/I <sup>2</sup> C), SPI, UART/USART       |
| Peripherals                | POR, PWM, Temp Sensor, WDT                                      |
| Number of I/O              | 40                                                              |
| Program Memory Size        | 64KB (64K x 8)                                                  |
| Program Memory Type        | FLASH                                                           |
| EEPROM Size                | -                                                               |
| RAM Size                   | 4.25K x 8                                                       |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.25V                                                    |
| Data Converters            | A/D 32x12b                                                      |
| Oscillator Type            | Internal                                                        |
| Operating Temperature      | -40°C ~ 125°C (TA)                                              |
| Mounting Type              | Surface Mount                                                   |
| Package / Case             | 48-VFQFN Exposed Pad                                            |
| Supplier Device Package    | 48-QFN (7x7)                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/c8051f501-imr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Figure 13.5. SFR Page Stack Upon Return From PCA Interrupt                   | 105                     |
|------------------------------------------------------------------------------|-------------------------|
| Figure 13.6. SFR Page Stack Upon Return From CAN0 Interrupt                  | 106                     |
| Figure 15.1. Flash Program Memory Map                                        | 131                     |
| Figure 17.1. Reset Sources                                                   | 141                     |
| Figure 17.2. Power-On and VDD Monitor Reset Timing                           | 142                     |
| Figure 18.1. Multiplexed Configuration Example                               | 153                     |
| Figure 18.2. Non-multiplexed Configuration Example                           | 154                     |
| Figure 18.3. EMIF Operating Modes                                            | 155                     |
| Figure 18.4. Non-multiplexed 16-bit MOVX Timing                              | 158                     |
| Figure 18.5 Non-multiplexed 8-bit MOVX without Bank Select Timing            | 159                     |
| Figure 18.6 Non-multiplexed 8-bit MOVX with Bank Select Timing               | 160                     |
| Figure 18.7 Multiplexed 16-bit MOVX Timing                                   | 161                     |
| Figure 18.8 Multiplexed 8-bit MOVX without Bank Select Timing                | 162                     |
| Figure 18.9 Multiplexed 8-bit MOVX with Bank Select Timing                   | 163                     |
| Figure 19.1 Oscillator Options                                               | 165                     |
| Figure 19.2 Example Clock Multiplier Output                                  | 170                     |
| Figure 19.3 External 32 768 kHz Quartz Crystal Oscillator Connection Diagram | 175                     |
| Figure 20.1 Port I/O Functional Block Diagram                                | 177                     |
| Figure 20.2 Port I/O Cell Block Diagram                                      | 178                     |
| Figure 20.3. Perinheral Availability on Port I/O Pins                        | 181                     |
| Figure 20.4. Crossbar Priority Decoder in Example Configuration              | 182                     |
| Figure 21.1 LIN Block Diagram                                                | 201                     |
| Figure 22.1 Typical CAN Bus Configuration                                    | 218                     |
| Figure 22.2. CAN Controller Diagram                                          | 210                     |
| Figure 22.3. Four segments of a CAN Bit                                      | 221                     |
| Figure 23.1 SMBus Block Diagram                                              | 226                     |
| Figure 23.2 Typical SMBus Configuration                                      | 220                     |
| Figure 23.3 SMBus Transaction                                                | 228                     |
| Figure 23.4 Typical SMBus SCI. Generation                                    | 230                     |
| Figure 23.5 Typical Master Write Sequence                                    | 237                     |
| Figure 23.6. Typical Master Read Sequence                                    | 238                     |
| Figure 23.7 Typical Master Read Ocquerice                                    | 230                     |
| Figure 23.8 Typical Slave Read Sequence                                      | 200                     |
| Figure 24.1 LIARTO Block Diagram                                             | 240                     |
| Figure 24.2 LIARTO Timing Without Parity or Extra Bit                        | 245                     |
| Figure 24.3 LIARTO Timing With Darity                                        | 245                     |
| Figure 24.4 LIARTO Timing With Extra Bit                                     | 245                     |
| Figure 24.5. Typical LIART Interconnect Diagram                              | 245                     |
| Figure 24.6. LIART Multi-Processor Mode Interconnect Diagram                 | 240                     |
| Figure 25.1 SPI Block Diagram                                                | 2 <del>4</del> 7<br>252 |
| Figure 25.2 Multiple-Master Mode Connection Diagram                          | 252                     |
| Figure 25.2. Wulliple-Waster and 3-Wire Single Slave Mode                    | 200                     |
| Connection Diagram                                                           | 255                     |
| Figure 25.4. A-Wire Single Master Mode and A-Wire Slove Mode                 | 200                     |
| rigure 20.4. 4-VVIIE Single iviasier ividue and 4-VVIIE Slave ividue         | 255                     |
|                                                                              | 200                     |



# List of Tables

| Table 2.1. Product Selection Guide                                             | 21  |
|--------------------------------------------------------------------------------|-----|
| Table 3.1. Pin Definitions for the C8051F50x-F51x                              | 22  |
| Table 4.1. QFP-48 Package Dimensions                                           | 30  |
| Table 4.2. QFP-48 Landing Diagram Dimensions                                   | 31  |
| Table 4.3. QFN-48 Package Dimensions                                           | 32  |
| Table 4.4. QFN-48 Landing Diagram Dimensions                                   | 33  |
| Table 4.5. QFN-40 Package Dimensions                                           | 34  |
| Table 4.6. QFN-40 Landing Diagram Dimensions                                   | 35  |
| Table 4.7. QFP-32 Package Dimensions                                           | 36  |
| Table 4.8. QFP-32 Landing Diagram Dimensions                                   | 37  |
| Table 4.9. QFN-32 Package Dimensions                                           | 38  |
| Table 4.10. QFN-32 Landing Diagram Dimensions                                  | 39  |
| Table 5.1. Absolute Maximum Ratings                                            | 40  |
| Table 5.2. Global Electrical Characteristics                                   | 41  |
| Table 5.3. Port I/O DC Electrical Characteristics                              | 45  |
| Table 5.4. Reset Electrical Characteristics                                    | 46  |
| Table 5.5. Flash Electrical Characteristics                                    | 46  |
| Table 5.6. Internal High-Frequency Oscillator Electrical Characteristics       | 47  |
| Table 5.7. Clock Multiplier Electrical Specifications                          | 48  |
| Table 5.8. Voltage Regulator Electrical Characteristics                        | 48  |
| Table 5.9. ADC0 Electrical Characteristics                                     | 49  |
| Table 5.10. Temperature Sensor Electrical Characteristics                      | 50  |
| Table 5.11. Voltage Reference Electrical Characteristics                       | 50  |
| Table 5.12. Comparator 0 and Comparator 1 Electrical Characteristics           | 51  |
| Table 11.1. CIP-51 Instruction Set Summary (Prefetch-Enabled)                  | 89  |
| Table 13.1. Special Function Register (SFR) Memory Map for                     |     |
| Pages 0x0 and 0xF 1                                                            | 11  |
| Table 13.2. Special Function Register (SFR) Memory Map for Page 0xC 1          | 12  |
| Table 13.3. Special Function Registers    1                                    | 13  |
| Table 14.1. Interrupt Summary    1                                             | 19  |
| Table 15.1. Flash Security Summary         1                                   | 32  |
| Table 18.1. EMIF Pinout (C8051F500/1/4/5) 1                                    | 49  |
| Table 18.2. EMIF Pinout (C8051F508/9-F510/1) 1                                 | 50  |
| Table 18.3. AC Parameters for External Memory Interface 1                      | 64  |
| Table 20.1. Port I/O Assignment for Analog Functions 1                         | 79  |
| Table 20.2. Port I/O Assignment for Digital Functions 1                        | 79  |
| Table 20.3. Port I/O Assignment for External Digital Event Capture Functions 1 | 80  |
| Table 21.1. Baud Rate Calculation Variable Ranges 2                            | 202 |
| Table 21.2. Manual Baud Rate Parameters Examples 2                             | 204 |





Figure 4.8. QFP-32 Package Drawing

 Table 4.8. QFP-32 Landing Diagram Dimensions

| Dimension | Min      | Мах  | ] | Dimension | Min  | Мах  |
|-----------|----------|------|---|-----------|------|------|
| C1        | 8.40     | 8.50 |   | X1        | 0.40 | 0.50 |
| C2        | 8.40     | 8.50 |   | Y1        | 1.25 | 1.35 |
| E         | 0.80 BSC |      |   |           |      |      |

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

**3.** All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60μm minimum, all the way around the pad.

Stencil Design

- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

Card Assembly

- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.



## 5.2. Electrical Characteristics

#### **Table 5.2. Global Electrical Characteristics**

-40 to +125 °C, 24 MHz system clock unless otherwise specified.

| Parameter                                    | Conditions                           | Min              | Тур    | Max   | Units |
|----------------------------------------------|--------------------------------------|------------------|--------|-------|-------|
| Supply Input Voltage (V <sub>REGIN</sub> )   |                                      | 1.8              | _      | 5.25  | V     |
| Digital Supply Voltage (V <sub>DD</sub> )    | System Clock <u>&lt;</u> 25 MHz      | $V_{RST}^{1}$    |        | 2.75  | V     |
|                                              | System Clock > 25 MHz                | 2                |        | 2.75  | v     |
| Analog Supply Voltage (VDDA)                 | System Clock < 25 MHz                | $V_{RST}^{1}$    | _      | 2.75  | V     |
| (Must be connected to $V_{DD}$ )             | System Clock > 25 MHz                | 2                |        | 2.75  | v     |
| Digital Supply RAM Data<br>Retention Voltage |                                      |                  | 1.5    |       |       |
| Port I/O Supply Voltage (V <sub>IO</sub> )   | Normal Operation                     | 1.8 <sup>2</sup> | _      | 5.25  | V     |
| SYSCLK (System Clock) <sup>3</sup>           |                                      | 0                |        | 50    | MHz   |
| T <sub>SYSH</sub> (SYSCLK High Time)         |                                      | 9                | _      | —     | ns    |
| T <sub>SYSL</sub> (SYSCLK Low Time)          |                                      | 9                |        | —     | ns    |
| Specified Operating<br>Temperature Range     |                                      | -40              | _      | +125  | °C    |
| Digital Supply Current—CPU                   | Active (Normal Mode, fetching instr  | uctions          | from F | lash) |       |
| I <sub>DD</sub> <sup>4</sup>                 | V <sub>DD</sub> = 2.1 V, F = 200 kHz |                  | 95     | —     | μA    |
|                                              | V <sub>DD</sub> = 2.1 V, F = 1.5 MHz | —                | 700    | —     | μA    |
|                                              | V <sub>DD</sub> = 2.1 V, F = 25 MHz  |                  | 10     | 11    | mA    |
|                                              | V <sub>DD</sub> = 2.1 V, F = 50 MHz  | —                | 19     | 21    | mA    |
| Notes:                                       |                                      |                  |        |       |       |

- 1. Given in Table 5.4 on page 46.
- 2.  $V_{IO}$  should not be lower than the  $V_{DD}$  voltage.
- 3. SYSCLK must be at least 32 kHz to enable debugging.
- 4. Based on device characterization data; Not production tested. Does not include oscillator supply current.
- 5. IDD can be estimated for frequencies ≤ 12.5 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I<sub>DD</sub> for >12.5 MHz, the estimate should be the current at 50 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V<sub>DD</sub> = 2.6 V; F = 20 MHz, I<sub>DD</sub> = 26 mA (50 MHz 20 MHz) \* 0.48 mA/MHz = 11.6 mA.
- 6. Idle IDD can be estimated for frequencies  $\leq$  1 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle I<sub>DD</sub> for >1 MHz, the estimate should be the current at 50 MHz minus the difference in current indicated by the frequency sensitivity number.

For example:  $V_{DD}$  = 2.6 V; F = 5 MHz, Idle I<sub>DD</sub> = 21 mA – (50 MHz – 5 MHz) x 0.41 mA/MHz = 2.6 mA.



#### Table 5.9. ADC0 Electrical Characteristics

VDDA = 1.8 to 2.75 V, -40 to +125 °C, VREF = 1.5 V (REFSL=0) unless otherwise specified.

| Parameter                                                                              | Conditions                             | Min    | Тур  | Max             | Units  |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------|--------|------|-----------------|--------|--|--|
| DC Accuracy                                                                            |                                        | 1      | 1    | .1              | 1      |  |  |
| Resolution                                                                             |                                        |        | 12   |                 | bits   |  |  |
| Integral Nonlinearity                                                                  |                                        | T —    | ±0.5 | ±3              | LSB    |  |  |
| Differential Nonlinearity                                                              | Guaranteed Monotonic                   | T —    | ±0.5 | ±1              | LSB    |  |  |
| Offset Error <sup>1</sup>                                                              |                                        | -10    | -1.8 | 10              | LSB    |  |  |
| Full Scale Error                                                                       |                                        | -20    | 1.7  | 20              | LSB    |  |  |
| Offset Temperature Coefficient                                                         |                                        | 1 —    | -2   | 1 —             | ppm/°C |  |  |
| Dynamic performance (10 kHz sine-wave single-ended input, 1 dB below Full Scale, 200 k |                                        |        |      |                 |        |  |  |
| Signal-to-Noise Plus Distortion                                                        |                                        | 63     | 66   | _               | dB     |  |  |
| Total Harmonic Distortion                                                              | Up to the 5th harmonic                 | 1 —    | 82   | 1 —             | dB     |  |  |
| Spurious-Free Dynamic Range                                                            |                                        | —      | -84  | —               | dB     |  |  |
| Conversion Rate                                                                        |                                        |        |      | -               |        |  |  |
| SAR Conversion Clock                                                                   |                                        |        |      | 3.6             | MHz    |  |  |
| Conversion Time in SAR Clocks <sup>2</sup>                                             |                                        | 13     | —    | <u> </u>        | clocks |  |  |
| Track/Hold Acquisition Time <sup>3</sup>                                               | VDDA <u>&gt;</u> 2.0 V<br>VDDA < 2.0 V | 1.5    | —    | <u> </u>        | μs     |  |  |
| Throughput Rate <sup>4</sup>                                                           | $VDDA \ge 2.0 V$                       |        |      | 200             | ksps   |  |  |
| Analog Inputs                                                                          |                                        |        |      |                 |        |  |  |
| ADC Input Voltage Range <sup>5</sup>                                                   | gain = 1.0 (default)<br>gain = n       | 0<br>0 | _    | VREF<br>VREF/n  | V      |  |  |
| Absolute Pin Voltage with<br>Respect to GND                                            |                                        | 0      |      | V <sub>IO</sub> | V      |  |  |
| Sampling Capacitance                                                                   |                                        |        | 32   |                 | pF     |  |  |
| Input Multiplexer Impedance                                                            |                                        |        | 3    |                 | kΩ     |  |  |
| Power Specifications                                                                   |                                        |        |      |                 |        |  |  |
| Power Supply Current<br>(VDDA supplied to ADC0)                                        | Operating Mode, 200 ksps               | _      | 1100 | 1500            | μA     |  |  |
| Burst Mode (Idle)                                                                      |                                        |        | 1100 | 1500            | μA     |  |  |
| Power-On Time                                                                          |                                        | 5      |      |                 | μs     |  |  |
| Power Supply Rejection Ratio                                                           |                                        | —      | -60  |                 | dB     |  |  |

Notes:

1. Represents one standard deviation from the mean. Offset and full-scale error can be removed through calibration.

2. An additional 2 FCLK cycles are required to start and complete a conversion

**3.** Additional tracking time may be required depending on the output impedance connected to the ADC input. See Section "6.2.1. Settling Time Requirements" on page 57.

4. An increase in tracking time will decrease the ADC throughput.

5. See Section "6.3. Selectable Gain" on page 58 for more information about the setting the gain.



Note that false rising edges and falling edges can be detected when the comparator is first powered on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed.

### SFR Definition 9.1. CPT0CN: Comparator0 Control

| Bit   | 7     | 6      | 5      | 4      | 3    | 2       | 1    | 0       |
|-------|-------|--------|--------|--------|------|---------|------|---------|
| Name  | CP0EN | CP0OUT | CP0RIF | CP0FIF | CP0H | /P[1:0] | CP0H | /N[1:0] |
| Туре  | R/W   | R      | R/W    | R/W    | R/W  |         | R/   | W       |
| Reset | 0     | 0      | 0      | 0      | 0    | 0       | 0    | 0       |

SFR Address = 0x9A; SFR Page = 0x00

| Bit | Name        | Function                                                                      |
|-----|-------------|-------------------------------------------------------------------------------|
| 7   | CP0EN       | Comparator0 Enable Bit.                                                       |
|     |             | 0: Comparator0 Disabled.                                                      |
|     |             | 1: Comparator0 Enabled.                                                       |
| 6   | CP0OUT      | Comparator0 Output State Flag.                                                |
|     |             | 0: Voltage on CP0+ < CP0–.                                                    |
|     |             | 1: Voltage on CP0+ > CP0                                                      |
| 5   | CP0RIF      | Comparator0 Rising-Edge Flag. Must be cleared by software.                    |
|     |             | 0: No Comparator0 Rising Edge has occurred since this flag was last cleared.  |
|     |             | 1: Comparator0 Rising Edge has occurred.                                      |
| 4   | CP0FIF      | Comparator0 Falling-Edge Flag. Must be cleared by software.                   |
|     |             | 0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. |
|     |             | 1: Comparator0 Falling-Edge has occurred.                                     |
| 3:2 | CP0HYP[1:0] | Comparator0 Positive Hysteresis Control Bits.                                 |
|     |             | 00: Positive Hysteresis Disabled.                                             |
|     |             | 01: Positive Hysteresis = 5 mV.                                               |
|     |             | 10: Positive Hysteresis = 10 mV.                                              |
|     |             | 11: Positive Hysteresis = 20 mV.                                              |
| 1:0 | CP0HYN[1:0] | Comparator0 Negative Hysteresis Control Bits.                                 |
|     |             | 00: Negative Hysteresis Disabled.                                             |
|     |             | 01: Negative Hysteresis = 5 mV.                                               |
|     |             | 10: Negative Hysteresis = 10 mV.                                              |
|     |             | 11: Negative Hysteresis = 20 mV.                                              |



# SFR Definition 9.2. CPT0MD: Comparator0 Mode Selection

| Bit   | 7 | 6 | 5      | 4      | 3 | 2 | 1    | 0      |
|-------|---|---|--------|--------|---|---|------|--------|
| Name  |   |   | CP0RIE | CP0FIE |   |   | CP0M | D[1:0] |
| Туре  | R | R | R/W    | R/W    | R | R | R/W  |        |
| Reset | 0 | 0 | 0      | 0      | 0 | 0 | 1    | 0      |

#### SFR Address = 0x9B; SFR Page = 0x00

| Bit | Name       | Function                                                                                                                                                                                                                                                            |
|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 | Unused     | Read = 00b, Write = Don't Care.                                                                                                                                                                                                                                     |
| 5   | CPORIE     | <b>Comparator0 Rising-Edge Interrupt Enable.</b><br>0: Comparator0 Rising-edge interrupt disabled.<br>1: Comparator0 Rising-edge interrupt enabled.                                                                                                                 |
| 4   | CP0FIE     | <b>Comparator0 Falling-Edge Interrupt Enable.</b><br>0: Comparator0 Falling-edge interrupt disabled.<br>1: Comparator0 Falling-edge interrupt enabled.                                                                                                              |
| 3:2 | Unused     | Read = 00b, Write = don't care.                                                                                                                                                                                                                                     |
| 1:0 | CP0MD[1:0] | Comparator0 Mode Select.<br>These bits affect the response time and power consumption for Comparator0.<br>00: Mode 0 (Fastest Response Time, Highest Power Consumption)<br>01: Mode 1<br>10: Mode 2<br>11: Mode 3 (Slowest Response Time, Lowest Power Consumption) |



#### 15.1.3. Flash Write Procedure

Flash bytes are programmed by software with the following sequence:

- 1. Disable interrupts (recommended).
- 2. Erase the 512-byte Flash page containing the target location, as described in Section 15.1.2.
- 3. Set the PSWE bit (register PSCTL).
- 4. Clear the PSEE bit (register PSCTL).
- 5. Write the first key code to FLKEY: 0xA5.
- 6. Write the second key code to FLKEY: 0xF1.
- 7. Using the MOVX instruction, write a single data byte to the desired location within the 512-byte sector.
- 8. Clear the PSWE bit.

Steps 5–7 must be repeated for each byte to be written. After Flash writes are complete, PSWE should be cleared so that MOVX instructions do not target program memory.

#### 15.1.4. Flash Write Optimization

The Flash write procedure includes a block write option to optimize the time to perform consecutive byte writes. When block write is enabled by setting the CHBLKW bit (CCH0CN.0), writes to two consecutive bytes in Flash require the same amount of time as a single byte write. This is performed by caching the first byte that is written to Flash and then committing both bytes to Flash when the second byte is written. When block writes are enabled, if the second write does not occur, the first data byte written is not actually written to Flash. Flash bytes with block write enabled are programmed by software with the following sequence:

- 1. Disable interrupts (recommended).
- 2. Erase the 512-byte Flash page containing the target location, as described in Section 15.1.2.
- 3. Set the CHBLKW bit (register CCH0CN).
- 4. Set the PSWE bit (register PSCTL).
- 5. Clear the PSEE bit (register PSCTL).
- 6. Write the first key code to FLKEY: 0xA5.
- 7. Write the second key code to FLKEY: 0xF1.
- 8. Using the MOVX instruction, write the first data byte to the desired location within the 512-byte sector.
- 9. Write the first key code to FLKEY: 0xA5.
- 10. Write the second key code to FLKEY: 0xF1.
- 11. Using the MOVX instruction, write the second data byte to the desired location within the 512-byte sector. The location of the second byte must be the next higher address from the first data byte.
- 12.Clear the PSWE bit.
- 13.Clear the CHBLKW bit.



#### 15.2. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction. Note: MOVX read instructions always target XRAM.

#### 15.3. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to 1 before software can modify the Flash memory; both PSWE and PSEE must be set to 1 before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, or erases) by unprotected code or the C2 interface. The Flash security mechanism allows the user to lock n 512-byte Flash pages, starting at page 0 (addresses 0x0000 to 0x01FF), where n is the ones complement number represented by the Security Lock Byte. Note that the page containing the Flash Security Lock Byte is unlocked when no other Flash pages are locked (all bits of the Lock Byte are 1) and locked when any other Flash pages are locked (any bit of the Lock Byte is 0). See example in Figure 15.1.



| Security Lock Byte: | 11111101b                                  |
|---------------------|--------------------------------------------|
| 1s Complement:      | 0000010b                                   |
| Flash pages locked: | 3 (First two Flash pages + Lock Byte Page) |

Figure 15.1. Flash Program Memory Map



# SFR Definition 17.1. VDM0CN: V<sub>DD</sub> Monitor Control

| Bit   | 7      | 6       | 5      | 4 | 3 | 2 | 1 | 0 |
|-------|--------|---------|--------|---|---|---|---|---|
| Name  | VDMEN  | VDDSTAT | VDMLVL |   |   |   |   |   |
| Туре  | R/W    | R       | R/W    | R | R | R | R | R |
| Reset | Varies | Varies  | 0      | 0 | 0 | 0 | 0 | 0 |

#### SFR Address = 0xFF; SFR Page = 0x00

| Bit | Name     | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | VDMEN    | V <sub>DD</sub> Monitor Enable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |          | This bit turns the V <sub>DD</sub> monitor circuit on/off. The V <sub>DD</sub> Monitor cannot generate system resets until it is also selected as a reset source in register RSTSRC (SFR Definition 17.2). Selecting the V <sub>DD</sub> monitor as a reset source before it has stabilized may generate a system reset. In systems where this reset would be undesirable, a delay should be introduced between enabling the V <sub>DD</sub> Monitor and selecting it as a reset source. See Table 5.4 for the minimum V <sub>DD</sub> Monitor turn-on time.<br>0: V <sub>DD</sub> Monitor Disabled.<br>1: V <sub>DD</sub> Monitor Enabled. |
| 6   | VDDSTAT  | V <sub>DD</sub> Status.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |          | This bit indicates the current power supply status (V <sub>DD</sub> Monitor output).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |          | 0: $V_{DD}$ is at or below the $V_{DD}$ monitor threshold.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5   | VDIVILVL | v <sub>DD</sub> monitor Level Select.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |          | <ul> <li>0: V<sub>DD</sub> Monitor Threshold is set to VRST-LOW</li> <li>1: V<sub>DD</sub> Monitor Threshold is set to VRST-HIGH. This setting is required for any system includes code that writes to and/or erases Flash.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4:0 | Unused   | Read = 00000b; Write = Don't care.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## 17.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Table 5.4 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

## 17.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than the value specified in Table 5.4, "Reset Electrical Characteristics," on page 46, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read 1, signifying the MCD as the reset source; otherwise, this bit reads 0. Writing a 1 to the MCDRSF bit enables the Missing Clock Detector; writing a 0 disables it. The state of the RST pin is unaffected by this reset.







Figure 18.9. Multiplexed 8-bit MOVX with Bank Select Timing



| System Clock (MHz) | Prescaler | Divider |
|--------------------|-----------|---------|
| 25                 | 1         | 312     |
| 24.5               | 1         | 306     |
| 24                 | 1         | 300     |
| 22.1184            | 1         | 276     |
| 16                 | 1         | 200     |
| 12.25              | 0         | 306     |
| 12                 | 0         | 300     |
| 11.0592            | 0         | 276     |
| 8                  | 0         | 200     |

### Table 21.3. Autobaud Parameters Examples

#### 21.3. LIN Master Mode Operation

The master node is responsible for the scheduling of messages and sends the header of each frame containing the SYNCH BREAK FIELD, SYNCH FIELD, and IDENTIFIER FIELD. The steps to schedule a message transmission or reception are listed below.

- 1. Load the 6-bit Identifier into the LIN0ID register.
- Load the data length into the LINOSIZE register. Set the value to the number of data bytes or "1111b" if the data length should be decoded from the identifier. Also, set the checksum type, classic or enhanced, in the same LINOSIZE register.
- 3. Set the data direction by setting the TXRX bit (LIN0CTRL.5). Set the bit to 1 to perform a master transmit operation, or set the bit to 0 to perform a master receive operation.
- 4. If performing a master transmit operation, load the data bytes to transmit into the data buffer (LIN0DT1 to LIN0DT8).
- 5. Set the STREQ bit (LIN0CTRL.0) to start the message transfer. The LIN controller will schedule the message frame and request an interrupt if the message transfer is successfully completed or if an error has occurred.

This code segment shows the procedure to schedule a message in a transmission operation:

```
LIN0ADR
         = 0x08;
                                // Point to LIN0CTRL
LINODAT = 0x20;
                               // Select to transmit data
LINOADR = 0 \times 0E;
                               // Point to LIN0ID
LINODAT = 0x11;
                               // Load the ID, in this example 0x11
LINOADR = 0 \times 0B;
                                // Point to LINOSIZE
LINODAT = ( LINODAT & 0xF0 ) | 0x08;
                                         // Load the size with 8
LINOADR = 0 \times 00;
                              // Point to Data buffer first byte
for (i=0; i<8; i++)
{
   LINODAT = i + 0x41;
                           // Load the buffer with `A', `B', ...
   LINOADR++;
                               // Increment the address to the next buffer
}
LINOADR = 0 \times 08;
                               // Point to LIN0CTRL
LINODAT = 0 \times 01;
                               // Start Request
```

The application should perform the following steps when an interrupt is requested.



# LIN Register Definition 21.7. LIN0ERR: LIN0 Error Register

| Bit   | 7 | 6 | 5 | 4     | 3    | 2    | 1   | 0      |
|-------|---|---|---|-------|------|------|-----|--------|
| Name  |   |   |   | SYNCH | PRTY | TOUT | СНК | BITERR |
| Туре  | R | R | R | R     | R    | R    | R   | R      |
| Reset | 0 | 0 | 0 | 0     | 0    | 0    | 0   | 0      |

Indirect Address = 0x0A

| Bit | Name   | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:5 | Unused | Read = 000b; Write = Don't Care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4   | SYNCH  | Synchronization Error Bit (slave mode only).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |        | 0: No error with the SYNCH FIELD has been detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2   | DDTV   | Parity Error Bit (clave mode only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3   | PKII   | 0: No parity error has been detected.<br>1: A parity error has been detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2   | TOUT   | Timeout Error Bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |        | <ul> <li>0: A timeout error has not been detected.</li> <li>1: A timeout error has been detected. This error is detected whenever one of the following conditions is met: <ul> <li>The master is expecting data from a slave and the slave does not respond.</li> <li>The slave is expecting data but no data is transmitted on the bus.</li> <li>A frame is not finished within the maximum frame length.</li> <li>The application does not set the DTACK bit (LINOCTRL.4) or STOP bit (LINOCTRL.7) until the end of the reception of the first byte after the identifier.</li> </ul> </li> </ul> |
| 1   | СНК    | Checksum Error Bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |        | 0: Checksum error has not been detected.<br>1: Checksum error has been detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0   | BITERR | <ul><li>Bit Transmission Error Bit.</li><li>0: No error in transmission has been detected.</li><li>1: The bit value monitored during transmission is different than the bit value sent.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                  |



# 23. SMBus

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I2C serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus interface autonomously controlling the serial transfer of the data. Data can be transferred at up to 1/20th of the system clock as a master or slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.

The SMBus interface may operate as a master and/or slave, and may function on a bus with multiple masters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and START/STOP control and generation. A block diagram of the SMBus peripheral and the associated SFRs is shown in Figure 23.1.



Figure 23.1. SMBus Block Diagram



# 24. UART0

UART0 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates (details in Section "24.1. Baud Rate Generator" on page 243). A received data FIFO allows UART0 to receive up to three data bytes before data is lost and an overflow occurs.

UART0 has six associated SFRs. Three are used for the Baud Rate Generator (SBCON0, SBRLH0, and SBRLL0), two are used for data formatting, control, and status functions (SCON0, SMOD0), and one is used to send and receive data (SBUF0). The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete). If additional bytes are available in the Receive FIFO, the RI0 bit cannot be cleared by software.



Figure 24.1. UART0 Block Diagram

## 24.1. Baud Rate Generator

The UART0 baud rate is generated by a dedicated 16-bit timer which runs from the controller's core clock (SYSCLK) and has prescaler options of 1, 4, 12, or 48. The timer and prescaler options combined allow for a wide selection of baud rates over many clock frequencies.

The baud rate generator is configured using three registers: SBCON0, SBRLH0, and SBRLL0. The UART0 Baud Rate Generator Control Register (SBCON0, SFR Definition 24.4) enables or disables the baud rate generator, selects the clock source for the baud rate generator, and selects the prescaler value for the timer. The baud rate generator must be enabled for UART0 to function. Registers SBRLH0 and SBRLL0 contain a 16-bit reload value for the dedicated 16-bit timer. The internal timer counts up from the reload value on every clock tick. On timer overflows (0xFFFF to 0x0000), the timer is reloaded. The baud rate for UART0 is defined in Equation 24.1, where "BRG Clock" is the baud rate generator's selected clock source. For reliable UART operation, it is recommended that the UART baud rate is not configured for baud rates faster than SYSCLK/16.



# SFR Definition 26.1. CKCON: Clock Control

| Bit   | 7    | 6    | 5    | 4    | 3   | 2   | 1        | 0 |  |  |  |
|-------|------|------|------|------|-----|-----|----------|---|--|--|--|
| Name  | T3MH | T3ML | T2MH | T2ML | T1M | TOM | SCA[1:0] |   |  |  |  |
| Туре  | R/W  | R/W  | R/W  | R/W  | R/W | R/W | R/W      |   |  |  |  |
| Reset | 0    | 0    | 0    | 0    | 0   | 0   | 0        | 0 |  |  |  |

#### SFR Address = 0x8E; SFR Page = All Pages

| Bit | Name     | Function                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 7   | ТЗМН     | Timer 3 High Byte Clock Select.                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|     |          | Selects the clock supplied to the Timer 3 high byte (split 8-bit timer mode only).<br>0: Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN.<br>1: Timer 3 high byte uses the system clock.                                                                                                     |  |  |  |  |  |  |  |
| 6   | T3ML     | Timer 3 Low Byte Clock Select.                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|     |          | Selects the clock supplied to Timer 3. Selects the clock supplied to the lower 8-bit timer in split 8-bit timer mode.<br>0: Timer 3 low byte uses the clock defined by the T3XCLK bit in TMR3CN.                                                                                                                  |  |  |  |  |  |  |  |
|     | TOMU     | Timer 2 Link Dute Cleak Select                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 5   | TZIVIE   | Selects the clock supplied to the Timer 2 high byte (split 8-bit timer mode only).<br>0: Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN.<br>1: Timer 2 high byte uses the system clock.                                                                                                     |  |  |  |  |  |  |  |
| 4   | T2ML     | Timer 2 Low Byte Clock Select.                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|     |          | <ul> <li>Selects the clock supplied to Timer 2. If Timer 2 is configured in split 8-bit timer mode, this bit selects the clock supplied to the lower 8-bit timer.</li> <li>0: Timer 2 low byte uses the clock defined by the T2XCLK bit in TMR2CN.</li> <li>1: Timer 2 low byte uses the system clock.</li> </ul> |  |  |  |  |  |  |  |
| 3   | T1       | Timer 1 Clock Select.                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|     |          | Selects the clock source supplied to Timer 1. Ignored when C/T1 is set to 1.<br>0: Timer 1 uses the clock defined by the prescale bits SCA[1:0].<br>1: Timer 1 uses the system clock.                                                                                                                             |  |  |  |  |  |  |  |
| 2   | Т0       | Timer 0 Clock Select.                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|     |          | Selects the clock source supplied to Timer 0. Ignored when C/T0 is set to 1.<br>0: Counter/Timer 0 uses the clock defined by the prescale bits SCA[1:0].<br>1: Counter/Timer 0 uses the system clock.                                                                                                             |  |  |  |  |  |  |  |
| 1:0 | SCA[1:0] | Timer 0/1 Prescale Bits.                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|     |          | These bits control the Timer 0/1 Clock Prescaler:<br>00: System clock divided by 12<br>01: System clock divided by 4<br>10: System clock divided by 48<br>11: External clock divided by 8 (synchronized with the system clock)                                                                                    |  |  |  |  |  |  |  |



# SFR Definition 26.6. TH0: Timer 0 High Byte

| Bit   | 7                                        | 6        | 5         | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|-------|------------------------------------------|----------|-----------|---|---|---|---|---|--|--|--|--|
| Nam   | e                                        | TH0[7:0] |           |   |   |   |   |   |  |  |  |  |
| Туре  | Гуре R/W                                 |          |           |   |   |   |   |   |  |  |  |  |
| Rese  | et 0                                     | 0        | 0         | 0 | 0 | 0 | 0 | 0 |  |  |  |  |
| SFR A | SFR Address = 0x8C; SFR Page = All Pages |          |           |   |   |   |   |   |  |  |  |  |
| Bit   | Name                                     |          | Function  |   |   |   |   |   |  |  |  |  |
| 7.0   | TU0[7.0]                                 | T:       | ula Dunta |   |   |   |   |   |  |  |  |  |

| 7:0 | TH0[7:0] | Timer 0 High Byte.                                       |
|-----|----------|----------------------------------------------------------|
|     |          | The TH0 register is the high byte of the 16-bit Timer 0. |

# SFR Definition 26.7. TH1: Timer 1 High Byte

| Bit           | 7             | 6                                                        | 5             | 4 | 3 | 2 | 1 | 0 |  |  |  |  |  |
|---------------|---------------|----------------------------------------------------------|---------------|---|---|---|---|---|--|--|--|--|--|
| Name TH1[7:0] |               |                                                          |               |   |   |   |   |   |  |  |  |  |  |
| Туре          | 9             | R/W                                                      |               |   |   |   |   |   |  |  |  |  |  |
| Rese          | et 0          | 0                                                        | 0             | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |
| SFR A         | Address = 0x8 | D; SFR Page                                              | e = All Pages | 6 |   |   |   |   |  |  |  |  |  |
| Bit           | Name          |                                                          | Function      |   |   |   |   |   |  |  |  |  |  |
| 7:0           | TH1[7:0]      | [7:0] Timer 1 High Byte.                                 |               |   |   |   |   |   |  |  |  |  |  |
|               |               | The TH1 register is the high byte of the 16-bit Timer 1. |               |   |   |   |   |   |  |  |  |  |  |



| Operational Mode                                                                                                                                                                                                                                                                                                               | PCA0CPMn |   |   |   |   |   |   |   |   | PCA0PWM |   |     |     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|---|---|---|---|---|---|---|---------|---|-----|-----|--|
| Bit Number                                                                                                                                                                                                                                                                                                                     | 7        | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6       | 5 | 4–2 | 1–0 |  |
| Capture triggered by positive edge on CEXn                                                                                                                                                                                                                                                                                     | Х        | Х | 1 | 0 | 0 | 0 | 0 | Α | 0 | Х       | В | XXX | XX  |  |
| Capture triggered by negative edge on CEXn                                                                                                                                                                                                                                                                                     | Х        | Х | 0 | 1 | 0 | 0 | 0 | А | 0 | Х       | В | XXX | XX  |  |
| Capture triggered by any transition on CEXn                                                                                                                                                                                                                                                                                    | Х        | Х | 1 | 1 | 0 | 0 | 0 | А | 0 | Х       | В | XXX | XX  |  |
| Software Timer                                                                                                                                                                                                                                                                                                                 | Х        | С | 0 | 0 | 1 | 0 | 0 | А | 0 | Х       | В | XXX | XX  |  |
| High Speed Output                                                                                                                                                                                                                                                                                                              | Х        | С | 0 | 0 | 1 | 1 | 0 | А | 0 | Х       | В | XXX | XX  |  |
| Frequency Output                                                                                                                                                                                                                                                                                                               | Х        | С | 0 | 0 | 0 | 1 | 1 | А | 0 | Х       | В | XXX | XX  |  |
| 8-Bit Pulse Width Modulator (Note 7)                                                                                                                                                                                                                                                                                           | 0        | С | 0 | 0 | Е | 0 | 1 | Α | 0 | Х       | В | XXX | 00  |  |
| 9-Bit Pulse Width Modulator (Note 7)                                                                                                                                                                                                                                                                                           | 0        | С | 0 | 0 | Е | 0 | 1 | А | D | Х       | В | XXX | 01  |  |
| 10-Bit Pulse Width Modulator (Note 7)                                                                                                                                                                                                                                                                                          | 0        | С | 0 | 0 | Е | 0 | 1 | Α | D | Х       | В | XXX | 10  |  |
| 11-Bit Pulse Width Modulator (Note 7)                                                                                                                                                                                                                                                                                          | 0        | С | 0 | 0 | Е | 0 | 1 | Α | D | Х       | В | XXX | 11  |  |
| 16-Bit Pulse Width Modulator                                                                                                                                                                                                                                                                                                   |          |   |   | 0 | Е | 0 | 1 | А | 0 | Х       | В | XXX | XX  |  |
| <ul> <li>Notes:</li> <li>1. X = Don't Care (no functional difference for individual module if 1 or 0).</li> <li>2. A = 1 to enable interrupts for this module (PCA interrupt triggered on CCFn set to 1).</li> <li>3. B = 1 to enable 8th 0th 10th or 11th bit everflow interrupt (Depende on acting of CLSEL[1:0])</li> </ul> |          |   |   |   |   |   |   |   |   |         |   |     |     |  |

#### Table 27.2. PCA0CPM and PCA0PWM Bit Settings for PCA Capture/Compare Modules

4. C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).

5. D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated channel is accessed via addresses PCA0CPHn and PCA0CPLn.

6. E = When set to 1, a match event will cause the CCFn flag for the associated channel to be set.

7. All modules set to 8, 9, 10 or 11-bit PWM mode use the same cycle length setting.

#### 27.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or fall-ing-edge caused the capture.





Figure 27.5. PCA Software Timer Mode Diagram

#### 27.3.3. High-Speed Output Mode

In High-Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode. If ECOMn is cleared, the associated pin will retain its state, and not toggle on the next match event.

**Important Note About Capture/Compare Registers**: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.





Figure 27.7. PCA Frequency Output Mode

#### 27.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer, and the setting of the PWM cycle length (8, 9, 10 or 11-bits). For backwards-compatibility with the 8-bit PWM mode available on other devices, the 8-bit PWM mode operates slightly different than 9, 10 and 11-bit PWM modes. It is important to note that all channels configured for 8/9/10/11-bit PWM mode will use the same cycle length. It is not possible to configure one channel for 8-bit PWM mode and another for 11bit mode (for example). However, other PCA channels can be configured to Pin Capture, High-Speed Output, Software Timer, Frequency Output, or 16-bit PWM mode independently.

#### 27.3.5.1. 8-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 8-bit PWM mode is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCA counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will be set. When the count value in PCA0L overflows, the CEXn output will be reset (see Figure 27.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCA0CPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register, and setting the CLSEL bits in register PCA0PWM to 00b enables 8-Bit Pulse Width Modulator mode. If the MATn bit is set to 1, the CCFn flag for the module will be set each time an 8-bit comparator match (rising edge) occurs. The COVF flag in PCA0PWM can be used to detect the overflow (falling edge), which will occur every 256 PCA clock cycles. The duty cycle for 8-Bit PWM Mode is given in Equation 27.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Duty Cycle =  $\frac{(256 - PCA0CPHn)}{256}$ 

#### Equation 27.2. 8-Bit PWM Duty Cycle

Using Equation 27.2, the largest duty cycle is 100% (PCA0CPHn = 0), and the smallest duty cycle is 0.39% (PCA0CPHn = 0xFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

