

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I²C), CANbus, LINbus, SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 25x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f502-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Part Number	Flash Memory (kB)	CAN2.0B	LIN2.0	Digital Port I/Os	External Memory Interface	Package	Ordering Part Number	Flash Memory (kB)	CAN2.0B	LIN2.0	Digital Port I/Os	External Memory Interface	Package
C8051F500-IQ	64	\checkmark	~	40	\checkmark	QFP-48	C8051F505-IQ	32		—	40	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	QFP-48
C8051F500-IM	64	\checkmark	\checkmark	40	\checkmark	QFN-48	C8051F505-IM	32	—	—	40	\checkmark	QFN-48
C8051F501-IQ	64	_	_	40	\checkmark	QFP-48	C8051F506-IQ	32	\checkmark	\checkmark	25	_	QFP-32
C8051F501-IM	64	—		40	\checkmark	QFN-48	C8051F506-IM	32	\checkmark	\checkmark	25		QFN-32
C8051F502-IQ	64	\checkmark	\checkmark	25	_	QFP-32	C8051F507-IQ	32	—	—	25	_	QFP-32
C8051F502-IM	64	\checkmark	\checkmark	25		QFN-32	C8051F507-IM	32	—	—	25		QFN-32
C8051F503-IQ	64	—		25	—	QFP-32	C8051F508-IM	64	\checkmark	\checkmark	33	\checkmark	QFN-40
C8051F503-IM	64		_	25		QFN-32	C8051F509-IM	64	—	—	33	\checkmark	QFN-40
C8051F504-IQ	32	\checkmark	\checkmark	40	\checkmark	QFP-48	C8051F510-IM	32	\checkmark	\checkmark	33	\checkmark	QFN-40
C8051F504-IM	32	\checkmark	\checkmark	40	\checkmark	QFN-48	C8051F511-IM	32		—	33	\checkmark	QFN-40

Table 2.1. Product Selection Guide

Note: The suffix of the part number indicates the device rating and the package. All devices are RoHS compliant.

All of these devices are also available in an automotive version. For the automotive version, the -I in the ordering part number is replaced with -A. For example, the automotive version of the C8051F500-IM is the C8051F500-AM.

The -AM and -AQ devices receive full automotive quality production status, including AEC-Q100 qualification, registration with International Material Data System (IMDS) and Part Production Approval Process (PPAP) documentation. PPAP documentation is available at www.silabs.com with a registered and NDA approved user account. The -AM and -AQ devices enable high volume automotive OEM applications with their enhanced testing and processing. Please contact Silicon Labs sales for more information regarding –AM and -AQ devices for your automotive project.

Figure 3.5. QFN-32 Pinout Diagram (Top View)

5. Electrical Characteristics

5.1. Absolute Maximum Specifications

Table 5.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Тур	Max	Units
Ambient Temperature under Bias		-55	_	135	°C
Storage Temperature		-65	_	150	°C
Voltage on V _{REGIN} with Respect to GND		-0.3	_	5.5	V
Voltage on V _{DD} with Respect to GND		-0.3	—	2.8	V
Voltage on VDDA with Respect to GND		-0.3	_	2.8	V
Voltage on V _{IO} with Respect to GND		-0.3	—	5.5	V
Voltage on any Port I/O Pin or RST with Respect to GND		-0.3	_	V _{IO} + 0.3	V
Maximum Total Current through V _{REGIN} or GND		_	_	500	mA
Maximum Output Current Sunk by \overline{RST} or any Port Pin			_	100	mA
Maximum Output Current Sourced by any Port Pin		_		100	mA
Note: Stresses outside of the range of the "Absolute Max"	imum Ratings"	mav cause	e permai	nent damage	to the

ote: Stresses outside of the range of the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

5.2. Electrical Characteristics

Table 5.2. Global Electrical Characteristics

-40 to +125 °C, 24 MHz system clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Supply Input Voltage (V _{REGIN})		1.8	_	5.25	V
Digital Supply Voltage (V _{DD})	System Clock <u><</u> 25 MHz	V_{RST}^{1}		2.75	V
	System Clock > 25 MHz	2		2.75	v
Analog Supply Voltage (VDDA)	System Clock < 25 MHz	V_{RST}^{1}	_	2.75	V
(Must be connected to V_{DD})	System Clock > 25 MHz	2		2.75	v
Digital Supply RAM Data Retention Voltage			1.5		
Port I/O Supply Voltage (V _{IO})	Normal Operation	1.8 ²	_	5.25	V
SYSCLK (System Clock) ³		0		50	MHz
T _{SYSH} (SYSCLK High Time)		9	_	—	ns
T _{SYSL} (SYSCLK Low Time)		9		—	ns
Specified Operating Temperature Range		-40	_	+125	°C
Digital Supply Current—CPU	Active (Normal Mode, fetching instr	uctions	from F	lash)	
I _{DD} ⁴	V _{DD} = 2.1 V, F = 200 kHz		95	—	μA
	V _{DD} = 2.1 V, F = 1.5 MHz	—	700	—	μA
	V _{DD} = 2.1 V, F = 25 MHz		10	11	mA
	V _{DD} = 2.1 V, F = 50 MHz	—	19	21	mA
Notes:					

- 1. Given in Table 5.4 on page 46.
- 2. V_{IO} should not be lower than the V_{DD} voltage.
- 3. SYSCLK must be at least 32 kHz to enable debugging.
- 4. Based on device characterization data; Not production tested. Does not include oscillator supply current.
- 5. IDD can be estimated for frequencies ≤ 12.5 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} for >12.5 MHz, the estimate should be the current at 50 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 2.6 V; F = 20 MHz, I_{DD} = 26 mA (50 MHz 20 MHz) * 0.48 mA/MHz = 11.6 mA.
- 6. Idle IDD can be estimated for frequencies \leq 1 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle I_{DD} for >1 MHz, the estimate should be the current at 50 MHz minus the difference in current indicated by the frequency sensitivity number.

For example: V_{DD} = 2.6 V; F = 5 MHz, Idle I_{DD} = 21 mA – (50 MHz – 5 MHz) x 0.41 mA/MHz = 2.6 mA.

Table 5.10. Temperature Sensor Electrical Characteristics

VDDA = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units	
Linearity		_	±0.1		°C	
Slope		_	3.33		mV/°C	
Slope Error*		_	±100		µV/°C	
Offset	Temp = 0 °C	_	856		mV	
Offset Error*	Temp = 0 °C	_	±14		mV	
Power Supply Current		_	21		μA	
Tracking Time		12		—	μs	
*Note: Represents one standard de	*Note: Represents one standard deviation from the mean.					

Table 5.11. Voltage Reference Electrical Characteristics

VDDA = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Internal Reference (REFBE	= 1)				
Output Voltage	25 °C ambient (REFLV = 0)	1.45	1.50	1.55	V
	25 °C ambient (REFLV = 1), V_{DD} = 2.6 V	2.15	2.20	2.25	v
VREF Short-Circuit Current			5	10	mA
VREF Temperature Coefficient			33	—	ppm/°C
Power Consumption	Internal		30	50	μA
Load Regulation	Load = 0 to 200 µA to AGND		3		μV/μΑ
VREF Turn-on Time 1	4.7 μF and 0.1 μF bypass		1.5		ms
VREF Turn-on Time 2	0.1 μF bypass		46		μs
Power Supply Rejection			1.3		mV/V
External Reference (REFB	Ē = 0)				
Input Voltage Range		1.5	—	V _{DDA}	V
Input Current	Sample Rate = 200 ksps; VREF = 1.5 V		2.2	—	μA
Power Specifications					
Reference Bias Generator	REFBE = 1 or TEMPE = 1	_	21	40	μA

Post-Tracking Mode is selected when AD0TM is set to 01b. A programmable tracking time based on AD0TK is started immediately following the convert start signal. Conversions are started after the programmed tracking time ends. After a conversion is complete, ADC0 does not track the input. Rather, the sampling capacitor remains disconnected from the input making the input pin high-impedance until the next convert start signal.

Dual-Tracking Mode is selected when AD0TM is set to 11b. A programmable tracking time based on AD0TK is started immediately following the convert start signal. Conversions are started after the programmed tracking time ends. After a conversion is complete, ADC0 tracks continuously until the next conversion is started.

Depending on the output connected to the ADC input, additional tracking time, more than is specified in Table 5.9, may be required after changing MUX settings. See the settling time requirements described in Section "6.2.1. Settling Time Requirements" on page 57.

Figure 6.2. ADC0 Tracking Modes

6.1.3. Timing

ADC0 has a maximum conversion speed specified in Table 5.9. ADC0 is clocked from the ADC0 Subsystem Clock (FCLK). The source of FCLK is selected based on the BURSTEN bit. When BURSTEN is logic 0, FCLK is derived from the current system clock. When BURSTEN is logic 1, FCLK is derived from the Burst Mode Oscillator, an independent clock source with a maximum frequency of 25 MHz.

When ADC0 is performing a conversion, it requires a clock source that is typically slower than FCLK. The ADC0 SAR conversion clock (SAR clock) is a divided version of FCLK. The divide ratio can be configured using the AD0SC bits in the ADC0CF register. The maximum SAR clock frequency is listed in Table 5.9.

ADC0 can be in one of three states at any given time: tracking, converting, or idle. Tracking time depends on the tracking mode selected. For Pre-Tracking Mode, tracking is managed by software and ADC0 starts conversions immediately following the convert start signal. For Post-Tracking and Dual-Tracking Modes, the tracking time after the convert start signal is equal to the value determined by the AD0TK bits plus 2 FCLK cycles. Tracking is immediately followed by a conversion. The ADC0 conversion time is always 13 SAR clock cycles plus an additional 2 FCLK cycles to start and complete a conversion. Figure 6.3 shows timing diagrams for a conversion in Pre-Tracking Mode and tracking plus conversion in Post-Tracking or Dual-Tracking Mode. In this example, repeat count is set to one.

SFR Definition 14.3. EIE1: Extended Interrupt Enable 1

Bit	7	6	5	4	3	2	1	0
Name	ELIN0	ET3	ECP1	ECP0	EPCA0	EADC0	EWADC0	ESMB0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE6; SFR Page = All Pages

Bit	Name	Function
7	ELIN0	Enable LIN0 Interrupt. This bit sets the masking of the LIN0 interrupt. 0: Disable LIN0 interrupts. 1: Enable interrupt requests generated by the LIN0INT flag.
6	ET3	 Enable Timer 3 Interrupt. This bit sets the masking of the Timer 3 interrupt. 0: Disable Timer 3 interrupts. 1: Enable interrupt requests generated by the TF3L or TF3H flags.
5	ECP1	 Enable Comparator1 (CP1) Interrupt. This bit sets the masking of the CP1 interrupt. 0: Disable CP1 interrupts. 1: Enable interrupt requests generated by the CP1RIF or CP1FIF flags.
4	ECP0	Enable Comparator0 (CP0) Interrupt. This bit sets the masking of the CP0 interrupt. 0: Disable CP0 interrupts. 1: Enable interrupt requests generated by the CP0RIF or CP0FIF flags.
3	EPCA0	 Enable Programmable Counter Array (PCA0) Interrupt. This bit sets the masking of the PCA0 interrupts. 0: Disable all PCA0 interrupts. 1: Enable interrupt requests generated by PCA0.
2	EADC0	 Enable ADC0 Conversion Complete Interrupt. This bit sets the masking of the ADC0 Conversion Complete interrupt. 0: Disable ADC0 Conversion Complete interrupt. 1: Enable interrupt requests generated by the AD0INT flag.
1	EWADC0	 Enable Window Comparison ADC0 Interrupt. This bit sets the masking of ADC0 Window Comparison interrupt. 0: Disable ADC0 Window Comparison interrupt. 1: Enable interrupt requests generated by ADC0 Window Compare flag (AD0WINT).
0	ESMB0	Enable SMBus (SMB0) Interrupt. This bit sets the masking of the SMB0 interrupt. 0: Disable all SMB0 interrupts. 1: Enable interrupt requests generated by SMB0.

15.4.3. System Clock

- 1. If operating from an external crystal, be advised that crystal performance is susceptible to electrical interference and is sensitive to layout and to changes in temperature. If the system is operating in an electrically noisy environment, use the internal oscillator or use an external CMOS clock.
- 2. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase operations. The external oscillator can continue to run, and the CPU can switch back to the external oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in "AN201: Writing to Flash from Firm-ware" available from the Silicon Laboratories web site.

SFR Definition 15.1. PSCTL: Program Store R/W Control

Bit	7	6	5	4	3	2	1	0
Name							PSEE	PSWE
Туре	R	R	R	R	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x8F; SFR Page = 0x00

Bit	Name	Function
7:2	Unused	Read = 000000b, Write = don't care.
1	PSEE	 Program Store Erase Enable. Setting this bit (in combination with PSWE) allows an entire page of Flash program memory to be erased. If this bit is logic 1 and Flash writes are enabled (PSWE is logic 1), a write to Flash memory using the MOVX instruction will erase the entire page that contains the location addressed by the MOVX instruction. The value of the data byte written does not matter. 0: Flash program memory erasure disabled. 1: Flash program memory erasure enabled.
0	PSWE	 Program Store Write Enable. Setting this bit allows writing a byte of data to the Flash program memory using the MOVX write instruction. The Flash location should be erased before writing data. 0: Writes to Flash program memory disabled. 1: Writes to Flash program memory enabled; the MOVX write instruction targets Flash memory.

19. Oscillators and Clock Selection

C8051F50x/F51x devices include a programmable internal high-frequency oscillator, an external oscillator drive circuit, and a clock multiplier. The internal oscillator can be enabled/disabled and calibrated using the OSCICN, OSCICRS, and OSCIFIN registers, as shown in Figure 19.1. The system clock can be sourced by the external oscillator circuit or the internal oscillator. The clock multiplier can produce three possible base outputs which can be scaled by a programmable factor of 1, 2/3, 2/4 (or 1/2), 2/5, 2/6 (or 1/3), or 2/7: Internal Oscillator x 2, Internal Oscillator x 4.

Figure 19.1. Oscillator Options

19.1. System Clock Selection

The CLKSL[1:0] bits in register CLKSEL select which oscillator source is used as the system clock. CLKSL[1:0] must be set to 01b for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator, external oscillator, and Clock Multiplier so long as the selected clock source is enabled and has settled.

The internal oscillator requires little start-up time and may be selected as the system clock immediately following the register write which enables the oscillator. The external RC and C modes also typically require no startup time.

External crystals and ceramic resonators however, typically require a start-up time before they are settled and ready for use. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to 1 by hardware when the external crystal or ceramic resonator is settled. In crystal mode, to avoid reading a false XTLVLD, software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD.

SFR Definition 20.1. XBR0: Port I/O Crossbar Register 0

Bit	7	6	5	4	3	2	1	0
Name	CP1AE	CP1E	CP0AE	CP0E	SMB0E	SPI0E	CAN0E	URT0E
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE1; SFR Page = 0x0F

Bit	Name	Function
7	CP1AE	Comparator1 Asynchronous Output Enable. 0: Asynchronous CP1 unavailable at Port pin. 1: Asynchronous CP1 routed to Port pin.
6	CP1E	Comparator1 Output Enable. 0: CP1 unavailable at Port pin. 1: CP1 routed to Port pin.
5	CP0AE	Comparator0 Asynchronous Output Enable. 0: Asynchronous CP0 unavailable at Port pin. 1: Asynchronous CP0 routed to Port pin.
4	CP0E	Comparator0 Output Enable. 0: CP0 unavailable at Port pin. 1: CP0 routed to Port pin.
3	SMB0E	SMBus I/O Enable. 0: SMBus I/O unavailable at Port pins. 1: SMBus I/O routed to Port pins.
2	SPIOE	 SPI I/O Enable. 0: SPI I/O unavailable at Port pins. 1: SPI I/O routed to Port pins. Note that the SPI can be assigned either 3 or 4 GPIO pins.
1	CAN0E	CAN I/O Output Enable. 0: CAN I/O unavailable at Port pins. 1: CAN_TX, CAN_RX routed to Port pins P0.6 and P0.7.
0	URT0E	UART I/O Output Enable. 0: UART I/O unavailable at Port pin. 1: UART TX0, RX0 routed to Port pins P0.4 and P0.5.

SFR Definition 20.2. XBR1: Port I/O Crossbar Register 1

Bit	7	6	5	4	3	2	1	0
Name	T1E	TOE	ECIE	F	PCA0ME[2:0	SYSCKE	Reserved	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE2; SFR Page = 0x0F

Bit	Name	Function
7	T1E	T1 Enable.
		0: T1 unavailable at Port pin.
		1: T1 routed to Port pin.
6	TOE	T0 Enable.
		0: T0 unavailable at Port pin.
		1: T0 routed to Port pin.
5	ECIE	PCA0 External Counter Input Enable.
		0: ECI unavailable at Port pin.
		1: ECI routed to Port pin.
4:2	PCA0ME[2:0]	PCA Module I/O Enable Bits.
		000: All PCA I/O unavailable at Port pins.
		001: CEX0 routed to Port pin.
		010: CEX0, CEX1 routed to Port pins.
		011: CEX0, CEX1, CEX2 routed to Port pins.
		100: CEX0, CEX1, CEX2, CEX3 routed to Port pins.
		110: CEX0, CEX1, CEX2, CEX3, CEX4, CEX5 routed to Port pins.
		111: Reserved
1	SYSCKE	SYSCLK Output Enable.
		0: SYSCLK unavailable at Port pin.
		1: SYSCLK output routed to Port pin.
0	Reserved	Always Write to 0.

SFR Definition 20.13. P0MDIN: Port 0 Input Mode

Bit	7	6	5	4	3	2	1	0		
Name		P0MDIN[7:0]								
Туре	R/W									
Reset	1	1	1	1	1	1	1	1		

SFR Address = 0xF1; SFR Page = 0x0F

Bit	Name	Function
7:0	P0MDIN[7:0]	Analog Configuration Bits for P0.7–P0.0 (respectively).
		 Port pins configured for analog mode have their weak pull-up and digital receiver disabled. For analog mode, the pin also needs to be configured for open-drain mode in the P0MDOUT register. 0: Corresponding P0.n pin is configured for analog mode. 1: Corresponding P0.n pin is not configured for analog mode.

SFR Definition 20.14. P0MDOUT: Port 0 Output Mode

Bit	7	6	5	4	3	2	1	0		
Name		P0MDOUT[7:0]								
Туре		R/W								
Reset	0	0	0	0	0	0	0	0		

SFR Address = 0xA4; SFR Page = 0x0F

Bit	Name	Function
7:0	P0MDOUT[7:0]	Output Configuration Bits for P0.7–P0.0 (respectively).
		These bits are ignored if the corresponding bit in register P0MDIN is logic 0. 0: Corresponding P0.n Output is open-drain. 1: Corresponding P0.n Output is push-pull.

SFR Definition 21.3. LIN0CF: LIN0 Control Mode Register

		-	-					
Bit	7	6	5	4	3	2	1	0
Name	LINEN	MODE	ABAUD					
Туре	R/W	R/W	R/W	R	R	R	R	R
Reset	0	1	1	0	0	0	0	0

SFR Address = 0xC9; SFR Page = 0x0F

Bit	Name	Function
7	LINEN	LIN Interface Enable Bit.
		0: LIN0 is disabled. 1: LIN0 is enabled.
6	MODE	LIN Mode Selection Bit.
		0: LIN0 operates in slave mode.
		1: LIN0 operates in master mode.
5	ABAUD	LIN Mode Automatic Baud Rate Selection.
		This bit only has an effect when the MODE bit is configured for slave mode.
		0: Manual baud rate selection is enabled.
		1: Automatic baud rate selection is enabled.
4:0	Unused	Read = 00000b; Write = Don't Care

LIN Register Definition 21.4. LIN0DTn: LIN0 Data Byte n

Bit	7	6	6 5 4 3 2 1 0									
Nam	e	DATAn[7:0]										
Туре	9	R/W										
Rese	Reset 0 <td>0</td>							0				
Indire LIN0D	ct Address: LIN 0T6 = 0x05, LIN	10DT1 = 0x0 10DT7 = 0x0	0, LIN0DT2)6, LIN0DT8	= 0x01, LIN(= 0x07	DT3 = 0x02	, LIN0DT4 =	0x03, LIN0[DT5 = 0x04,				
Bit	Name	me Function										
7:0	DATAn[7:0]	0] LIN Data Byte n.										
		Serial Data Byte that is received or transmitted across the LIN interface.										

22.1. Bosch CAN Controller Operation

The CAN Controller featured in the C8051F500/2/4/6/8-F510 devices is a full implementation of Bosch's full CAN module and fully complies with CAN specification 2.0B. A block diagram of the CAN controller is shown in Figure 22.2. The CAN Core provides shifting (CANTX and CANRX), serial/parallel conversion of messages, and other protocol related tasks such as transmission of data and acceptance filtering. The message RAM stores 32 message objects which can be received or transmitted on a CAN network. The CAN registers and message handler provide an interface for data transfer and notification between the CAN controller and the CIP-51.

The function and use of the CAN Controller is detailed in the Bosch CAN User's Guide. The User's Guide should be used as a reference to configure and use the CAN controller. This data sheet describes how to access the CAN controller.

All of the CAN controller registers are located on SFR Page 0x0C. Before accessing any of the CAN registers, the SFRPAGE register must be set to 0x0C.

The CAN Controller is typically initialized using the following steps:

- 1. Set the SFRPAGE register to the CAN registers page (page 0x0C).
- 2. Set the INIT and the CCE bits to 1 in CAN0CN. See the CAN User's Guide for bit definitions.
- 3. Set timing parameters in the Bit Timing Register and the BRP Extension Register.
- 4. Initialize each message object or set its MsgVal bit to NOT VALID.
- 5. Reset the INIT bit to 0.

Figure 22.2. CAN Controller Diagram

22.1.1. CAN Controller Timing

The CAN controller's clock (fsys) is derived from the CIP-51 system clock (SYSCLK). The internal oscillator is accurate to within 0.5% of 24 MHz across the entire temperature range and for VDD voltages greater than or equal to the minimum output of the on-chip voltage regulator, and so an external oscillator is not required for CAN communication for most systems. Refer to Section "4.10.4 Oscillator Tolerance Range" in the Bosch CAN User's Guide for further information regarding this topic.

SFR Definition 26.11. TMR2L: Timer 2 Low Byte

Bit	7	6	5	4	3	2	1	0		
Name		TMR2L[7:0]								
Туре		R/W								
Reset	0	0 0 0 0 0 0 0 0								

SFR Address = 0xCC; SFR Page = 0x00

Bit	Name	Function
7:0	TMR2L[7:0]	Timer 2 Low Byte.
		In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8- bit mode, TMR2L contains the 8-bit low byte timer value.

SFR Definition 26.12. TMR2H Timer 2 High Byte

Bit	7	6	5	4	3	2	1	0		
Name	TMR2H[7:0]									
Туре		R/W								
Reset	0	0 0 0 0 0 0 0 0								

SFR Address = 0xCD; SFR Page = 0x00

Bit	Name	Function
7:0	TMR2H[7:0]	Timer 2 High Byte.
		In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8- bit mode, TMR2H contains the 8-bit high byte timer value.

Figure 27.6. PCA High-Speed Output Mode Diagram

27.3.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 27.1.

$$\mathsf{F}_{\mathsf{CEXn}} = \frac{\mathsf{F}_{\mathsf{PCA}}}{2 \times \mathsf{PCA0CPHn}}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Equation 27.1. Square Wave Frequency Output

Where F_{PCA} is the frequency of the clock selected by the CPS[2:0] bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register. Note that the MATn bit should normally be set to 0 in this mode. If the MATn bit is set to 1, the CCFn flag for the channel will be set when the 16-bit PCA0 counter and the 16-bit capture/compare register for the channel are equal.

Figure 27.7. PCA Frequency Output Mode

27.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer, and the setting of the PWM cycle length (8, 9, 10 or 11-bits). For backwards-compatibility with the 8-bit PWM mode available on other devices, the 8-bit PWM mode operates slightly different than 9, 10 and 11-bit PWM modes. It is important to note that all channels configured for 8/9/10/11-bit PWM mode will use the same cycle length. It is not possible to configure one channel for 8-bit PWM mode and another for 11bit mode (for example). However, other PCA channels can be configured to Pin Capture, High-Speed Output, Software Timer, Frequency Output, or 16-bit PWM mode independently.

27.3.5.1. 8-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 8-bit PWM mode is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCA counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will be set. When the count value in PCA0L overflows, the CEXn output will be reset (see Figure 27.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCA0CPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register, and setting the CLSEL bits in register PCA0PWM to 00b enables 8-Bit Pulse Width Modulator mode. If the MATn bit is set to 1, the CCFn flag for the module will be set each time an 8-bit comparator match (rising edge) occurs. The COVF flag in PCA0PWM can be used to detect the overflow (falling edge), which will occur every 256 PCA clock cycles. The duty cycle for 8-Bit PWM Mode is given in Equation 27.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Duty Cycle = $\frac{(256 - PCA0CPHn)}{256}$

Equation 27.2. 8-Bit PWM Duty Cycle

Using Equation 27.2, the largest duty cycle is 100% (PCA0CPHn = 0), and the smallest duty cycle is 0.39% (PCA0CPHn = 0xFF). A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

27.5. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 27.1. PCA0CN: PCA Control

Bit	7	6	5	4	3	2	1	0
Name	CF	CR	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD8; Bit-Addressable; SFR Page = 0x00

Bit	Name	Function
7	CF	PCA Counter/Timer Overflow Flag.
		Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
6	CR	PCA Counter/Timer Run Control.
		This bit enables/disables the PCA Counter/Timer.
		0: PCA Counter/Timer disabled. 1: PCA Counter/Timer enabled.
5	CCF5	PCA Module 5 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF5 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
4	CCF4	PCA Module 4 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF4 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
3	CCF3	PCA Module 3 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF3 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
2	CCF2	PCA Module 2 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF2 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
1	CCF1	PCA Module 1 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
0	CCF0	PCA Module 0 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF0 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com