

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), CANbus, LINbus, SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 25x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f502-iq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1. System Overview	. 16
2. Ordering Information	. 20
3. Pin Definitions	. 22
4. Package Specifications	. 30
4.1. QFP-48 Package Specifications	. 30
4.2. QFN-48 Package Specifications	. 32
4.3. QFN-40 Package Specifications	. 34
4.4. QFP-32 Package Specifications	. 36
4.5. QFN-32 Package Specifications	. 38
5. Electrical Characteristics	. 40
5.1. Absolute Maximum Specifications	. 40
5.2. Electrical Characteristics	. 41
6. 12-Bit ADC (ADC0)	. 52
6.1. Modes of Operation	. 53
6.1.1. Starting a Conversion	. 53
6.1.2. Tracking Modes	. 53
6.1.3. Timing	. 54
6.1.4. Burst Mode	. 55
6.2. Output Code Formatting	. 57
6.2.1. Settling Time Requirements	. 57
6.3. Selectable Gain	. 58
6.3.1. Calculating the Gain Value	. 58
6.3.2. Setting the Gain Value	. 60
6.4. Programmable Window Detector	. 66
6.4.1. Window Detector In Single-Ended Mode	. 68
6.5. ADC0 Analog Multiplexer	. 70
7. Temperature Sensor	. 72
8. Voltage Reference	. 73
9. Comparators	. 75
9.1. Comparator Multiplexer	. 81
10. Voltage Regulator (REG0)	. 84
11. CIP-51 Microcontroller	. 86
11.1. Performance	. 86
11.2. Instruction Set	. 88
11.2.1. Instruction and CPU Timing	. 88
11.3. CIP-51 Register Descriptions	. 92
11.4. Serial Number Special Function Registers (SFRs)	. 96
12. Memory Organization	. 97
12.1. Program Memory	. 98
12.1.1. MOVX Instruction and Program Memory	. 98
12.2. Data Memory	. 98
12.2.1. Internal RAM	. 98
12.2.1.1. General Purpose Registers	. 99
12.2.1.2. Bit Addressable Locations	. 99

Figure 25.5. Master Made Data/Clack Timing	057
Figure 25.5. Master Mode Data/Clock Timing	257
Figure 25.6. Slave Mode Data/Clock Timing (CKPHA = 0)	258
Figure 25.7. Slave Mode Data/Clock Timing (CKPHA = 1)	258
Figure 25.8. SPI Master Timing (CKPHA = 0)	262
Figure 25.9. SPI Master Timing (CKPHA = 1)	262
Figure 25.10. SPI Slave Timing (CKPHA = 0)	263
Figure 25.11. SPI Slave Timing (CKPHA = 1)	263
Figure 26.1. T0 Mode 0 Block Diagram	268
Figure 26.2. T0 Mode 2 Block Diagram	269
Figure 26.3. T0 Mode 3 Block Diagram	270
Figure 26.4. Timer 2 16-Bit Mode Block Diagram	275
Figure 26.5. Timer 2 8-Bit Mode Block Diagram	276
Figure 26.6. Timer 2 External Oscillator Capture Mode Block Diagram	277
Figure 26.7. Timer 3 16-Bit Mode Block Diagram	281
Figure 26.8. Timer 3 8-Bit Mode Block Diagram	282
Figure 26.9. Timer 3 External Oscillator Capture Mode Block Diagram	283
Figure 27.1. PCA Block Diagram	287
Figure 27.2. PCA Counter/Timer Block Diagram	288
Figure 27.3. PCA Interrupt Block Diagram	289
Figure 27.4. PCA Capture Mode Diagram	291
Figure 27.5. PCA Software Timer Mode Diagram	292
Figure 27.6. PCA High-Speed Output Mode Diagram	293
Figure 27.7. PCA Frequency Output Mode	294
Figure 27.8. PCA 8-Bit PWM Mode Diagram	295
Figure 27.9. PCA 9, 10 and 11-Bit PWM Mode Diagram	296
Figure 27.10. PCA 16-Bit PWM Mode	297
Figure 27.11. PCA Module 2 with Watchdog Timer Enabled	298
Figure 28.1. Typical C2 Pin Sharing	309

	005
Table 21.3. Autobaud Parameters Examples	205
Table 21.4. LIN Registers (Indirectly Addressable)	210
Table 22.1. Background System Information	220
Table 22.2. Standard CAN Registers and Reset Values	223
Table 23.1. SMBus Clock Source Selection	230
Table 23.2. Minimum SDA Setup and Hold Times	231
Table 23.3. Sources for Hardware Changes to SMB0CN	235
Table 23.4. SMBus Status Decoding	241
Table 24.1. Baud Rate Generator Settings for Standard Baud Rates	244
Table 25.1. SPI Slave Timing Parameters	264
Table 27.1. PCA Timebase Input Options	288
Table 27.2. PCA0CPM and PCA0PWM Bit Settings for	
PCA Capture/Compare Modules	290
Table 27.3. Watchdog Timer Timeout Intervals1	299

List of Registers

SFR	Definition 6	6.4. ADC0CF: ADC0 Configuration6	33
SFR	Definition 6	6.5. ADC0H: ADC0 Data Word MSB	54
SFR	Definition 6	6.6. ADC0L: ADC0 Data Word LSB6	64
SFR	Definition 6	6.7. ADC0CN: ADC0 Control 6	35
SFR	Definition 6	6.8. ADC0TK: ADC0 Tracking Mode Select	66
SFR	Definition 6	6.9. ADC0GTH: ADC0 Greater-Than Data High Byte	37
SFR	Definition 6	6.10. ADC0GTL: ADC0 Greater-Than Data Low Byte	37
SFR	Definition 6	6.11. ADC0LTH: ADC0 Less-Than Data High Byte6	38
SFR	Definition 6	6.12. ADC0LTL: ADC0 Less-Than Data Low Byte	38
SFR	Definition 6	6.13. ADC0MX: ADC0 Channel Select	71
SFR	Definition 8	3.1. REF0CN: Reference Control	74
SFR	Definition 9	9.1. CPT0CN: Comparator0 Control 7	77
SFR	Definition 9	9.2. CPT0MD: Comparator0 Mode Selection7	78
SFR	Definition 9	9.3. CPT1CN: Comparator1 Control7	79
SFR	Definition 9	9.4. CPT1MD: Comparator1 Mode Selection	30
SFR	Definition 9	9.5. CPT0MX: Comparator0 MUX Selection	32
SFR	Definition 9	9.6. CPT1MX: Comparator1 MUX Selection	33
SFR	Definition 1	10.1. REG0CN: Regulator Control	35
SFR	Definition 1	11.1. DPL: Data Pointer Low Byte	93
SFR	Definition 1	11.2. DPH: Data Pointer High Byte	93
SFR	Definition 1	11.3. SP: Stack Pointer	94
SFR	Definition 1	11.4. ACC: Accumulator	94
SFR	Definition 1	11.5. B: B Register	94
SFR	Definition 1	11.6. PSW: Program Status Word	95
SFR	Definition 1	11.7. SNn: Serial Number n	96
SFR	Definition 1	13.1. SFRUCN: SFR Page Control)/
SFR	Definition 1	13.2. SFRPAGE: SFR Page	98
SFR	Definition 1	13.3. SFRNEXT: SFR Next	J9
SFR	Definition 1	13.4. SFRLAST: SFR Last	10
SFR	Definition 1	14.1. IE: Interrupt Enable	21
SFR	Definition 1	14.2. IP: Interrupt Priority	22
SFR	Definition 1	14.3. EIE1: Extended Interrupt Enable 1	23
SFR	Definition 1	14.4. EIP1: Extended Interrupt Priority 1	24
SFR	Definition 1	14.5. EIE2: Extended Interrupt Enable 2	25
SFR	Definition 1	14.6. EIPZ: Extended Interrupt Priority Enabled 2	20
SFR	Definition 1	14.7. ITUTOF: INTU/INTT CONTIGURATION	28
SER	Definition 1	15.1. PSCTL: Program Store R/W Control	54 25
SFR	Definition 1	15.2. FLRET: Flash Lock and Key	30
SER	Definition 1	13.3. FLOUL: FIASII SUAIE	טכ דכ
SER	Definition 1	13.4. CUTION. Caulle Control) ככ
OFR	Definition 1	10.0. UNEORUT. FIASH UNESHUL PEHOU) /
SFK	Definition 1	10.1. FOUN: FOWER CONTROL 14	+U 4 4
SLK	Demnition		+4

4.2. QFN-48 Package Specifications

Figure 4.3. QFN-48 Package Drawing

Table 4.3. QFN-48 Package Dimensions

Dimension	Min	Тур	Max	Dimension	Min	Тур	Max
A	0.80	0.90	1.00	E2	3.90	4.00	4.10
A1	0.00	-	0.05	L	0.30	0.40	0.50
b	0.18	0.23	0.30	L1	0.00	-	0.08
D	7.00 BSC			aaa	-	-	0.10
D2	3.90	4.00	4.10	bbb	-	-	0.10
е	0.50 BSC			ddd	-	-	0.05
E	7.00 BSC			eee	-	-	0.08

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-220, variation VKKD-4 except for features D2 and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

4.5. QFN-32 Package Specifications

Figure 4.9. QFN-32 Package Drawing

Dimension	Min	Тур	Max	Dimension	Min	Тур	Max
A	0.80	0.9	1.00	E2	3.20	3.30	3.40
A1	0.00	0.02	0.05	L	0.30	0.40	0.50
b	0.18	0.25	0.30	L1	0.00	—	0.15
D	5.00 BSC.			aaa	_	—	0.15
D2	3.20	3.30	3.40	bbb	—	—	0.15
е	0.50 BSC.			ddd	_	—	0.05
E	5.00 BSC.			eee	_	—	0.08

Table 4.9. QFN-32 Package Dimensions

Notes:

- **1.** All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- **3.** This drawing conforms to the JEDEC Solid State Outline MO-220, variation VGGD except for custom features D2, E2, and L which are toleranced per supplier designation.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6. 12-Bit ADC (ADC0)

The ADC0 on the C8051F50x/F51x consists of an analog multiplexer (AMUX0) with 35/28 total input selections and a 200 ksps, 12-bit successive-approximation-register (SAR) ADC with integrated track-and-hold, programmable window detector, programmable attenuation (1:2), and hardware accumulator. The ADC0 subsystem has a special Burst Mode which can automatically enable ADC0, capture and accumulate samples, then place ADC0 in a low power shutdown mode without CPU intervention. The AMUX0, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shows in Figure 6.1. ADC0 inputs are single-ended and may be configured to measure P0.0-P3.7, the Temperature Sensor output, V_{DD} , or GND with respect to GND. The voltage reference for ADC0 is selected as described in Section "7. Temperature Sensor" on page 72. ADC0 is enabled when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1, or when performing conversions in Burst Mode. ADC0 is in low power shutdown when AD0EN is logic 0 and no Burst Mode conversions are taking place.

Figure 6.1. ADC0 Functional Block Diagram

6.2. Output Code Formatting

The registers ADC0H and ADC0L contain the high and low bytes of the output conversion code. When the repeat count is set to 1, conversion codes are represented in 12-bit unsigned integer format and the output conversion code is updated after each conversion. Inputs are measured from 0 to $V_{REF} \times 4095/4096$. Data can be right-justified or left-justified, depending on the setting of the AD0LJST bit (ADC0CN.2). Unused bits in the ADC0H and ADC0L registers are set to 0. Example codes are shown below for both right-justified and left-justified data.

Input Voltage	Right-Justified ADC0H:ADC0L (AD0LJST = 0)	Left-Justified ADC0H:ADC0L (AD0LJST = 1)
VREF x 4095/4096	0x0FFF	0xFFF0
VREF x 2048/4096	0x0800	0x8000
VREF x 2047/4096	0x07FF	0x7FF0
0	0x0000	0x0000

When the ADC0 Repeat Count is greater than 1, the output conversion code represents the accumulated result of the conversions performed and is updated after the last conversion in the series is finished. Sets of 4, 8, or 16 consecutive samples can be accumulated and represented in unsigned integer format. The repeat count can be selected using the AD0RPT bits in the ADC0CF register. The value must be right-justified (AD0LJST = 0), and unused bits in the ADC0H and ADC0L registers are set to 0. The following example shows right-justified codes for repeat counts greater than 1. Notice that accumulating 2^n samples is equivalent to left-shifting by *n* bit positions when all samples returned from the ADC have the same value.

Input Voltage	Repeat Count = 4	Repeat Count = 8	Repeat Count = 16
V _{REF} x 4095/4096	0x3FFC	0x7FF8	0xFFF0
V _{REF} x 2048/4096	0x2000	0x4000	0x8000
V _{REF} x 2047/4096	0x1FFC	0x3FF8	0x7FF0
0	0x0000	0x0000	0x0000

6.2.1. Settling Time Requirements

A minimum tracking time is required before an accurate conversion is performed. This tracking time is determined by any series impedance, including the AMUX0 resistance, the ADC0 sampling capacitance, and the accuracy required for the conversion.

Figure 6.5 shows the equivalent ADC0 input circuit. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 6.1. When measuring the Temperature Sensor output, use the settling time specified in Table 5.10 on page 50. When measuring V_{DD} with respect to GND, R_{TO-TAL} reduces to R_{MUX} . See Table 5.9 for ADC0 minimum settling time requirements as well as the mux impedance and sampling capacitor values.

$$t = ln\left(\frac{2^{n}}{SA}\right) \times R_{TOTAL}C_{SAMPLE}$$

Equation 6.1. ADC0 Settling Time Requirements

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 R_{TOTAL} is the sum of the AMUX0 resistance and any external source resistance.

n is the ADC resolution in bits (10).

7. Temperature Sensor

An on-chip temperature sensor is included on the C8051F50x/F51x devices which can be directly accessed via the ADC multiplexer in single-ended configuration. To use the ADC to measure the temperature sensor, the ADC multiplexer channel should be configured to connect to the temperature sensor. The temperature sensor transfer function is shown in Figure 7.1. The output voltage (V_{TEMP}) is the positive ADC input is selected by bits AD0MX[4:0] in register ADC0MX. The TEMPE bit in register REF0CN enables/disables the temperature sensor, as described in SFR Definition 8.1. While disabled, the temperature sensor defaults to a high impedance state and any ADC measurements performed on the sensor will result in meaningless data. Refer to Table 5.10 for the slope and offset parameters of the temperature sensor.

Figure 7.1. Temperature Sensor Transfer Function

SFR Definition 9.2. CPT0MD: Comparator0 Mode Selection

Bit	7	6	5	4	3	2	1	0
Name			CP0RIE	CP0FIE			CP0M	D[1:0]
Туре	R	R	R/W	R/W	R	R	R/W	
Reset	0	0	0	0	0	0	1	0

SFR Address = 0x9B; SFR Page = 0x00

Bit	Name	Function
7:6	Unused	Read = 00b, Write = Don't Care.
5	CPORIE	Comparator0 Rising-Edge Interrupt Enable. 0: Comparator0 Rising-edge interrupt disabled. 1: Comparator0 Rising-edge interrupt enabled.
4	CP0FIE	Comparator0 Falling-Edge Interrupt Enable. 0: Comparator0 Falling-edge interrupt disabled. 1: Comparator0 Falling-edge interrupt enabled.
3:2	Unused	Read = 00b, Write = don't care.
1:0	CP0MD[1:0]	Comparator0 Mode Select. These bits affect the response time and power consumption for Comparator0. 00: Mode 0 (Fastest Response Time, Highest Power Consumption) 01: Mode 1 10: Mode 2 11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

Mnemonic	Description	Bytes	Clock Cycles
XRL A, #data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	2
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
Data Transfer			
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, #data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	4-7*
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2
Boolean Manipulation			
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
Note: Certain instructions tak the FLRT setting (SFR	e a variable number of clock cycles to execute dependin Definition 15.3).	g on instruction a	alignment and

Table 11.1. CIP-51 Instruction Set Summary (Prefetch-Enabled)(Continued)

15.4.3. System Clock

- 1. If operating from an external crystal, be advised that crystal performance is susceptible to electrical interference and is sensitive to layout and to changes in temperature. If the system is operating in an electrically noisy environment, use the internal oscillator or use an external CMOS clock.
- 2. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase operations. The external oscillator can continue to run, and the CPU can switch back to the external oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in "AN201: Writing to Flash from Firm-ware" available from the Silicon Laboratories web site.

SFR Definition 15.1. PSCTL: Program Store R/W Control

Bit	7	6	5	4	3	2	1	0
Name							PSEE	PSWE
Туре	R	R	R	R	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x8F; SFR Page = 0x00

Bit	Name	Function
7:2	Unused	Read = 000000b, Write = don't care.
1	PSEE	 Program Store Erase Enable. Setting this bit (in combination with PSWE) allows an entire page of Flash program memory to be erased. If this bit is logic 1 and Flash writes are enabled (PSWE is logic 1), a write to Flash memory using the MOVX instruction will erase the entire page that contains the location addressed by the MOVX instruction. The value of the data byte written does not matter. 0: Flash program memory erasure disabled. 1: Flash program memory erasure enabled.
0	PSWE	 Program Store Write Enable. Setting this bit allows writing a byte of data to the Flash program memory using the MOVX write instruction. The Flash location should be erased before writing data. 0: Writes to Flash program memory disabled. 1: Writes to Flash program memory enabled; the MOVX write instruction targets Flash memory.

SFR Definition 19.6. OSCXCN: External Oscillator Control

Bit	7	6	5	4	3	2	0				
Name	XTLVLD	Х	(OSCMD[2:0)]		XFCN[2:0]					
Туре	R		R/W		R	R/W					
Reset	0	0	0	0	0	0	0	0			

SFR Address = 0x9F; SFR Page = 0x0F;

Bit	Name			Function								
7	XTLVLD	Crystal	Oscillator Valid Flag.									
		(Read c	only when XOSCMD = 11	x.)								
		0: Cryst	al Oscillator is unused or	r not yet stable.								
		1: Cryst	al Oscillator is running a	nd stable.								
6:4	XOSCMD[2:0]	Externa	al Oscillator Mode Sele	ct.								
		00x: Ex	ternal Oscillator circuit of	f.								
		010: Ex	ternal CMOS Clock Mod	e.								
		011: Ex	11: External CMOS Clock Mode with divide by 2 stage.									
		100: RC	00: RC Oscillator Mode.									
		101: Ca	pacitor Oscillator Mode.									
		110: Cry	10: Crystal Oscillator Mode.									
		111: Cry	111: Crystal Oscillator Mode with divide by 2 stage.									
3	Unused	Read =	Read = 0b; Write =0b									
2:0	XFCN[2:0]	Externa	al Oscillator Frequency	Control Bits.								
		Set acc	ording to the desired free	quency for Crystal or RC	mode.							
		Set acc	ording to the desired K F	actor for C mode.								
		XFCN	Crystal Mode	RC Mode	C Mode							
		000	f ≤ 32 kHz	f ≤ 25 kHz	K Factor = 0.87							
		001	32 kHz < f ≤ 84 kHz	25 kHz < f ≤ 50 kHz	K Factor = 2.6							
		010	84 kHz < f ≤ 225 kHz	50 kHz < f ≤ 100 kHz	K Factor = 7.7							
		011	225 kHz < f ≤ 590 kHz	100 kHz < f ≤ 200 kHz	K Factor = 22							
		100	$590 \text{ kHz} < f \le 1.5 \text{ MHz} 200 \text{ kHz} < f \le 400 \text{ kHz} \text{K Factor} = 65$									
		101	101 1.5 MHz < f \leq 4 MHz 400 kHz < f \leq 800 kHz K Factor = 180									
		110	$4 \text{ MHz} < f \le 10 \text{ MHz}$	800 kHz < f ≤ 1.6 MHz	K Factor = 664							
		111	10 MHz < f \leq 30 MHz	1.6 MHz < f \leq 3.2 MHz	K Factor = 1590							

SFR Definition 20.27. P3SKIP: Port 3Skip

Bit	7	6	5	4	3	2	1	0				
Name	P3SKIP[7:0]											
Туре				R/	W							
Reset	0	0	0	0	0	0	0	0				

SFR Address = 0xD7; SFR Page = 0x0F

Bit	Name	Function							
7:0	P3SKIP[7:0]	Port 3 Crossbar Skip Enable Bits.							
		These bits select Port 3 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P3.n pin is not skipped by the Crossbar. 1: Corresponding P3.n pin is skipped by the Crossbar.							
Note:	ote: Port P3.1–P3.7 are only available on the 48-pin and 40-pin packages.								

SFR Definition 20.28. P4: Port 4

Bit	7	6	5	4	3	2	1	0					
Name	P4[7:0]												
Туре	R/W												
Reset	1	1	1	1	1		1	1					

SFR Address = 0xB5; SFR Page = All Pages

Bit	Name	Description	Write	Read
7:0	P4[7:0]	Port 4 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P4.n Port pin is logic LOW. 1: P4.n Port pin is logic HIGH.
Note:	Port 4.0 is c packages.	nly available on the 48-pin and 40	-pin packages. P4.1-P4.7 are o	nly available on the 48-pin

LIN Register Definition 21.7. LIN0ERR: LIN0 Error Register

Bit	7	6	5	4	3	2	1	0
Name				SYNCH	PRTY	TOUT	СНК	BITERR
Туре	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Indirect Address = 0x0A

Bit	Name	Function
7:5	Unused	Read = 000b; Write = Don't Care
4	SYNCH	Synchronization Error Bit (slave mode only).
		0: No error with the SYNCH FIELD has been detected.
		1: Edges of the SYNCH FIELD are outside of the maximum tolerance.
3	PRTY	Parity Error Bit (slave mode only).
		0: No parity error has been detected.
		1: A parity error has been detected.
2	TOUT	Timeout Error Bit.
		0: A timeout error has not been detected.
		1: A timeout error has been detected. This error is detected whenever one of the fol- lowing conditions is met:
		• The master is expecting data from a slave and the slave does not respond.
		 The slave is expecting data but no data is transmitted on the bus.
		 A frame is not finished within the maximum frame length. The application does not set the DTACK bit (LINOCTRL 4) or STOP bit
		(LINOCTRL.7) until the end of the reception of the first byte after the identifier.
1	СНК	Checksum Error Bit.
		0: Checksum error has not been detected.
		1: Checksum error has been detected.
0	BITERR	Bit Transmission Error Bit.
		0: No error in transmission has been detected.
		1: The bit value monitored during transmission is different than the bit value sent.

23.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

- 1. The I²C-Bus and How to Use It (including specifications), Philips Semiconductor.
- 2. The I²C-Bus Specification—Version 2.0, Philips Semiconductor.
- 3. System Management Bus Specification—Version 1.1, SBS Implementers Forum.

23.2. SMBus Configuration

Figure 23.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 3.0 V and 5.0 V; different devices on the bus may operate at different voltage levels. The bi-directional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pullup resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 1000 ns, respectively.

Figure 23.2. Typical SMBus Configuration

23.3. SMBus Operation

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ). The master device initiates both types of data transfers and provides the serial clock pulses on SCL. The SMBus interface may operate as a master or a slave, and multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration. It is not necessary to specify one device as the Master in a system; any device who transmits a START and a slave address becomes the master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7–1: 7-bit slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Bytes that are received (by a master or slave) are acknowledged (ACK) with a low SDA during a high SCL (see Figure 23.3). If the receiving device does not ACK, the transmitting device will read a NACK (not acknowledge), which is a high SDA during a high SCL.

The direction bit (R/W) occupies the least-significant bit position of the address byte. The direction bit is set to logic 1 to indicate a "READ" operation and cleared to logic 0 to indicate a "WRITE" operation.

Bit	Set by Hardware When:	Cleared by Hardware When:
MASTER	 A START is generated. 	 A STOP is generated.
		 Arbitration is lost.
TXMODE	 START is generated. 	 A START is detected.
	 SMB0DAT is written before the start of an 	 Arbitration is lost.
	SMBus frame.	 SMB0DAT is not written before the start of an SMBus frame.
STA	 A START followed by an address byte is received. 	 Must be cleared by software.
STO	 A STOP is detected while addressed as a slave. 	A pending STOP is generated.
	 Arbitration is lost due to a detected STOP. 	
ACKRQ	 A byte has been received and an ACK response value is needed. 	 After each ACK cycle.
ARBLOST	 A repeated START is detected as a MASTER when STA is low (unwanted repeated START). 	 Each time SI is cleared.
	 SCL is sensed low while attempting to generate a STOP or repeated START condition. 	
	 SDA is sensed low while transmitting a 1 (excluding ACK bits). 	
ACK	 The incoming ACK value is low (ACKNOWLEDGE). 	 The incoming ACK value is high (NOT ACKNOWLEDGE).
SI	A START has been generated.	 Must be cleared by software.
	 Lost arbitration. 	
	 A byte has been transmitted and an ACK/NACK received. 	
	A byte has been received.	
	• A START or repeated START followed by a	
	slave address + R/W has been received.	
	 A STOP has been received. 	

Table 23.3. Sources for Hardware Changes to SMB0CN

If the extra bit function is enabled (XBE0 = 1) and the parity function is disabled (PE0 = 0), the extra bit for the oldest byte in the FIFO can be read from the RBX0 bit (SCON0.2). If the extra bit function is not enabled, the value of the stop bit for the oldest FIFO byte will be presented in RBX0. When the parity function is enabled (PE0 = 1), hardware will check the received parity bit against the selected parity type (selected with S0PT[1:0]) when receiving data. If a byte with parity error is received, the PERR0 flag will be set to 1. This flag must be cleared by software. Note: when parity is enabled, the extra bit function is not available.

24.3.3. Multiprocessor Communications

UARTO supports multiprocessor communication between a master processor and one or more slave processors by special use of the extra data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its extra bit is logic 1; in a data byte, the extra bit is always set to logic 0.

Setting the MCE0 bit (SMOD0.7) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the extra bit is logic 1 (RBX0 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data byte(s) bits of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 24.6. UART Multi-Processor Mode Interconnect Diagram

Operational Mode			PC	A0	СР	Mn			PCA0PWM				
Bit Number				4	3	2	1	0	7	6	5	4–2	1–0
Capture triggered by positive edge on CEXn				0	0	0	0	Α	0	Х	В	XXX	XX
Capture triggered by negative edge on CEXn	Х	Х	0	1	0	0	0	А	0	Х	В	XXX	XX
Capture triggered by any transition on CEXn	Х	Х	1	1	0	0	0	А	0	Х	В	XXX	XX
Software Timer	Х	С	0	0	1	0	0	А	0	Х	В	XXX	XX
High Speed Output	Х	С	0	0	1	1	0	А	0	Х	В	XXX	XX
Frequency Output	Х	С	0	0	0	1	1	А	0	Х	В	XXX	XX
8-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	Α	0	Х	В	XXX	00
9-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	01
10-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	Α	D	Х	В	XXX	10
11-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	Α	D	Х	В	XXX	11
16-Bit Pulse Width Modulator	1	С	0	0	Е	0	1	А	0	Х	В	XXX	XX
 Notes: 1. X = Don't Care (no functional difference for individual module if 1 or 0). 2. A = 1 to enable interrupts for this module (PCA interrupt triggered on CCFn set to 1). 													

Table 27.2. PCA0CPM and PCA0PWM Bit Settings for PCA Capture/Compare Modules

4. C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).

5. D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated channel is accessed via addresses PCA0CPHn and PCA0CPLn.

6. E = When set to 1, a match event will cause the CCFn flag for the associated channel to be set.

7. All modules set to 8, 9, 10 or 11-bit PWM mode use the same cycle length setting.

27.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or fall-ing-edge caused the capture.

C2 Register Definition 28.2. DEVICEID: C2 Device ID

Bit	7	6	5	4	3	2	1	0			
Nam	me DEVICEID[7:0]										
Туре	e	R/W									
Rese	et 0	0	0	1	0	1	0	0			
C2 Address: 0xFD; SFR Address = 0xFD; SFR Page = 0x0F											
Bit	Name		Function								
7:0	DEVICEID[7:0)] Device I	Device ID.								
		This read	This read-only register returns the 8-bit device ID: 0x1C (C8051F50x/F51x).								

C2 Register Definition 28.3. REVID: C2 Revision ID

Bit	7	6	5	4	3	2	1	0			
Nam	e	REVID[7:0]									
Туре	e R/W										
Rese	et Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies			
C2 Address: 0xFE; SFR Address = 0xFE; SFR Page = 0x0F											
Bit	Name Function										
7:0	REVID[7:0]	Revision ID									
		This read-only register returns the 8-bit revision ID. For example: 0x00 = Revision A.									

