

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 25x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f503-im

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2. QFN-48 Package Specifications

Figure 4.3. QFN-48 Package Drawing

Table 4.3. QFN-48 Package Dimensions

Dimension	Min	Тур	Max	Dimension	Min	Тур	Max
A	0.80	0.90	1.00	E2	3.90	4.00	4.10
A1	0.00	-	0.05	L	0.30	0.40	0.50
b	0.18	0.23	0.30	L1	0.00	-	0.08
D	7.00 BSC			aaa	-	-	0.10
D2	3.90	4.00	4.10	bbb	-	-	0.10
е	0.50 BSC			ddd	-	-	0.05
E		7.00 BSC		eee	-	-	0.08

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-220, variation VKKD-4 except for features D2 and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

5. Electrical Characteristics

5.1. Absolute Maximum Specifications

Table 5.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Тур	Max	Units
Ambient Temperature under Bias		-55	_	135	°C
Storage Temperature		-65	_	150	°C
Voltage on V _{REGIN} with Respect to GND		-0.3	_	5.5	V
Voltage on V _{DD} with Respect to GND		-0.3	—	2.8	V
Voltage on VDDA with Respect to GND		-0.3	_	2.8	V
Voltage on V _{IO} with Respect to GND		-0.3	—	5.5	V
Voltage on any Port I/O Pin or RST with Respect to GND		-0.3	_	V _{IO} + 0.3	V
Maximum Total Current through V _{REGIN} or GND		_	_	500	mA
Maximum Output Current Sunk by \overline{RST} or any Port Pin		_	_	100	mA
Maximum Output Current Sourced by any Port Pin		_		100	mA
Note: Stresses outside of the range of the "Absolute Max"	imum Ratings"	mav cause	e permai	nent damage	to the

ote: Stresses outside of the range of the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 5.7. Clock Multiplier Electrical Specifications

 V_{DD} = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Input Frequency (Fcm _{in})		2	—	—	MHz
Output Frequency		_	—	50	MHz
Power Supply Current		—	1.1	1.9	mA

Table 5.8. Voltage Regulator Electrical Characteristics

 V_{DD} = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units	
Input Voltage Range (V _{REGIN})*		1.8*		5.25	V	
Dropout Voltage (V _{DO})	Maximum Current = 50 mA	_	10	_	mV/mA	
$Output Voltage (V_{})$	2.1 V operation (REG0MD = 0)	2.0	2.1	2.25	V	
Oulput Vollage (VDD)	2.6 V operation (REG0MD = 1)	2.5	2.6	2.75	v	
Bias Current			1	9	μA	
Dropout Indicator Detection Threshold	With respect to VDD	-0.21	_	-0.02	V	
Output Voltage Temperature Coefficient		_	0.11	_	mV/°C	
VREG Settling Time	50 mA load with V_{REGIN} = 2.4 V and V_{DD} load capacitor of 4.8 μ F	_	450	_	μs	
*Note: The minimum input voltage	is 1.8 V or V _{DD} + V _{DO} (max load), whi	chever is g	greater	•	•	

6.3.2. Setting the Gain Value

The three programmable gain registers are accessed indirectly using the ADC0H and ADC0L registers when the GAINEN bit (ADC0CF.0) bit is set. ADC0H acts as the address register, and ADC0L is the data register. The programmable gain registers can only be written to and cannot be read. See Gain Register Definition 6.1, Gain Register Definition 6.2, and Gain Register Definition 6.3 for more information.

The gain is programmed using the following steps:

- 1. Set the GAINEN bit (ADC0CF.0)
- 2. Load the ADC0H with the ADC0GNH, ADC0GNL, or ADC0GNA address.
- 3. Load ADC0L with the desired value for the selected gain register.
- 4. Reset the GAINEN bit (ADC0CF.0)

Notes:

- 1. An ADC conversion should not be performed while the GAINEN bit is set.
- 2. Even with gain enabled, the maximum input voltage must be less than V_{REGIN} and the maximum voltage of the signal after gain must be less than or equal to V_{REF}.

In code, changing the value to 0.44 gain from the previous example looks like:

// in 'C':

ADC0CF = 0x01;	// GAINEN = 1
ADC0H = 0x04;	// Load the ADC0GNH address
ADC0L = 0x6C;	// Load the upper byte of 0x6CA to ADC0GNH
ADC0H = 0x07;	<pre>// Load the ADC0GNL address</pre>
ADC0L = 0xA0;	// Load the lower nibble of 0x6CA to ADC0GNL
ADC0H = 0x08;	// Load the ADC0GNA address
ADC0L = 0x01;	// Set the GAINADD bit
ADC0CF &= ~0x01;	// GAINEN = 0
; in assembly	
ORL ADC0CF,#01H	; GAINEN = 1
MOV ADC0H.#04H	; Load the ADC0GNH address

MOV ADC0H,#04H	; Load the ADC0GNH address
MOV ADC0L,#06CH	; Load the upper byte of 0x6CA to ADC0GNH
MOV ADC0H,#07H	; Load the ADC0GNL address
MOV ADC0L,#0A0H	; Load the lower nibble of 0x6CA to ADC0GNL
MOV ADC0H,#08H	; Load the ADC0GNA address
MOV ADC0L,#01H	: Set the GAINADD bit

- ; Set the GAINADD bit
 - ; GAINEN = 0

ANL ADC0CF,#0FEH

SFR Definition 6.8. ADC0TK: ADC0 Tracking Mode Select

Bit	7	6	5	4	3	2	1	0	
Name	AD0PWR[3:0]				AD0TM[1:0]		AD0TK[1:0]		
Туре	R/W			R/	W	R/	W		
Reset	1	1	1	1	1	1	1	1	

SFR Address = 0xBA; SFR Page = 0x00;

Bit	Name	Function
7:4	AD0PWR[3:0]	ADC0 Burst Power-Up Time.
		For BURSTEN = 0: ADC0 Power state controlled by AD0EN
		For BURSTEN = 1, AD0EN = 1: ADC0 remains enabled and does not enter the very low power state
		For BURSTEN = 1, AD0EN = 0: ADC0 enters the very low power state and is
		enabled after each convert start signal. The Power-Up time is programmed accord- ing the following equation:
		$AD0PWR = \frac{Tstartup}{200ns} - 1 \text{ or } Tstartup = (AD0PWR + 1)200ns$
3:2	AD0TM[1:0]	ADC0 Tracking Mode Enable Select Bits.
		00: Reserved.
		01: ADC0 is configured to Post-Tracking Mode.
		10: ADC0 is configured to Pre-Tracking Mode.
		11: ADCU is configured to Dual Tracking Mode.
1:0	AD0TK[1:0]	ADC0 Post-Track Time.
		00: Post-Tracking time is equal to 2 SAR clock cycles + 2 FCLK cycles.
		01: Post-Tracking time is equal to 4 SAR clock cycles + 2 FCLK cycles.
		10. FUSH TRACKING TIME IS EQUAL to 0 SAR CLOCK CYCLES + 2 FOLK CYCLES.

6.4. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

SFR Definition 8.1. REF0CN: Reference Control

Bit	7	6	5	4	3	2	1	0
Name			ZTCEN	REFLV	REFSL	TEMPE	BIASE	REFBE
Туре	R	R	R	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD1; SFR Page = 0x00

Bit	Name	Function
7:6	Unused	Read = 00b; Write = don't care.
5	ZTCEN	Zero Temperature Coefficient Bias Enable Bit.
		This bit must be set to 1b before entering oscillator suspend mode.
		0: ZeroTC Bias Generator automatically enabled when required.
4	REFLV	Voltage Reference Output Level Select.
		This bit selects the output voltage level for the internal voltage reference
		1. Internal voltage reference set to 2.20 V
2	DEEO	Valtara Deference Select
3	REFOL	This bit colorts the ADCs voltage reference
		0 : $V_{\text{pre-}}$ nin used as voltage reference.
		1: V _{DD} used as voltage reference.
2	TEMPE	Temperature Sensor Enable Bit.
		0: Internal Temperature Sensor off.
		1: Internal Temperature Sensor on.
1	BIASE	Internal Analog Bias Generator Enable Bit.
		0: Internal Bias Generator off.
		1: Internal Bias Generator on.
0	REFBE	On-chip Reference Buffer Enable Bit.
		0: On-chip Reference Buffer off.
		1: On-chip Reference Buffer on. Internal voltage reference driven on the V_{REF} pin.

Table 11.1. CIP-51 Instruction Set Summary (Prefetch-Enabled)

Mnemonic	Description		Clock Cycles				
Arithmetic Operations	1						
ADD A, Rn	Add register to A	1	1				
ADD A, direct	Add direct byte to A	2	2				
ADD A, @Ri	Add indirect RAM to A	1	2				
ADD A, #data	Add immediate to A	2	2				
ADDC A, Rn	Add register to A with carry	1	1				
ADDC A, direct	Add direct byte to A with carry	2	2				
ADDC A, @Ri	Add indirect RAM to A with carry	1	2				
ADDC A, #data	Add immediate to A with carry	2	2				
SUBB A, Rn	Subtract register from A with borrow	1	1				
SUBB A, direct	Subtract direct byte from A with borrow	2	2				
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2				
SUBB A, #data	Subtract immediate from A with borrow	2	2				
INC A	Increment A	1	1				
INC Rn	Increment register	1	1				
INC direct	Increment direct byte	2	2				
INC @Ri	Increment indirect RAM	1	2				
DEC A	Decrement A	1	1				
DEC Rn	Decrement register	1	1				
DEC direct	Decrement direct byte	2	2				
DEC @Ri	Decrement indirect RAM	1	2				
INC DPTR	Increment Data Pointer	1	1				
MUL AB	Multiply A and B	1	4				
DIV AB	Divide A by B	1	8				
DA A	Decimal adjust A	1	1				
Logical Operations	•						
ANL A, Rn	AND Register to A	1	1				
ANL A, direct	AND direct byte to A	2	2				
ANL A, @Ri	AND indirect RAM to A	1	2				
ANL A, #data	AND immediate to A	2	2				
ANL direct, A	AND A to direct byte	2	2				
ANL direct, #data	AND immediate to direct byte	3	3				
ORL A, Rn	OR Register to A	1	1				
ORL A, direct	OR direct byte to A	2	2				
ORL A, @Ri	OR indirect RAM to A	1	2				
ORL A, #data	OR immediate to A	2	2				
ORL direct, A	OR A to direct byte	2	2				
ORL direct, #data	OR immediate to direct byte	3	3				
XRL A, Rn	Exclusive-OR Register to A	1	1				
XRL A, direct	Exclusive-OR direct byte to A	2	2				
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2				
Note: Certain instructions take a variable number of clock cycles to execute depending on instruction alignment and the FLRT setting (SFR Definition 15.3).							

SFR Definition 11.3. SP: Stack Pointer

Bit	7	6	5	4	3	2	1	0
Name	SP[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	1	1	1
SFR Address = 0x81; SFR Page = All Pages								

Bit	Name	Function
7:0	SP[7:0]	Stack Pointer.
		The Stack Pointer holds the location of the top of the stack. The stack pointer is incre- mented before every PUSH operation. The SP register defaults to 0x07 after reset.

SFR Definition 11.4. ACC: Accumulator

Bit	7	6	5	4	3	2	1	0
Name	e ACC[7:0]							
Туре		R/W						
Reset	0	0	0	0	0	0	0	0
SFR Ac	SFR Address = 0xE0; SFR Page = All Pages; Bit-Addressable							
Rit	Namo				Eunction			

Bit	Name	Function
7:0	ACC[7:0]	Accumulator.
		This register is the accumulator for arithmetic operations.

SFR Definition 11.5. B: B Register

Bit	7	6	5	4	3	2	1	0
Name	B[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0
	SER Address - OvEn: SER Page - All Pages: Bit-Addressable							

SFR Address = 0xF0; SFR Page = All Pages; Bit-Addressable

Bit	Name	Function
7:0	B[7:0]	B Register.
		This register serves as a second accumulator for certain arithmetic operations.

SFR Definition 13.2. SFRPAGE: SFR Page

Bit	7	6	5	4	3	2	1	0
Name		SFRPAGE[7:0]						
Туре		R/W						
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA7; SFR Page = All Pages

Bit	Name	Function
7:0	SFRPAGE[7:0]	SFR Page Bits.
		Represents the SFR Page the C8051 core uses when reading or modifying SFRs.
		Write: Sets the SFR Page.
		Read: Byte is the SFR page the C8051 core is using.
		When enabled in the SFR Page Control Register (SFR0CN), the C8051 core will automatically switch to the SFR Page that contains the SFRs of the correspond- ing peripheral/function that caused the interrupt, and return to the previous SFR page upon return from interrupt (unless SFR Stack was altered before a return- ing from the interrupt). SFRPAGE is the top byte of the SFR Page Stack, and push/pop events of this stack are caused by interrupts (and not by reading/writ- ing to the SFRPAGE register)

SFR Definition 14.5. EIE2: Extended Interrupt Enable 2

Bit	7	6	5	4	3	2	1	0
Name						EMAT	ECAN0	EREG0
Туре	R	R	R	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE7; SFR Page = All Pages

Bit	Name	Function
7:3	Unused	Read = 00000b; Write = Don't Care.
2	EMAT	Enable Port Match Interrupt.
		This bit sets the masking of the Port Match interrupt.
		0: Disable all Port Match interrupts.
		1: Enable interrupt requests generated by a Port Match
1	ECAN0	Enable CAN0 Interrupts.
		This bit sets the masking of the CAN0 interrupt.
		0: Disable all CAN0 interrupts.
		1: Enable interrupt requests generated by CAN0.
0	EREG0	Enable Voltage Regulator Dropout Interrupt.
		This bit sets the masking of the Voltage Regulator Dropout interrupt.
		0: Disable the Voltage Regulator Dropout interrupt.
		1: Enable the Voltage Regulator Dropout interrupt.

SFR Definition 15.3. FLSCL: Flash Scale

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	FLRT	Reserved	Reserved	FLEWT	Reserved
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xB6; SFR Page = All Pages

Bit	Name	Function
7:5	Reserved	Must Write 000b.
4	FLRT	Flash Read Time Control.
		 This bit should be programmed to the smallest allowed value, according to the system clock speed. 0: SYSCLK ≤ 25 MHz (Flash read strobe is one system clock). 1: SYSCLK > 25 MHz (Flash read strobe is two system clocks).
3:2	Reserved	Must Write 00b.
1	FLEWT	Flash Erase Write Time Control.
		This bit should be set to 1b before Writing or Erasing Flash. 0: Short Flash Erase / Write Timing. 1: Extended Flash Erase / Write Timing.
0	Reserved	Must Write 0b.

19.3. Clock Multiplier

The Clock Multiplier generates an output clock which is 4 times the input clock frequency scaled by a programmable factor of 1, 2/3, 2/4 (or 1/2), 2/5, 2/6 (or 1/3), or 2/7. The Clock Multiplier's input can be selected from the external oscillator, or the internal or external oscillators divided by 2. This produces three possible base outputs which can be scaled by a programmable factor: Internal Oscillator x 2, External Oscillator x 2, or External Oscillator x 4. See Section 19.1 on page 165 for details on system clock selection.

The Clock Multiplier is configured via the CLKMUL register (SFR Definition 19.5). The procedure for configuring and enabling the Clock Multiplier is as follows:

- 1. Reset the Multiplier by writing 0x00 to register CLKMUL.
- 2. Select the Multiplier input source via the MULSEL bits.
- 3. Select the Multiplier output scaling factor via the MULDIV bits
- 4. Enable the Multiplier with the MULEN bit (CLKMUL | = 0x80).
- 5. Delay for $>5 \ \mu s$.
- 6. Initialize the Multiplier with the MULINIT bit (CLKMUL | = 0xC0).
- 7. Poll for MULRDY => 1.

Important Note: When using an external oscillator as the input to the Clock Multiplier, the external source must be enabled and stable before the Multiplier is initialized. See "19.4. External Oscillator Drive Circuit" on page 172 for details on selecting an external oscillator source.

The Clock Multiplier allows faster operation of the CIP-51 core and is intended to generate an output frequency between 25 and 50 MHz. The clock multiplier can also be used with slow input clocks. However, if the clock is below the minimum Clock Multiplier input frequency (FCM_{min}), the generated clock will consist of four fast pulses followed by a long delay until the next input clock rising edge. The average frequency of the output is equal to 4x the input, but the instantaneous frequency may be faster. See Figure 19.2 below for more information.

C8051F50x/F51x

SFR Definition 19.5. CLKMUL: Clock Multiplier

Bit	7	6	5	4	3	2	1	0	
Name	MULEN	MULINIT	MULRDY	MULDIV[2:0]			MULSEL[1:0]		
Туре	R/W	R/W	R	R/W			R/W		
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0x97; SFR Page = 0x0F;

Bit	Name		Function						
7	MULEN	Clock Multiplier Enable. 0: Clock Multiplier disabled. 1: Clock Multiplier enabled.							
6	MULINIT	Clock Multiplier Initialize. This bit is 0 when the Clock Multiplier is enabled. Once enabled, writing a 1 to this bit will initialize the Clock Multiplier. The MULRDY bit reads 1 when the Clock Multiplier is stabilized.							
5	MULRDY	Clock Multiplier Ready. 0: Clock Multiplier is not ready. 1: Clock Multiplier is ready (PLL is locked).							
4:2	MULDIV[2:0]	Clock Multiplier Output Scaling Factor. 000: Clock Multiplier Output scaled by a factor of 1. 001: Clock Multiplier Output scaled by a factor of 1. 010: Clock Multiplier Output scaled by a factor of 2. 101: Clock Multiplier Output scaled by a factor of 2. 100: Clock Multiplier Output scaled by a factor of 2. 101: Clock Multiplier Output scaled by a factor of 2. 101: Clock Multiplier Output scaled by a factor of 2. 101: Clock Multiplier Output scaled by a factor of 2. 110: Clock Multiplier Output scaled by a factor of 2. 110: Clock Multiplier Output scaled by a factor of 2. 111: Clock Multiplier Out							
1:0	MULSEL[1:0]	Clock Multiplie These bits selec	er Input Select. ct the clock supplied to the Clock	Multiplier					
		MULSEL[1:0]	Selected Input Clock	Clock Multiplier Output for MULDIV[2:0] = 000b					
		00	Internal Oscillator	Internal Oscillator x 2					
		01	External Oscillator	External Oscillator x 2					
		10	Internal Oscillator	Internal Oscillator x 4					
		11	External Oscillator	External Oscillator x 4					
Notes	Notes: The maximum system clock is 50 MHz, and so the Clock Multiplier output should be scaled accordingly. If Internal Oscillator x 2 or External Oscillator x 2 is selected using the MULSEL bits, MULDIV[2:0] is ignored.								

SFR Definition 21.3. LIN0CF: LIN0 Control Mode Register

		-	-					
Bit	7	6	5	4	3	2	1	0
Name	LINEN	MODE	ABAUD					
Туре	R/W	R/W	R/W	R	R	R	R	R
Reset	0	1	1	0	0	0	0	0

SFR Address = 0xC9; SFR Page = 0x0F

Bit	Name	Function
7	LINEN	LIN Interface Enable Bit.
		0: LIN0 is disabled. 1: LIN0 is enabled.
6	MODE	LIN Mode Selection Bit.
		0: LIN0 operates in slave mode.
		1: LIN0 operates in master mode.
5	ABAUD	LIN Mode Automatic Baud Rate Selection.
		This bit only has an effect when the MODE bit is configured for slave mode.
		0: Manual baud rate selection is enabled.
		1: Automatic baud rate selection is enabled.
4:0	Unused	Read = 00000b; Write = Don't Care

LIN Register Definition 21.8. LIN0SIZE: LIN0 Message Size Register

Bit	7	6	5	4	3	2	1	0
Name	ENHCHK				LINSIZE[3:0]			
Туре	R/W	R	R	R	R/W			
Reset	0	0	0	0	0	0	0	0

Indirect Address = 0x0B

Bit	Name	Function
7	ENHCHK	 Checksum Selection Bit. 0: Use the classic, specification 1.3 compliant checksum. Checksum covers the data bytes. 1: Use the enhanced, specification 2.0 compliant checksum. Checksum covers data bytes and protected identifier.
6:4	Unused	Read = 000b; Write = Don't Care
3:0	LINSIZE[3:0]	Data Field Size. 0000: 0 data bytes 0001: 1 data byte 0010: 2 data bytes 0011: 3 data bytes 0100: 4 data bytes 0101: 5 data bytes 0110: 6 data bytes 0111: 7 data bytes 1000: 8 data bytes 1000: 8 data bytes 1001-1110: RESERVED 1111: Use the ID[1:0] bits (LIN0ID[5:4]) to determine the data length.

SMBCS1	SMBCS0	SMBus Clock Source				
0	0	Timer 0 Overflow				
0	1	Timer 1 Overflow				
1	0	Timer 2 High Byte Overflow				
1	1	Timer 2 Low Byte Overflow				

Table 23.1. SMBus Clock Source Selection

The SMBCS1–0 bits select the SMBus clock source, which is used only when operating as a master or when the Free Timeout detection is enabled. When operating as a master, overflows from the selected source determine the absolute minimum SCL low and high times as defined in Equation 23.1. Note that the selected clock source may be shared by other peripherals so long as the timer is left running at all times. For example, Timer 1 overflows may generate the SMBus and UART baud rates simultaneously. Timer configuration is covered in Section "26. Timers" on page 265.

 $T_{HighMin} = T_{LowMin} = \frac{1}{f_{ClockSourceOverflow}}$

Equation 23.1. Minimum SCL High and Low Times

The selected clock source should be configured to establish the minimum SCL High and Low times as per Equation 23.1. When the interface is operating as a master (and SCL is not driven or extended by any other devices on the bus), the typical SMBus bit rate is approximated by Equation 23.2.

BitRate =
$$\frac{f_{ClockSourceOverflow}}{3}$$

Equation 23.2. Typical SMBus Bit Rate

Figure 23.4 shows the typical SCL generation described by Equation 23.2. Notice that T_{HIGH} is typically twice as large as T_{LOW} . The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 23.1.

Figure 23.4. Typical SMBus SCL Generation

25. Enhanced Serial Peripheral Interface (SPI0)

The Enhanced Serial Peripheral Interface (SPI0) provides access to a flexible, full-duplex synchronous serial bus. SPI0 can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select SPI0 in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a chip-select output in master mode, or disabled for 3-wire operation. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

SFR Definition 26.2. TCON: Timer Control

Bit	7	6	5	4	3	2	1	0		
Name	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
Туре	R/W	R/W R/W R/W R/W R/W R/W								
Rese	t 0	0	0	0	0	0	0	0		
SFR A	ddress = 0x8	dress = 0x88; Bit-Addressable; SFR Page = All Pages								
Bit	Name	Function								
7	TF1	Timer 1 Ov Set to 1 by but is autom routine.	Timer 1 Overflow Flag. Set to 1 by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.							
6	TR1	Timer 1 Ru Timer 1 is e	n Control. nabled by se	etting this bi	to 1.					
5	TF0	Timer 0 Overflow Flag. Set to 1 by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine								
4	TR0	Timer 0 Ru Timer 0 is e	Timer 0 Run Control. Timer 0 is enabled by setting this bit to 1.							
3	IE1	External In This flag is can be clea External Int	External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine in edge-triggered mode.							
2	IT1	Interrupt 1 Type Select. This bit selects whether the configured INT1 interrupt will be edge or level sensitive. INT1 is configured active low or high by the IN1PL bit in the IT01CF register (see SFR Definition 14.7). 0: INT1 is level triggered. 1: INT1 is edge triggered.								
1	IEO	External Interrupt 0. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 0 service routine in edge-triggered mode.								
0	ITO	Interrupt 0 This bit sele INT0 is cont Definition 14 0: INT0 is le 1: INT0 is e	External Interrupt 0 service routine in edge-triggered mode. Interrupt 0 Type Select. This bit selects whether the configured INT0 interrupt will be edge or level sensitive. INT0 is configured active low or high by the IN0PL bit in register IT01CF (see SFR Definition 14.7). 0: INT0 is level triggered. 1: INT0 is edge triggered.							

26.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines the Timer 2 operation mode.

Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 2 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

26.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 26.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE.5 is set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0x00.

Figure 26.4. Timer 2 16-Bit Mode Block Diagram

26.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers operate in auto-reload mode as shown in Figure 26.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or the clock defined by the Timer 2 External Clock Select bit (T2XCLK in TMR2CN), as follows:

Figure 27.6. PCA High-Speed Output Mode Diagram

27.3.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 27.1.

$$\mathsf{F}_{\mathsf{CEXn}} = \frac{\mathsf{F}_{\mathsf{PCA}}}{2 \times \mathsf{PCA0CPHn}}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Equation 27.1. Square Wave Frequency Output

Where F_{PCA} is the frequency of the clock selected by the CPS[2:0] bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register. Note that the MATn bit should normally be set to 0 in this mode. If the MATn bit is set to 1, the CCFn flag for the channel will be set when the 16-bit PCA0 counter and the 16-bit capture/compare register for the channel are equal.

