
Silicon Labs - C8051F504-IQ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 50MHz

Connectivity EBI/EMI, SMBus (2-Wire/I²C), CANbus, LINbus, SPI, UART/USART

Peripherals POR, PWM, Temp Sensor, WDT

Number of I/O 40

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4.25K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.25V

Data Converters A/D 32x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 48-TQFP

Supplier Device Package 48-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f504-iq

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f504-iq-4394773
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F50x/F51x

23 Rev. 1.2

P0.6 44 36 28 D I/O or A In Port 0.6

P0.7 43 35 27 D I/O or A In Port 0.7

P1.0 42 34 26 D I/O or A In Port 1.0. See SFR Definition 20.16 for a
description.

P1.1 41 33 25 D I/O or A In Port 1.1.

P1.2 40 32 24 D I/O or A In Port 1.2.

P1.3 39 31 23 D I/O or A In Port 1.3.

P1.4 38 30 22 D I/O or A In Port 1.4.

P1.5 37 29 21 D I/O or A In Port 1.5.

P1.6 36 28 20 D I/O or A In Port 1.6.

P1.7 35 27 19 D I/O or A In Port 1.7.

P2.0 34 26 18 D I/O or A In Port 2.0. See SFR Definition 20.20 for a
description.

P2.1 33 25 17 D I/O or A In Port 2.1.

P2.2 32 24 16 D I/O or A In Port 2.2.

P2.3 31 23 15 D I/O or A In Port 2.3.

P2.4 30 22 14 D I/O or A In Port 2.4.

P2.5 29 21 13 D I/O or A In Port 2.5.

P2.6 28 20 12 D I/O or A In Port 2.6.

P2.7 27 19 11 D I/O or A In Port 2.7.

P3.0 26 18 — D I/O or A In Port 3.0. See SFR Definition 20.24 for a
description.

P3.1 25 17 — D I/O or A In Port 3.1.

P3.2 24 16 — D I/O or A In Port 3.2.

P3.3 23 15 — D I/O or A In Port 3.3.

P3.4 22 14 — D I/O or A In Port 3.4.

P3.5 21 13 — D I/O or A In Port 3.5.

P3.6 20 12 — D I/O or A In Port 3.6.

Table 3.1. Pin Definitions for the C8051F50x/F51x(Continued)

Name Pin

‘F500/1/4/5

(48-pin)

Pin

F508/9-
F510/1

(40-pin)

Pin

‘F502/3/6/7

(32-pin)

Type Description

C8051F50x/F51x

Rev. 1.2 56

been accumulated. Similarly, the Window Comparator will not compare the result to the greater-than and
less-than registers until “repeat count” conversions have been accumulated.

Note: When using Burst Mode, care must be taken to issue a convert start signal no faster than once every
four SYSCLK periods. This includes external convert start signals.

Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4

Track..

System Clock

Convert Start
(AD0BUSY or Timer

Overflow)

Post-Tracking
AD0TM = 01

AD0EN = 0

Powered
Down

Powered
Down

T C
Power-Up
and Idle

T C T C T C
Power-Up
and Idle

T C..

Dual-Tracking
AD0TM = 11

AD0EN = 0

Powered
Down

Powered
Down

T C
Power-Up
and Track

T C T C T C
Power-Up
and Track

T C..

AD0PWR

Post-Tracking
AD0TM = 01

AD0EN = 1
Idle IdleT C T C T C T C T C..

Dual-Tracking
AD0TM = 11

AD0EN = 1
Track TrackT C T C T C T C T C..

T C T C

T C T C

T = Tracking
C = Converting

Convert Start
(CNVSTR)

Post-Tracking
AD0TM = 01

AD0EN = 0

Powered
Down

Powered
Down

T C
Power-Up
and Idle

Power-Up
and Idle

T C..

Dual-Tracking
AD0TM = 11

AD0EN = 0

Powered
Down

Powered
Down

T C
Power-Up
and Track

Power-Up
and Track

T C..

AD0PWR

Post-Tracking
AD0TM = 01

AD0EN = 1
Idle IdleT C

Dual-Tracking
AD0TM = 11

AD0EN = 1
Track TrackT C T C

T C

T = Tracking
C = Converting

Idle..

C8051F50x/F51x

89 Rev. 1.2

Table 11.1. CIP-51 Instruction Set Summary (Prefetch-Enabled)

Mnemonic Description Bytes Clock
Cycles

Arithmetic Operations

ADD A, Rn Add register to A 1 1
ADD A, direct Add direct byte to A 2 2
ADD A, @Ri Add indirect RAM to A 1 2
ADD A, #data Add immediate to A 2 2
ADDC A, Rn Add register to A with carry 1 1
ADDC A, direct Add direct byte to A with carry 2 2
ADDC A, @Ri Add indirect RAM to A with carry 1 2
ADDC A, #data Add immediate to A with carry 2 2
SUBB A, Rn Subtract register from A with borrow 1 1
SUBB A, direct Subtract direct byte from A with borrow 2 2
SUBB A, @Ri Subtract indirect RAM from A with borrow 1 2
SUBB A, #data Subtract immediate from A with borrow 2 2
INC A Increment A 1 1
INC Rn Increment register 1 1
INC direct Increment direct byte 2 2
INC @Ri Increment indirect RAM 1 2
DEC A Decrement A 1 1
DEC Rn Decrement register 1 1
DEC direct Decrement direct byte 2 2
DEC @Ri Decrement indirect RAM 1 2
INC DPTR Increment Data Pointer 1 1
MUL AB Multiply A and B 1 4
DIV AB Divide A by B 1 8
DA A Decimal adjust A 1 1

Logical Operations

ANL A, Rn AND Register to A 1 1
ANL A, direct AND direct byte to A 2 2
ANL A, @Ri AND indirect RAM to A 1 2
ANL A, #data AND immediate to A 2 2
ANL direct, A AND A to direct byte 2 2
ANL direct, #data AND immediate to direct byte 3 3
ORL A, Rn OR Register to A 1 1
ORL A, direct OR direct byte to A 2 2
ORL A, @Ri OR indirect RAM to A 1 2
ORL A, #data OR immediate to A 2 2
ORL direct, A OR A to direct byte 2 2
ORL direct, #data OR immediate to direct byte 3 3
XRL A, Rn Exclusive-OR Register to A 1 1
XRL A, direct Exclusive-OR direct byte to A 2 2
XRL A, @Ri Exclusive-OR indirect RAM to A 1 2

Note: Certain instructions take a variable number of clock cycles to execute depending on instruction alignment and
the FLRT setting (SFR Definition 15.3).

C8051F50x/F51x

98 Rev. 1.2

12.1. Program Memory
The CIP-51 core has a 64 kB program memory space. The C8051F50x/F51x devices implement 64 kB or
32 kB of this program memory space as in-system, re-programmable Flash memory, organized in a contig-
uous block from addresses 0x0000 to 0xFFFF in 64 kB devices and addresses 0x0000 to 0x7FFF in 32 kB
devices. The address 0xFBFF in 64 kB devices and 0x7FFF in 32 kB devices serves as the security lock
byte for the device. Addresses above 0xFDFF are reserved in the 64 kB devices.

Figure 12.2. Flash Program Memory Map

12.1.1. MOVX Instruction and Program Memory

The MOVX instruction in an 8051 device is typically used to access external data memory. On the
C8051F50x/F51x devices, the MOVX instruction is normally used to read and write on-chip XRAM, but can
be re-configured to write and erase on-chip Flash memory space. MOVC instructions are always used to
read Flash memory, while MOVX write instructions are used to erase and write Flash. This Flash access
feature provides a mechanism for the C8051F50x/F51x to update program code and use the program
memory space for non-volatile data storage. Refer to Section “15. Flash Memory” on page 129 for further
details.

12.2. Data Memory
The C8051F50x/F51x devices include 4352 bytes of RAM data memory. 256 bytes of this memory is
mapped into the internal RAM space of the 8051. The other 4096 bytes of this memory is on-chip “exter-
nal” memory. The data memory map is shown in Figure 12.1 for reference.

12.2.1. Internal RAM

There are 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The
lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either
direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00
through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight

Lock Byte

0x0000

0x7FFF

0x7FFE

F
L

A
S

H
 m

em
o

ry
 o

rg
a

ni
ze

d
in

5

12
-b

yt
e

pa
g

es

0x7E00

Flash Memory Space
(32kB Flash Device)

Lock Byte Page

Lock Byte

0x0000

0xFBFF

0xFBFE

0xFC00

0xFA00

Flash Memory Space
(64kB Flash Device)

Lock Byte Page

0xFFFF

Reserved Area

C8051F500/1/2/3/8/9

C8051F504/5/6/7-F510/1

C8051F50x/F51x

101 Rev. 1.2

Figure 13.1. SFR Page Stack

Automatic hardware switching of the SFR Page on interrupts may be enabled or disabled as desired using
the SFR Automatic Page Control Enable Bit located in the SFR Page Control Register (SFR0CN). This
function defaults to “enabled” upon reset. In this way, the autoswitching function will be enabled unless dis-
abled in software.

A summary of the SFR locations (address and SFR page) are provided in Table 13.3 in the form of an SFR
memory map. Each memory location in the map has an SFR page row, denoting the page in which that
SFR resides. Certain SFRs are accessible from ALL SFR pages, and are denoted by the “(ALL PAGES)”
designation. For example, the Port I/O registers P0, P1, P2, and P3 all have the “(ALL PAGES)” designa-
tion, indicating these SFRs are accessible from all SFR pages regardless of the SFRPAGE register value.

13.3. SFR Page Stack Example
The following is an example that shows the operation of the SFR Page Stack during interrupts. In this
example, the SFR Control register is left in the default enabled state (i.e., SFRPGEN = 1), and the CIP-51
is executing in-line code that is writing values to SPI Data Register (SFR “SPI0DAT”, located at address
0xA3 on SFR Page 0x00). The device is also using the CAN peripheral (CAN0) and the Programmable
Counter Array (PCA0) peripheral to generate a PWM output. The PCA is timing a critical control function in
its interrupt service round so its associated ISR that is set to low priority. At this point, the SFR page is set
to access the SPI0DAT SFR (SFRPAGE = 0x00). See Figure 13.2.

SFRNEXT

SFRPAGE

SFRLAST

CIP-51

Interrupt
Logic

SFRPGCN Bit

C8051F50x/F51x

Rev. 1.2 102

Figure 13.2. SFR Page Stack While Using SFR Page 0x0 To Access SPI0DAT

While CIP-51 executes in-line code (writing values to SPI0DAT in this example), the CAN0 Interrupt
occurs. The CIP-51 vectors to the CAN0 ISR and pushes the current SFR Page value (SFR Page 0x00)
into SFRNEXT in the SFR Page Stack. The SFR page needed to access CAN’s SFRs is then automatically
placed in the SFRPAGE register (SFR Page 0x0C). SFRPAGE is considered the “top” of the SFR Page
Stack. Software can now access the CAN0 SFRs. Software may switch to any SFR Page by writing a new
value to the SFRPAGE register at any time during the CAN0 ISR to access SFRs that are not on SFR
Page 0x0C. See Figure 13.3.

0x0

(SPI0DAT)
SFRPAGE

SFRLAST

SFRNEXT

SFR Page
Stack SFR's

C8051F50x/F51x

103 Rev. 1.2

Figure 13.3. SFR Page Stack After CAN0 Interrupt Occurs

While in the CAN0 ISR, a PCA interrupt occurs. Recall the PCA interrupt is configured as a high priority
interrupt, while the CAN0 interrupt is configured as a low priority interrupt. Thus, the CIP-51 will now vector
to the high priority PCA ISR. Upon doing so, the CIP-51 will automatically place the SFR page needed to
access the PCA’s special function registers into the SFRPAGE register, SFR Page 0x00. The value that
was in the SFRPAGE register before the PCA interrupt (SFR Page 0x0C for CAN0) is pushed down the
stack into SFRNEXT. Likewise, the value that was in the SFRNEXT register before the PCA interrupt (in
this case SFR Page 0x00 for SPI0DAT) is pushed down to the SFRLAST register, the “bottom” of the
stack. Note that a value stored in SFRLAST (via a previous software write to the SFRLAST register) will be
overwritten. See Figure 13.4.

0xC

(CAN0)

0x0

(SPI0DAT)

SFRPAGE

SFRLAST

SFRNEXT

SFRPAGE
pushed to
SFRNEXT

SFR Page 0xC
Automatically

pushed on stack in
SFRPAGE on CAN0

interrupt

C8051F50x/F51x

Rev. 1.2 112

Table 13.2. Special Function Register (SFR) Memory Map for Page 0xC

0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)

F8 CAN0IF2DA2L CAN0IF2DA2H CAN0IF2DB1L CAN0IF2DB1H CAN0IF2DB2L CAN0IF2DB2H

F0 B
(All Pages)

CAN0IF2A2L CAN0IF2A2H CAN0IF2DA1L CAN0IF2DA1H

E8 CAN0IF2M1L CAN0IF2M1H CAN0IF2M2L CAN0IF2M2H CAN0IF2A1L CAN0IF2A1H

E0 ACC
(All Pages)

CAN0IF2CML CAN0IF2CMH EIE1
(All Pages)

EIE2
(All Pages)

D8 CAN0IF1DB1L CAN0IF1DB1H CAN0IF1DB2L CAN0IF1DB2H CAN0IF2CRL CAN0IF2CRH

D0 PSW
(All Pages)

CAN0IF1MCL CAN0IF1MCH CAN0IF1DA1L CAN0IF1DA1H CAN0IF1DA2L CAN0IF1DA2H

C8 CAN0IF1A1L CAN0IF1A1H CAN0IF1A2L CAN0IF1A2H CAN0IF2MCL CAN0IF2MCH

C0 CAN0CN CAN0IF1CML CAN0IF1CMH CAN0IF1M1L CAN0IF1M1H CAN0IF1M2L CAN0IF1M2H

B8 IP
(All Pages)

CAN0MV1L CAN0MV1H CAN0MV2L CAN0MV2H CAN0IF1CRL CAN0IF1CRH

B0 P3
(All Pages)

CAN0IP2L CAN0IP2H P4
(All Pages)

FLSCL
(All Pages)

FLKEY
(All Pages)

A8 IE
(All Pages)

CAN0ND1L CAN0ND1H CAN0ND2L CAN0ND2H CAN0IP1L CAN0IP1H

A0 P2
(All Pages)

CAN0BRPE CAN0TR1L CAN0TR1H CAN0TR2L CAN0TR2H SFRPAGE
(All Pages)

98 SCON0
(All Pages)

CAN0BTL CAN0BTH CAN0IIDL CAN0IIDH CAN0TST

90 P1
(All Pages)

CAN0CFG CAN0STAT CAN0ERRL CAN0ERRH

88 TCON
(All Pages)

TMOD
(All Pages)

TL0
(All Pages)

TL1
(All Pages)

TH0
(All Pages)

TH1
(All Pages)

CKCON
(All Pages)

80 P0
(All Pages)

SP
(All Pages)

DPL
(All Pages)

DPH
(All Pages)

SFRNEXT
(All Pages)

SFRLAST
(All Pages)

PCON
(All Pages)

0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)

(bit addressable)

C8051F50x/F51x

134 Rev. 1.2

15.4.3. System Clock

1. If operating from an external crystal, be advised that crystal performance is susceptible to electrical
interference and is sensitive to layout and to changes in temperature. If the system is operating in an
electrically noisy environment, use the internal oscillator or use an external CMOS clock.

2. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase
operations. The external oscillator can continue to run, and the CPU can switch back to the external
oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in ”AN201: Writing to Flash from Firm-
ware" available from the Silicon Laboratories web site.

SFR Address = 0x8F; SFR Page = 0x00

SFR Definition 15.1. PSCTL: Program Store R/W Control

Bit 7 6 5 4 3 2 1 0

Name PSEE PSWE

Type R R R R R R R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:2 Unused Read = 000000b, Write = don’t care.

1 PSEE Program Store Erase Enable.

Setting this bit (in combination with PSWE) allows an entire page of Flash program
memory to be erased. If this bit is logic 1 and Flash writes are enabled (PSWE is logic
1), a write to Flash memory using the MOVX instruction will erase the entire page that
contains the location addressed by the MOVX instruction. The value of the data byte
written does not matter.
0: Flash program memory erasure disabled.
1: Flash program memory erasure enabled.

0 PSWE Program Store Write Enable.

Setting this bit allows writing a byte of data to the Flash program memory using the
MOVX write instruction. The Flash location should be erased before writing data.
0: Writes to Flash program memory disabled.
1: Writes to Flash program memory enabled; the MOVX write instruction targets Flash
memory.

C8051F50x/F51x

Rev. 1.2 151

SFR Address = 0xAA; SFR Page = 0x00

SFR Definition 18.1. EMI0CN: External Memory Interface Control

Bit 7 6 5 4 3 2 1 0

Name PGSEL[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 PGSEL[7:0] XRAM Page Select Bits.
The XRAM Page Select Bits provide the high byte of the 16-bit external data memory
address when using an 8-bit MOVX command, effectively selecting a 256-byte page of
RAM.
0x00: 0x0000 to 0x00FF
0x01: 0x0100 to 0x01FF
...
0xFE: 0xFE00 to 0xFEFF
0xFF: 0xFF00 to 0xFFFF

C8051F50x/F51x

Rev. 1.2 153

18.4. Multiplexed and Non-multiplexed Selection
The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode,
depending on the state of the EMD2 (EMI0CF.4) bit.

18.4.1. Multiplexed Configuration

In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins:
AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits
of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is
driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in
Figure 18.1.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state
of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are pre-
sented to AD[7:0]. During this phase, the address latch is configured such that the Q outputs reflect the
states of the ‘D’ inputs. When ALE falls, signaling the beginning of the second phase, the address latch
outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data
Bus controls the state of the AD[7:0] port at the time RD or WR is asserted.

See Section “18.6.2. Multiplexed Mode” on page 161 for more information.

Figure 18.1. Multiplexed Configuration Example

ADDRESS/DATA BUS

ADDRESS BUS

E
M
I
F

A[15:8]

AD[7:0]

/WR
/RD

ALE

64 K X 8
SRAM

OE
WE

I/O[7:0]

74HC373

G

D Q

A[15:8]

A[7:0]

CE

VDD

8

(Optional)

C8051F50x/F51x

170 Rev. 1.2

C8051F50x/F51x

Rev. 1.2 191

20.6. Special Function Registers for Accessing and Configuring Port I/O
All Port I/O are accessed through corresponding special function registers (SFRs) that are both byte
addressable and bit addressable, except for P4 which is only byte addressable. When writing to a Port, the
value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic
levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is
assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O
pin). The exception to this is the execution of the read-modify-write instructions that target a Port Latch reg-
ister as the destination. The read-modify-write instructions when operating on a Port SFR are the following:
ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individ-
ual bit in a Port SFR. For these instructions, the value of the latch register (not the pin) is read, modified,
and written back to the SFR.

Ports 0–3 have a corresponding PnSKIP register which allows its individual Port pins to be assigned to dig-
ital functions or skipped by the Crossbar. All Port pins used for analog functions, GPIO, or dedicated digital
functions such as the EMIF should have their PnSKIP bit set to 1.

The Port input mode of the I/O pins is defined using the Port Input Mode registers (PnMDIN). Each Port
cell can be configured for analog or digital I/O. This selection is required even for the digital resources
selected in the XBRn registers, and is not automatic. The only exception to this is P4, which can only be
used for digital I/O.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMD-
OUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is
required even for the digital resources selected in the XBRn registers, and is not automatic. The only
exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the
PnMDOUT settings.

SFR Address = 0x80; SFR Page = All Pages; Bit-Addressable

SFR Definition 20.12. P0: Port 0

Bit 7 6 5 4 3 2 1 0

Name P0[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Description Write Read

7:0 P0[7:0] Port 0 Data.

Sets the Port latch logic
value or reads the Port pin
logic state in Port cells con-
figured for digital I/O.

0: Set output latch to logic
LOW.
1: Set output latch to logic
HIGH.

0: P0.n Port pin is logic
LOW.
1: P0.n Port pin is logic
HIGH.

C8051F50x/F51x

194 Rev. 1.2

SFR Address = 0xF2; SFR Page = 0x0F

SFR Address = 0xA5; SFR Page = 0x0F

SFR Definition 20.17. P1MDIN: Port 1 Input Mode

Bit 7 6 5 4 3 2 1 0

Name P1MDIN[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:0 P1MDIN[7:0] Analog Configuration Bits for P1.7–P1.0 (respectively).

Port pins configured for analog mode have their weak pull-up and digital receiver
disabled. For analog mode, the pin also needs to be configured for open-drain
mode in the P1MDOUT register.
0: Corresponding P1.n pin is configured for analog mode.
1: Corresponding P1.n pin is not configured for analog mode.

SFR Definition 20.18. P1MDOUT: Port 1 Output Mode

Bit 7 6 5 4 3 2 1 0

Name P1MDOUT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P1MDOUT[7:0] Output Configuration Bits for P1.7–P1.0 (respectively).

These bits are ignored if the corresponding bit in register P1MDIN is logic 0.
0: Corresponding P1.n Output is open-drain.
1: Corresponding P1.n Output is push-pull.

C8051F50x/F51x

196 Rev. 1.2

SFR Address = 0xF3; SFR Page = 0x0F

SFR Address = 0xA6; SFR Page = 0x0F

SFR Definition 20.21. P2MDIN: Port 2 Input Mode

Bit 7 6 5 4 3 2 1 0

Name P2MDIN[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:0 P2MDIN[7:0] Analog Configuration Bits for P2.7–P2.0 (respectively).

Port pins configured for analog mode have their weak pull-up and digital receiver
disabled. For analog mode, the pin also needs to be configured for open-drain
mode in the P2MDOUT register.
0: Corresponding P2.n pin is configured for analog mode.
1: Corresponding P2.n pin is not configured for analog mode.

SFR Definition 20.22. P2MDOUT: Port 2 Output Mode

Bit 7 6 5 4 3 2 1 0

Name P2MDOUT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P2MDOUT[7:0] Output Configuration Bits for P2.7–P2.0 (respectively).

These bits are ignored if the corresponding bit in register P2MDIN is logic 0.
0: Corresponding P2.n Output is open-drain.
1: Corresponding P2.n Output is push-pull.

C8051F50x/F51x

Rev. 1.2 218

22. Controller Area Network (CAN0)

Important Documentation Note: The Bosch CAN Controller is integrated in the C8051F500/2/4/6/8-F510
devices. This section of the data sheet gives a description of the CAN controller as an overview and offers
a description of how the Silicon Labs CIP-51 MCU interfaces with the on-chip Bosch CAN controller. In
order to use the CAN controller, refer to Bosch’s C_CAN User’s Manual as an accompanying manual to
the Silicon Labs’ data sheet.

The C8051F500/2/4/6/8-F510 devices feature a Control Area Network (CAN) controller that enables serial
communication using the CAN protocol. Silicon Labs CAN facilitates communication on a CAN network in
accordance with the Bosch specification 2.0A (basic CAN) and 2.0B (full CAN). The CAN controller con-
sists of a CAN Core, Message RAM (separate from the CIP-51 RAM), a message handler state machine,
and control registers. Silicon Labs CAN is a protocol controller and does not provide physical layer drivers
(i.e., transceivers). Figure 22.1 shows an example typical configuration on a CAN bus.

Silicon Labs CAN operates at bit rates of up to 1 Mbit/second, though this can be limited by the physical
layer chosen to transmit data on the CAN bus. The CAN processor has 32 Message Objects that can be
configured to transmit or receive data. Incoming data, message objects and their identifier masks are
stored in the CAN message RAM. All protocol functions for transmission of data and acceptance filtering is
performed by the CAN controller and not by the CIP-51 MCU. In this way, minimal CPU bandwidth is
needed to use CAN communication. The CIP-51 configures the CAN controller, accesses received data,
and passes data for transmission via Special Function Registers (SFRs) in the CIP-51.

Figure 22.1. Typical CAN Bus Configuration

Silicon Labs MCU

CANTX CANRX

CAN_H

CAN_L

Isolation/Buffer (Optional)

CAN
Transceiver

Isolation/Buffer (Optional)

CAN
Transceiver

Isolation/Buffer (Optional)

CAN
Transceiver

R R

CAN Protocol Device CAN Protocol Device

C8051F50x/F51x

Rev. 1.2 226

23. SMBus

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System
Management Bus Specification, version 1.1, and compatible with the I2C serial bus. Reads and writes to
the interface by the system controller are byte oriented with the SMBus interface autonomously controlling
the serial transfer of the data. Data can be transferred at up to 1/20th of the system clock as a master or
slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A
method of extending the clock-low duration is available to accommodate devices with different speed
capabilities on the same bus.

The SMBus interface may operate as a master and/or slave, and may function on a bus with multiple mas-
ters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and synchronization,
arbitration logic, and START/STOP control and generation. A block diagram of the SMBus peripheral and
the associated SFRs is shown in Figure 23.1.

Figure 23.1. SMBus Block Diagram

Data Path
Control

SMBUS CONTROL LOGIC

C
R
O
S
S
B
A
R

SCL
FILTER

N

SDA
Control

SCL
Control

Interrupt
Request

Port I/O

SMB0CN
S
T
A

A
C
K
R
Q

A
R
B
L
O
S
T

A
C
K

S
I

T
X
M
O
D
E

M
A
S
T
E
R

S
T
O

01

00

10

11

T0 Overflow

T1 Overflow

TMR2H Overflow

TMR2L Overflow

SMB0CF
E
N
S
M
B

I
N
H

B
U
S
Y

E
X
T
H
O
L
D

S
M
B
T
O
E

S
M
B
F
T
E

S
M
B
C
S
1

S
M
B
C
S
0

01234567
SMB0DAT SDA

FILTER

N

Arbitration
SCL Synchronization
SCL Generation (Master Mode)
SDA Control
IRQ Generation

C8051F50x/F51x

Rev. 1.2 228

All transactions are initiated by a master, with one or more addressed slave devices as the target. The
master generates the START condition and then transmits the slave address and direction bit. If the trans-
action is a WRITE operation from the master to the slave, the master transmits the data a byte at a time
waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the
data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master
generates a STOP condition to terminate the transaction and free the bus. Figure 23.3 illustrates a typical
SMBus transaction.

Figure 23.3. SMBus Transaction

23.3.1. Transmitter vs. Receiver

On the SMBus communications interface, a device is the “transmitter” when it is sending an address or
data byte to another device on the bus. A device is a “receiver” when an address or data byte is being sent
to it from another device on the bus. The transmitter controls the SDA line during the address or data byte.
After each byte of address or data information is sent by the transmitter, the receiver sends an ACK or
NACK bit during the ACK phase of the transfer, during which time the receiver controls the SDA line.

23.3.2. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL
and SDA lines remain high for a specified time (see Section “23.3.5. SCL High (SMBus Free) Timeout” on
page 229). In the event that two or more devices attempt to begin a transfer at the same time, an arbitra-
tion scheme is employed to force one master to give up the bus. The master devices continue transmitting
until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be
pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning
master continues its transmission without interruption; the losing master becomes a slave and receives the
rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and
no data is lost.

23.3.3. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different
speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow
slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line
LOW to extend the clock low period, effectively decreasing the serial clock frequency.

23.3.4. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore,
the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus
protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than
25 ms as a “timeout” condition. Devices that have detected the timeout condition must reset the communi-
cation no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMB0CF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to
reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to

SLA6
SDA

SLA5-0 R/W D7 D6-0

SCL

Slave Address + R/W Data ByteSTART ACK NACK STOP

C8051F50x/F51x

257 Rev. 1.2

25.5. Serial Clock Phase and Polarity
Four combinations of serial clock phase and polarity can be selected using the clock control bits in the
SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases
(edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low
clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0
should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The
clock and data line relationships for master mode are shown in Figure 25.5. For slave mode, the clock and
data relationships are shown in Figure 25.6 and Figure 25.7. CKPHA must be set to 0 on both the master
and slave SPI when communicating between two of the following devices: C8051F04x, C8051F06x,
C8051F12x, C8051F31x, C8051F32x, and C8051F33x.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 25.3 controls the master mode
serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured
as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz,
whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for
full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-
wire slave mode), and the serial input data synchronously with the slave’s system clock. If the master
issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec)
must be less than 1/10 the system clock frequency. In the special case where the master only wants to
transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the
SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency.
This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave’s
system clock.

Figure 25.5. Master Mode Data/Clock Timing

SCK
(CKPOL=0, CKPHA=0)

SCK
(CKPOL=0, CKPHA=1)

SCK
(CKPOL=1, CKPHA=0)

SCK
(CKPOL=1, CKPHA=1)

MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0MISO/MOSI

NSS (Must Remain High
in Multi-Master Mode)

C8051F50x/F51x

286 Rev. 1.2

SFR Address = 0x94; SFR Page = 0x00

SFR Address = 0x95; SFR Page = 0x00

SFR Definition 26.16. TMR3L: Timer 3 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3L[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR3L[7:0] Timer 3 Low Byte.

In 16-bit mode, the TMR3L register contains the low byte of the 16-bit Timer 3. In 8-
bit mode, TMR3L contains the 8-bit low byte timer value.

SFR Definition 26.17. TMR3H Timer 3 High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3H[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR3H[7:0] Timer 3 High Byte.

In 16-bit mode, the TMR3H register contains the high byte of the 16-bit Timer 3. In 8-
bit mode, TMR3H contains the 8-bit high byte timer value.

