
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	40
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f505-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 25.5. Master Mode Data/Clock Timing	. 257
Figure 25.6. Slave Mode Data/Clock Timing (CKPHA = 0)	
Figure 25.7. Slave Mode Data/Clock Timing (CKPHA = 1)	. 258
Figure 25.8. SPI Master Timing (CKPHA = 0)	
Figure 25.9. SPI Master Timing (CKPHA = 1)	
Figure 25.10. SPI Slave Timing (CKPHA = 0)	. 263
Figure 25.11. SPI Slave Timing (CKPHA = 1)	. 263
Figure 26.1. T0 Mode 0 Block Diagram	. 268
Figure 26.2. T0 Mode 2 Block Diagram	. 269
Figure 26.3. T0 Mode 3 Block Diagram	. 270
Figure 26.4. Timer 2 16-Bit Mode Block Diagram	. 275
Figure 26.5. Timer 2 8-Bit Mode Block Diagram	. 276
Figure 26.6. Timer 2 External Oscillator Capture Mode Block Diagram	. 277
Figure 26.7. Timer 3 16-Bit Mode Block Diagram	. 281
Figure 26.8. Timer 3 8-Bit Mode Block Diagram	. 282
Figure 26.9. Timer 3 External Oscillator Capture Mode Block Diagram	. 283
Figure 27.1. PCA Block Diagram	. 287
Figure 27.2. PCA Counter/Timer Block Diagram	. 288
Figure 27.3. PCA Interrupt Block Diagram	
Figure 27.4. PCA Capture Mode Diagram	. 291
Figure 27.5. PCA Software Timer Mode Diagram	. 292
Figure 27.6. PCA High-Speed Output Mode Diagram	. 293
Figure 27.7. PCA Frequency Output Mode	. 294
Figure 27.8. PCA 8-Bit PWM Mode Diagram	
Figure 27.9. PCA 9, 10 and 11-Bit PWM Mode Diagram	. 296
Figure 27.10. PCA 16-Bit PWM Mode	. 297
Figure 27.11. PCA Module 2 with Watchdog Timer Enabled	
Figure 28.1. Typical C2 Pin Sharing	. 309

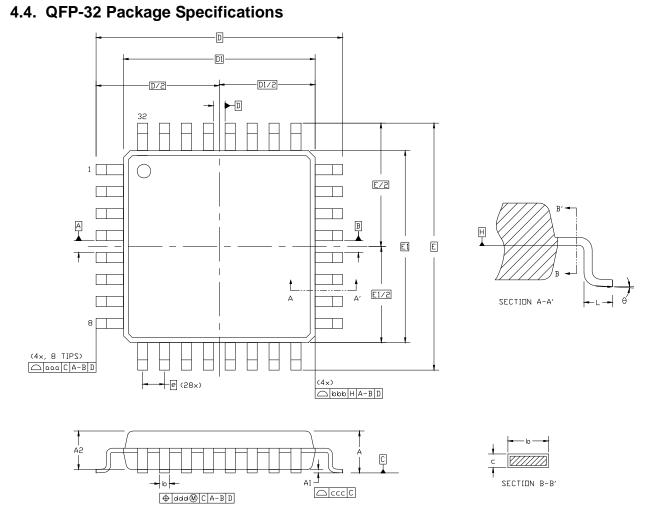

	005
Table 21.3. Autobaud Parameters Examples	205
Table 21.4. LIN Registers (Indirectly Addressable)	210
Table 22.1. Background System Information	220
Table 22.2. Standard CAN Registers and Reset Values	223
Table 23.1. SMBus Clock Source Selection	230
Table 23.2. Minimum SDA Setup and Hold Times	231
Table 23.3. Sources for Hardware Changes to SMB0CN	235
Table 23.4. SMBus Status Decoding	241
Table 24.1. Baud Rate Generator Settings for Standard Baud Rates	244
Table 25.1. SPI Slave Timing Parameters	264
Table 27.1. PCA Timebase Input Options	288
Table 27.2. PCA0CPM and PCA0PWM Bit Settings for	
PCA Capture/Compare Modules	290
Table 27.3. Watchdog Timer Timeout Intervals1	299

Figure 1.2. C8051F508/9-F510/1 Block Diagram

Figure 4.7. QFP-32 Package Drawing

Table 4.7. QFP-32 Package Dimensions

Dimension	Min	Тур	Max		Dimension	Min	Тур	Max
A	_	—	1.60		E	9.00 BSC.		
A1	0.05	—	0.15		E1		7.00 BSC.	
A2	1.35	1.40	1.45		L	0.45	0.60	0.75
b	0.30	0.37	0.45		aaa	0.20		
С	0.09	—	0.20		bbb	0.20		
D		9.00 BSC.			CCC	0.10		
D1		7.00 BSC.			ddd		0.20	
е		0.80 BSC.			θ	0°	3.5°	7°

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

- 3. This drawing conforms to the JEDEC outline MS-026, variation BBA.
- 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 5.7. Clock Multiplier Electrical Specifications

 V_{DD} = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Input Frequency (Fcm _{in})		2	—	_	MHz
Output Frequency				50	MHz
Power Supply Current			1.1	1.9	mA

Table 5.8. Voltage Regulator Electrical Characteristics

 V_{DD} = 1.8 to 2.75 V, -40 to +125 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Input Voltage Range (V _{REGIN})*		1.8*		5.25	V
Dropout Voltage (V _{DO})	Maximum Current = 50 mA	—	10	_	mV/mA
Output Voltage (V _{DD})	2.1 V operation (REG0MD = 0)	2.0	2.1	2.25	V
Oulput voltage (v _{DD})	2.6 V operation (REG0MD = 1)	2.5	2.6	2.75	v
Bias Current		—	1	9	μA
Dropout Indicator Detection Threshold	With respect to VDD	-0.21	_	-0.02	V
Output Voltage Temperature Coefficient		_	0.11		mV/°C
VREG Settling Time	50 mA load with $V_{REGIN} = 2.4 V$ and V_{DD} load capacitor of 4.8 μ F	_	450	_	μs
*Note: The minimum input voltage	is 1.8 V or V _{DD} + V _{DO} (max load), whi	chever is g	greater		1

SFR Definition 6.8. ADC0TK: ADC0 Tracking Mode Select

Bit	7	6	5	4	3	2	1	0
Name		AD0PV	VR[3:0]		AD0T	M[1:0]	AD0T	K[1:0]
Туре		R/	W		R/	W	R/	W
Reset	1	1	1	1	1	1	1	1

SFR Address = 0xBA; SFR Page = 0x00;

Bit	Name	Function
7:4	AD0PWR[3:0]	For BURSTEN = 0: ADC0 Power state controlled by AD0EN For BURSTEN = 1, AD0EN = 1: ADC0 remains enabled and does not enter the very low power state For BURSTEN = 1, AD0EN = 0: ADC0 enters the very low power state and is enabled after each convert start signal. The Power-Up time is programmed accord- ing the following equation:
3:2	AD0TM[1:0]	AD0PWR = $\frac{\text{Tstartup}}{200\text{ns}} - 1$ or Tstartup = (AD0PWR + 1)200ns ADC0 Tracking Mode Enable Select Bits. 00: Reserved. 01: ADC0 is configured to Post-Tracking Mode. 10: ADC0 is configured to Pre-Tracking Mode. 11: ADC0 is configured to Dual Tracking Mode.
1:0	AD0TK[1:0]	ADC0 Post-Track Time. 00: Post-Tracking time is equal to 2 SAR clock cycles + 2 FCLK cycles. 01: Post-Tracking time is equal to 4 SAR clock cycles + 2 FCLK cycles. 10: Post-Tracking time is equal to 8 SAR clock cycles + 2 FCLK cycles. 11: Post-Tracking time is equal to 16 SAR clock cycles + 2 FCLK cycles.

6.4. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

SFR Definition 8.1. REF0CN: Reference Control

Bit	7	6	5	4	3	2	1	0
Name			ZTCEN	REFLV	REFSL	TEMPE	BIASE	REFBE
Туре	R	R	R	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD1; SFR Page = 0x00

Bit	Name	Function
7:6	Unused	Read = 00b; Write = don't care.
5	ZTCEN	Zero Temperature Coefficient Bias Enable Bit. This bit must be set to 1b before entering oscillator suspend mode.
		0: ZeroTC Bias Generator automatically enabled when required. 1: ZeroTC Bias Generator forced on.
4	REFLV	Voltage Reference Output Level Select. This bit selects the output voltage level for the internal voltage reference 0: Internal voltage reference set to 1.5 V. 1: Internal voltage reference set to 2.20 V.
3	REFSL	 Voltage Reference Select. This bit selects the ADCs voltage reference. 0: V_{REF} pin used as voltage reference. 1: V_{DD} used as voltage reference.
2	TEMPE	Temperature Sensor Enable Bit.0: Internal Temperature Sensor off.1: Internal Temperature Sensor on.
1	BIASE	Internal Analog Bias Generator Enable Bit. 0: Internal Bias Generator off. 1: Internal Bias Generator on.
0	REFBE	 On-chip Reference Buffer Enable Bit. 0: On-chip Reference Buffer off. 1: On-chip Reference Buffer on. Internal voltage reference driven on the V_{REF} pin.

12.1. Program Memory

The CIP-51 core has a 64 kB program memory space. The C8051F50x/F51x devices implement 64 kB or 32 kB of this program memory space as in-system, re-programmable Flash memory, organized in a contiguous block from addresses 0x0000 to 0xFFFF in 64 kB devices and addresses 0x0000 to 0x7FFF in 32 kB devices. The address 0xFBFF in 64 kB devices and 0x7FFF in 32 kB devices serves as the security lock byte for the device. Addresses above 0xFDFF are reserved in the 64 kB devices.

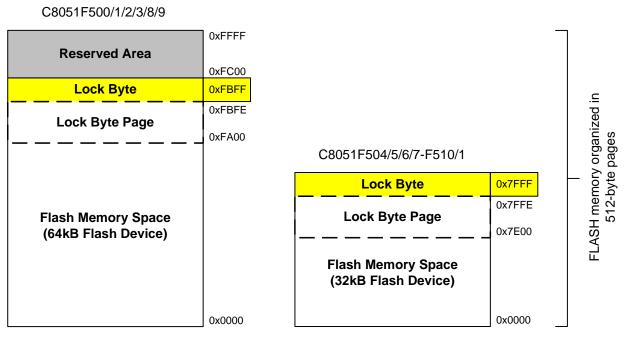


Figure 12.2. Flash Program Memory Map

12.1.1. MOVX Instruction and Program Memory

The MOVX instruction in an 8051 device is typically used to access external data memory. On the C8051F50x/F51x devices, the MOVX instruction is normally used to read and write on-chip XRAM, but can be re-configured to write and erase on-chip Flash memory space. MOVC instructions are always used to read Flash memory, while MOVX write instructions are used to erase and write Flash. This Flash access feature provides a mechanism for the C8051F50x/F51x to update program code and use the program memory space for non-volatile data storage. Refer to Section "15. Flash Memory" on page 129 for further details.

12.2. Data Memory

The C8051F50x/F51x devices include 4352 bytes of RAM data memory. 256 bytes of this memory is mapped into the internal RAM space of the 8051. The other 4096 bytes of this memory is on-chip "external" memory. The data memory map is shown in Figure 12.1 for reference.

12.2.1. Internal RAM

There are 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight

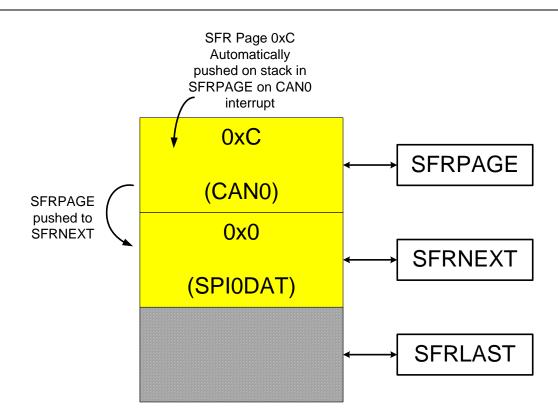


Figure 13.3. SFR Page Stack After CAN0 Interrupt Occurs

While in the CAN0 ISR, a PCA interrupt occurs. Recall the PCA interrupt is configured as a high priority interrupt, while the CAN0 interrupt is configured as a *low* priority interrupt. Thus, the CIP-51 will now vector to the high priority PCA ISR. Upon doing so, the CIP-51 will automatically place the SFR page needed to access the PCA's special function registers into the SFRPAGE register, SFR Page 0x00. The value that was in the SFRPAGE register before the PCA interrupt (SFR Page 0x0C for CAN0) is pushed down the stack into SFRNEXT. Likewise, the value that was in the SFRNEXT register before the PCA interrupt (in this case SFR Page 0x00 for SPI0DAT) is pushed down to the SFRLAST register, the "bottom" of the stack. Note that a value stored in SFRLAST (via a previous software write to the SFRLAST register) will be overwritten. See Figure 13.4.

Table 13.3. Special Function Registers

Register	Address	Description	Page
ACC	0xE0	Accumulator	94
ADC0CF	0xBC	ADC0 Configuration	63
ADC0CN	0xE8	ADC0 Control	65
ADC0GTH	0xC4	ADC0 Greater-Than Compare High	67
ADC0GTL	0xC3	ADC0 Greater-Than Compare Low	67
ADC0H	0xBE	ADC0 High	64
ADC0L	0xBD	ADC0 Low	64
ADC0LTH	0xC6	ADC0 Less-Than Compare Word High	68
ADC0LTL	0xC5	ADC0 Less-Than Compare Word Low	68
ADC0MX	0xBB	ADC0 Mux Configuration	71
ADC0TK	0xBA	ADC0 Tracking Mode Select	66
В	0xF0	B Register	94
CCH0CN	0xE3	Cache Control	137
CKCON	0x8E	Clock Control	266
CLKMUL	0x97	Clock Multiplier	171
CLKSEL	0x8F	Clock Select	166
CPT0CN	0x9A	Comparator0 Control	77
CPT0MD	0x9B	Comparator0 Mode Selection	78
CPT0MX	0x9C	Comparator0 MUX Selection	82
CPT1CN	0x9D	Comparator1 Control	77
CPT1MD	0x9E	Comparator1 Mode Selection	78
CPT1MX	0x9F	Comparator1 MUX Selection	82
DPH	0x83	Data Pointer High	93
DPL	0x82	Data Pointer Low	93
EIE1	0xE6	Extended Interrupt Enable 1	123
EIE2	0xE7	Extended Interrupt Enable 2	123
EIP1	0xF6	Extended Interrupt Priority 1	124
EIP2	0xF7	Extended Interrupt Priority 2	125
EMI0CF	0xB2	External Memory Interface Configuration	152
EMI0CN	0xAA	External Memory Interface Control	151
EMIOTC	0xAA	External Memory Interface Timing Control	157
FLKEY 0xB7		Flash Lock and Key	135
FLSCL	0xB6	Flash Scale	136
IE	0xA8	Interrupt Enable	121
IP	0xB8	Interrupt Priority	122

15.4. Flash Write and Erase Guidelines

Any system which contains routines which write or erase Flash memory from software involves some risk that the write or erase routines will execute unintentionally if the CPU is operating outside its specified operating range of V_{DD} , system clock frequency, or temperature. This accidental execution of Flash modifying code can result in alteration of Flash memory contents causing a system failure that is only recoverable by re-Flashing the code in the device.

The following guidelines are recommended for any system which contains routines which write or erase Flash from code.

15.4.1. V_{DD} Maintenance and the V_{DD} monitor

- 1. If the system power supply is subject to voltage or current "spikes," add sufficient transient protection devices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings table are not exceeded.
- 2. The on-chip V_{DD} monitor is turned on and enabled as a reset source by default by the hardware. If it is disabled by the firmware, use the following recommendations when re-enabling the V_{DD} monitor. Turn on the V_{DD} monitor and enable it as a reset source as early in code as possible. This should be the first set of instructions executed after the Reset Vector. For C-based systems, this will involve modifying the startup code added by the C compiler. See your compiler documentation for more details. Make certain that there are no delays in software between enabling the V_{DD} monitor and enabling the V_{DD} monitor as a reset source. Code examples showing this can be found in "AN201: Writing to Flash from Firmware", available from the Silicon Laboratories web site.
- 3. As an added precaution, explicitly enable the V_{DD} monitor and enable the V_{DD} monitor as a reset source inside the functions that write and erase Flash memory. The V_{DD} monitor enable instructions should be placed just after the instruction to set PSWE to a 1, but before the Flash write or erase operation instruction.
- 4. Make certain that all writes to the RSTSRC (Reset Sources) register use direct assignment operators and explicitly DO NOT use the bit-wise operators (such as AND or OR). For example, "RSTSRC = 0x02" is correct. "RSTSRC |= 0x02" is incorrect.
- 5. Make certain that all writes to the RSTSRC register explicitly set the PORSF bit to a 1. Areas to check are initialization code which enables other reset sources, such as the Missing Clock Detector or Comparator, for example, and instructions which force a Software Reset. A global search on "RSTSRC" can quickly verify this.

15.4.2. PSWE Maintenance

- 1. Reduce the number of places in code where the PSWE bit (b0 in PSCTL) is set to a 1. There should be exactly one routine in code that sets PSWE to a 1 to write Flash bytes and one routine in code that sets PSWE and PSEE both to a 1 to erase Flash pages.
- Minimize the number of variable accesses while PSWE is set to a 1. Handle pointer address updates and loop variable maintenance outside the "PSWE = 1;... PSWE = 0;" area. Code examples showing this can be found in "AN201: Writing to Flash from Firmware" available from the Silicon Laboratories web site.
- 3. Disable interrupts prior to setting PSWE to a 1 and leave them disabled until after PSWE has been reset to '0'. Any interrupts posted during the Flash write or erase operation will be serviced in priority order after the Flash operation has been completed and interrupts have been re-enabled by software.
- Make certain that the Flash write and erase pointer variables are not located in XRAM. See your compiler documentation for instructions regarding how to explicitly locate variables in different memory areas.
- 5. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine called with an illegal address does not result in modification of the Flash.

SFR Definition 17.1. VDM0CN: V_{DD} Monitor Control

Bit	7	6	5	4	3	2	1	0
Name	VDMEN	VDDSTAT	VDMLVL					
Туре	R/W	R	R/W	R	R	R	R	R
Reset	Varies	Varies	0	0	0	0	0	0

SFR Address = 0xFF; SFR Page = 0x00

Bit	Name	Function
7	VDMEN	V _{DD} Monitor Enable.
		This bit turns the V _{DD} monitor circuit on/off. The V _{DD} Monitor cannot generate system resets until it is also selected as a reset source in register RSTSRC (SFR Definition 17.2). Selecting the V _{DD} monitor as a reset source before it has stabilized may generate a system reset. In systems where this reset would be undesirable, a delay should be introduced between enabling the V _{DD} Monitor and selecting it as a reset source. See Table 5.4 for the minimum V _{DD} Monitor turn-on time. 0: V _{DD} Monitor Disabled. 1: V _{DD} Monitor Enabled.
6	VDDSTAT	V _{DD} Status.
		This bit indicates the current power supply status (V_{DD} Monitor output). 0: V_{DD} is at or below the V_{DD} monitor threshold.
		1: V _{DD} is above the V _{DD} monitor threshold.
5	VDMLVL	V _{DD} Monitor Level Select.
		0: V_{DD} Monitor Threshold is set to VRST-LOW 1: V_{DD} Monitor Threshold is set to VRST-HIGH. This setting is required for any system includes code that writes to and/or erases Flash.
4:0	Unused	Read = 00000b; Write = Don't care.

17.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Table 5.4 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

17.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than the value specified in Table 5.4, "Reset Electrical Characteristics," on page 46, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read 1, signifying the MCD as the reset source; otherwise, this bit reads 0. Writing a 1 to the MCDRSF bit enables the Missing Clock Detector; writing a 0 disables it. The state of the RST pin is unaffected by this reset.

Multiplexed Mode						
Signal Name	Port Pin					
RD	P1.6					
WR	P1.7					
ALE	P1.5					
D0/A0	P4.0					
D1/A1	P4.1					
D2/A2	P4.2					
D3/A3	P4.3					
D4/A4	P4.4					
D5/A5	P4.5					
D6/A6	P4.6					
D7/A7	P4.7					
A8	P3.0					
A9	P3.1					
A10	P3.2					
A11	P3.3					
A12	P3.4					
A13	P3.5					
A14	P3.6					
A15	P3.7					
—	_					
—	—					
—	—					
—	_					
—	_					
—	—					
—	_					

Table 18.1. EMIF Pinout (C8051F500/1/4/5)

Non Multiplexed Mode						
Signal Name	Port Pin					
RD	P1.6					
WR	P1.7					
D0	P4.0					
D1	P4.1					
D2	P4.2					
D3	P4.3					
D4	P4.4					
D5	P4.5					
D6	P4.6					
D7	P4.7					
A0	P3.0					
A1	P3.1					
A2	P3.2					
A3	P3.3					
A4	P3.4					
A5	P3.5					
A6	P3.6					
A7	P3.7					
A8	P2.0					
A9	P2.1					
A10	P2.2					
A11	P2.3					
A12	P2.4					
A13	P2.5					
A14	P2.6					
A15	P2.7					

18.5.3. Split Mode with Bank Select

When EMI0CF[3:2] are set to 10, the XRAM memory map is split into two areas, on-chip space and offchip space.

- Effective addresses below the internal XRAM size boundary will access on-chip XRAM space.
- Effective addresses above the internal XRAM size boundary will access off-chip space.
- 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is onchip or off-chip. The upper 8-bits of the Address Bus A[15:8] are determined by EMI0CN, and the lower 8-bits of the Address Bus A[7:0] are determined by R0 or R1. All 16-bits of the Address Bus A[15:0] are driven in "Bank Select" mode.
- 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-chip or off-chip, and the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

18.5.4. External Only

When EMI0CF[3:2] are set to 11, all MOVX operations are directed to off-chip space. On-chip XRAM is not visible to the CPU. This mode is useful for accessing off-chip memory located between 0x0000 and the internal XRAM size boundary.

- 8-bit MOVX operations ignore the contents of EMI0CN. The upper Address bits A[15:8] are not driven (identical behavior to an off-chip access in "Split Mode without Bank Select" described above). This allows the user to manipulate the upper address bits at will by setting the Port state directly. The lower 8-bits of the effective address A[7:0] are determined by the contents of R0 or R1.
- 16-bit MOVX operations use the contents of DPTR to determine the effective address A[15:0]. The full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

18.6. Timing

The timing parameters of the External Memory Interface can be configured to enable connection to devices having different setup and hold time requirements. The Address Setup time, Address Hold time, RD and WR strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in units of SYSCLK periods through EMI0TC, shown in SFR Definition 18.3, and EMI0CF[1:0].

The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing parameters defined by the EMI0TC register. Assuming non-multiplexed operation, the minimum execution time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for RD or WR pulse + 4 SYSCLKs). For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional SYSCLK cycles. Therefore, the minimum execution time for an off-chip XRAM operation in multiplexed mode is 7 SYSCLK cycles (2 for /ALE + 1 for RD or WR + 4). The programmable setup and hold times default to the maximum delay settings after a reset. Table 18.3 lists the ac parameters for the External Memory Interface, and Figure 18.4 through Figure 18.9 show the timing diagrams for the different External Memory Interface modes and MOVX operations.

SFR Definition 19.1. CLKSEL: Clock Select

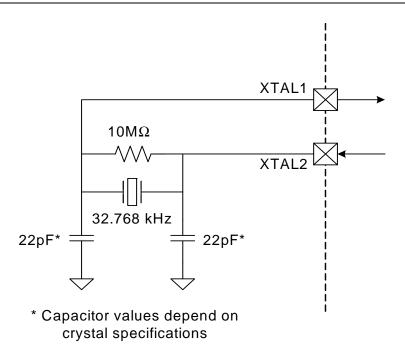
Bit	7	6	5	4	3	2	1	0
Name							CLKS	L[1:0]
Туре	R	R	R	R	R	R	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x8F; SFR Page = 0x0F;

Bit	Name	Function
7:2	Unused	Read = 000000b; Write = Don't Care
1:0	CLKSL[1:0]	System Clock Source Select Bits.
		00: SYSCLK derived from the Internal Oscillator and scaled per the IFCN bits in register OSCICN.01: SYSCLK derived from the External Oscillator circuit.10: SYSCLK derived from the Clock Multiplier.
		11: reserved.

Important Note: If the selected system clock is greater than 25 MHz, please be aware of the following:

- Flash Scale Timing must be configured for the faster system clock. See SFR Definition 15.3 for more details.
- VDD and VDDA voltage must be 2 V or higher.
- It is recommended to enable the VDD monitor as a reset source and configure it for the high threshold. See SFR Definition 17.1 for details on configuring the VDD monitor. If the VDD monitor is configured to the high threshold, the VDD and VDDA voltage must be greater than the VDD monitor high threshold. See Table 5.4 for VDD monitor threshold specifications.


SFR Definition 19.5. CLKMUL: Clock Multiplier

Bit	7	6	5	4	3	2	1	0	
Name	MULEN	MULINIT	MULRDY	MULDIV[2:0]			MULSEL[1:0]		
Туре	R/W	R/W	R	R/W			R/	W	
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0x97; SFR Page = 0x0F;

MULEN	Clock Multiplier	. En al-la					
	Clock Multiplier Enable.						
	0: Clock Multiplier disabled.						
	1: Clock Multiplier enabled.						
MULINIT	Clock Multiplier	r Initialize.					
	bit will initialize th	he Clock Multiplier. The MULRD					
MULRDY	Clock Multiplier	r Ready.					
	0: Clock Multiplie	er is not ready.					
	1: Clock Multiplie	er is ready (PLL is locked).					
MULDIV[2:0]		• •					
MULSEL[1:0]	Clock Multiplier	r Input Select.					
	-	•	Multiplier				
	MULSEL[1:0]	Selected Input Clock	Clock Multiplier Output for MULDIV[2:0] = 000b				
	00	Internal Oscillator	Internal Oscillator x 2				
	01 External Oscillator External Oscilla						
	10 Internal Oscillator Internal Oscillator x 4						
	11	External Oscillator	External Oscillator x 4				
	MULRDY	MULINITClock Multiplier This bit is 0 whe bit will initialize t tiplier is stabilizeMULRDYClock Multiplier 	MULINITClock Multiplier Initialize. This bit is 0 when the Clock Multiplier is enabled. bit will initialize the Clock Multiplier. The MULRD tiplier is stabilized.MULRDYClock Multiplier Ready. 0: Clock Multiplier is not ready. 1: Clock Multiplier Output Scaling Factor. 000: Clock Multiplier Output scaled by a factor of 001: Clock Multiplier Output scaled by a factor of 100: Clock Multiplier Output scaled by a factor of 010: Clock Multiplier Output scaled by a factor of 100: Clock Multiplier Output scaled by a factor of 100: Clock Multiplier Output scaled by a factor of 101: Clock Multiplier Output scaled by a factor of 101: Clock Multiplier Output scaled by a factor of 101: Clock Multiplier Output scaled by a factor of 111: Clock Multiplier Output scaled by a factor of *Note: The Clock Multiplier output duty cycle is rMULSEL[1:0]Clock Multiplier Input Select. These bits select the clock supplied to the Clock 00MULSEL[1:0]Selected Input Clock00Internal Oscillator01External Oscillator				

Figure 19.3. External 32.768 kHz Quartz Crystal Oscillator Connection Diagram

19.4.2. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 19.1, Option 2. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation, according to Equation , where f = the frequency of oscillation in MHz, C = the capacitor value in pF, and R = the pull-up resistor value in $k\Omega$.

$$f = 1.23 \times 10^3 / (R \times C)$$

Equation 19.1. RC Mode Oscillator Frequency

For example: If the frequency desired is 100 kHz, let R = 246 k\Omega and C = 50 pF:

f = 1.23(10³)/RC = 1.23(10³)/[246 x 50] = 0.1 MHz = 100 kHz

Referring to the table in SFR Definition 19.6, the required XFCN setting is 010b.

19.4.3. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 19.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation according to Equation 19.2, where f = the frequency of oscillation in MHz, C = the capacitor value in pF, and V_{DD} = the MCU power supply in Volts.

SFR Definition 20.2. XBR1: Port I/O Crossbar Register 1

		_	_		_	_	-	_
Bit	7	6	5	4	3	2	1	0
Name	T1E	T0E	ECIE	PCA0ME[2:0]			SYSCKE	Reserved
Туре	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE2; SFR Page = 0x0F

Bit	Name	Function
7	T1E	T1 Enable. 0: T1 unavailable at Port pin. 1: T1 routed to Port pin.
6	TOE	T0 Enable. 0: T0 unavailable at Port pin. 1: T0 routed to Port pin.
5	ECIE	PCA0 External Counter Input Enable. 0: ECI unavailable at Port pin. 1: ECI routed to Port pin.
4:2	PCA0ME[2:0]	 PCA Module I/O Enable Bits. 000: All PCA I/O unavailable at Port pins. 001: CEX0 routed to Port pin. 010: CEX0, CEX1 routed to Port pins. 011: CEX0, CEX1, CEX2 routed to Port pins. 100: CEX0, CEX1, CEX2, CEX3 routed to Port pins. 101: CEX0, CEX1, CEX2, CEX3, CEX4 routed to Port pins. 110: CEX0, CEX1, CEX2, CEX3, CEX4, CEX5 routed to Port pins. 111: Reserved
1	SYSCKE	SYSCLK Output Enable. 0: SYSCLK unavailable at Port pin. 1: SYSCLK output routed to Port pin.
0	Reserved	Always Write to 0.

26.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T3SPLIT bit (TMR3CN.3) defines the Timer 3 operation mode.

Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 3 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

26.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 reload registers (TMR3RLH and TMR3RLL) is loaded into the Timer 3 register as shown in Figure 26.7, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled, an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0x000.

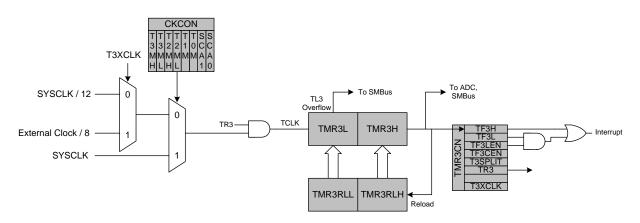


Figure 26.7. Timer 3 16-Bit Mode Block Diagram

26.3.2. 8-bit Timers with Auto-Reload

When T3SPLIT is set, Timer 3 operates as two 8-bit timers (TMR3H and TMR3L). Both 8-bit timers operate in auto-reload mode as shown in Figure 26.8. TMR3RLL holds the reload value for TMR3L; TMR3RLH holds the reload value for TMR3H. The TR3 bit in TMR3CN handles the run control for TMR3H. TMR3L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 3 Clock Select bits (T3MH and T3ML in CKCON) select either SYSCLK or the clock defined by the Timer 3 External Clock Select bit (T3XCLK in TMR3CN), as follows:

27.5. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 27.1. PCA0CN: PCA Control

Bit	7	6	5	4	3	2	1	0
Name	CF	CR	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD8; Bit-Addressable; SFR Page = 0x00

Bit	Name	Function
7	CF	PCA Counter/Timer Overflow Flag.
		Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
6	CR	PCA Counter/Timer Run Control.
		This bit enables/disables the PCA Counter/Timer. 0: PCA Counter/Timer disabled. 1: PCA Counter/Timer enabled.
5	CCF5	PCA Module 5 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF5 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
4	CCF4	PCA Module 4 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF4 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
3	CCF3	PCA Module 3 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF3 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
2	CCF2	PCA Module 2 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF2 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
1	CCF1	PCA Module 1 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
0	CCF0	PCA Module 0 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF0 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.

