
Silicon Labs - C8051F506-IM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 50MHz

Connectivity SMBus (2-Wire/I²C), CANbus, LINbus, SPI, UART/USART

Peripherals POR, PWM, Temp Sensor, WDT

Number of I/O 25

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4.25K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.25V

Data Converters A/D 25x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-QFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f506-im

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f506-im-4410844
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F50x/F51x

4 Rev. 1.2

12.2.1.3. Stack .. 99
13. Special Function Registers... 100

13.1. SFR Paging ... 100
13.2. Interrupts and SFR Paging.. 100
13.3. SFR Page Stack Example... 101

14. Interrupts .. 117
14.1. MCU Interrupt Sources and Vectors.. 117

14.1.1. Interrupt Priorities.. 118
14.1.2. Interrupt Latency ... 118

14.2. Interrupt Register Descriptions .. 120
14.3. External Interrupts INT0 and INT1... 126

15. Flash Memory... 129
15.1. Programming the Flash Memory ... 129

15.1.1. Flash Lock and Key Functions .. 129
15.1.2. Flash Erase Procedure ... 129
15.1.3. Flash Write Procedure .. 130
15.1.4. Flash Write Optimization ... 130

15.2. Non-volatile Data Storage ... 131
15.3. Security Options .. 131
15.4. Flash Write and Erase Guidelines ... 133

15.4.1. VDD Maintenance and the VDD monitor .. 133
15.4.2. PSWE Maintenance.. 133
15.4.3. System Clock .. 134

16. Power Management Modes... 138
16.1. Idle Mode... 138
16.2. Stop Mode ... 139
16.3. Suspend Mode .. 139

17. Reset Sources.. 141
17.1. Power-On Reset .. 142
17.2. Power-Fail Reset/VDD Monitor ... 142
17.3. External Reset ... 144
17.4. Missing Clock Detector Reset ... 144
17.5. Comparator0 Reset ... 145
17.6. PCA Watchdog Timer Reset ... 145
17.7. Flash Error Reset .. 145
17.8. Software Reset .. 145

18. External Data Memory Interface and On-Chip XRAM....................................... 147
18.1. Accessing XRAM... 147

18.1.1. 16-Bit MOVX Example .. 147
18.1.2. 8-Bit MOVX Example .. 147

18.2. Configuring the External Memory Interface... 148
18.3. Port Configuration.. 148
18.4. Multiplexed and Non-multiplexed Selection... 153

18.4.1. Multiplexed Configuration.. 153
18.4.2. Non-multiplexed Configuration.. 154

C8051F50x/F51x

6 Rev. 1.2

21.5. Sleep Mode and Wake-Up .. 207
21.6. Error Detection and Handling .. 207
21.7. LIN Registers... 208

21.7.1. LIN Direct Access SFR Registers Definitions 208
21.7.2. LIN Indirect Access SFR Registers Definitions 210

22. Controller Area Network (CAN0) .. 218
22.1. Bosch CAN Controller Operation... 219

22.1.1. CAN Controller Timing .. 219
22.1.2. CAN Register Access.. 220
22.1.3. Example Timing Calculation for 1 Mbit/Sec Communication 220

22.2. CAN Registers... 222
22.2.1. CAN Controller Protocol Registers.. 222
22.2.2. Message Object Interface Registers ... 222
22.2.3. Message Handler Registers.. 222
22.2.4. CAN Register Assignment .. 223

23. SMBus... 226
23.1. Supporting Documents .. 227
23.2. SMBus Configuration... 227
23.3. SMBus Operation .. 227

23.3.1. Transmitter vs. Receiver ... 228
23.3.2. Arbitration.. 228
23.3.3. Clock Low Extension... 228
23.3.4. SCL Low Timeout.. 228
23.3.5. SCL High (SMBus Free) Timeout ... 229

23.4. Using the SMBus... 229
23.4.1. SMBus Configuration Register.. 229
23.4.2. SMB0CN Control Register .. 233
23.4.3. Data Register .. 236

23.5. SMBus Transfer Modes... 236
23.5.1. Write Sequence (Master) .. 237
23.5.2. Read Sequence (Master) .. 238
23.5.3. Write Sequence (Slave) .. 239
23.5.4. Read Sequence (Slave) .. 240

23.6. SMBus Status Decoding.. 240
24. UART0... 243

24.1. Baud Rate Generator .. 243
24.2. Data Format... 245
24.3. Configuration and Operation ... 246

24.3.1. Data Transmission .. 246
24.3.2. Data Reception ... 246
24.3.3. Multiprocessor Communications ... 247

25. Enhanced Serial Peripheral Interface (SPI0) ... 252
25.1. Signal Descriptions.. 253

25.1.1. Master Out, Slave In (MOSI)... 253
25.1.2. Master In, Slave Out (MISO)... 253

C8051F50x/F51x

Rev. 1.2 10

Figure 25.5. Master Mode Data/Clock Timing ... 257
Figure 25.6. Slave Mode Data/Clock Timing (CKPHA = 0) 258
Figure 25.7. Slave Mode Data/Clock Timing (CKPHA = 1) 258
Figure 25.8. SPI Master Timing (CKPHA = 0) ... 262
Figure 25.9. SPI Master Timing (CKPHA = 1) ... 262
Figure 25.10. SPI Slave Timing (CKPHA = 0) ... 263
Figure 25.11. SPI Slave Timing (CKPHA = 1) ... 263
Figure 26.1. T0 Mode 0 Block Diagram ... 268
Figure 26.2. T0 Mode 2 Block Diagram ... 269
Figure 26.3. T0 Mode 3 Block Diagram ... 270
Figure 26.4. Timer 2 16-Bit Mode Block Diagram ... 275
Figure 26.5. Timer 2 8-Bit Mode Block Diagram ... 276
Figure 26.6. Timer 2 External Oscillator Capture Mode Block Diagram 277
Figure 26.7. Timer 3 16-Bit Mode Block Diagram ... 281
Figure 26.8. Timer 3 8-Bit Mode Block Diagram ... 282
Figure 26.9. Timer 3 External Oscillator Capture Mode Block Diagram 283
Figure 27.1. PCA Block Diagram ... 287
Figure 27.2. PCA Counter/Timer Block Diagram ... 288
Figure 27.3. PCA Interrupt Block Diagram .. 289
Figure 27.4. PCA Capture Mode Diagram ... 291
Figure 27.5. PCA Software Timer Mode Diagram ... 292
Figure 27.6. PCA High-Speed Output Mode Diagram ... 293
Figure 27.7. PCA Frequency Output Mode ... 294
Figure 27.8. PCA 8-Bit PWM Mode Diagram .. 295
Figure 27.9. PCA 9, 10 and 11-Bit PWM Mode Diagram 296
Figure 27.10. PCA 16-Bit PWM Mode ... 297
Figure 27.11. PCA Module 2 with Watchdog Timer Enabled 298
Figure 28.1. Typical C2 Pin Sharing .. 309

C8051F50x/F51x

51 Rev. 1.2

Table 5.12. Comparator 0 and Comparator 1 Electrical Characteristics
VIO = 1.8 to 5.125 V, –40 to +125 °C unless otherwise noted.

Parameter Conditions Min Typ Max Units

Response Time:

Mode 0, Vcm* = 1.5 V

CPn+ – CPn– = 100 mV — 310 — ns

CPn+ – CPn– = –100 mV — 340 — ns

Response Time:

Mode 1, Vcm* = 1.5 V

CPn+ – CPn– = 100 mV — 410 — ns

CPn+ – CPn– = –100 mV — 510 — ns

Response Time:

Mode 2, Vcm* = 1.5 V

CPn+ – CPn– = 100 mV — 480 — ns

CP0+ – CP0– = –100 mV — 620 — ns

Response Time:

Mode 3, Vcm* = 1.5 V

CPn+ – CPn– = 100 mV — 1600 — ns

CPn+ – CPn– = –100 mV — 2600 — ns

Common-Mode Rejection Ratio — 1.7 8.9 mV/V

Positive Hysteresis 1 CPnHYP1–0 = 00 -2 0 2 mV

Positive Hysteresis 2 CPnHYP1–0 = 01 2 6 10 mV

Positive Hysteresis 3 CPnHYP1–0 = 10 5 11 20 mV

Positive Hysteresis 4 CPnHYP1–0 = 11 13 21 40 mV

Negative Hysteresis 1 CPnHYN1–0 = 00 -2 0 2 mV

Negative Hysteresis 2 CPnHYN1–0 = 01 2 6 10 mV

Negative Hysteresis 3 CPnHYN1–0 = 10 5 11 20 mV

Negative Hysteresis 4 CPnHYN1–0 = 11 13 21 40 mV

Inverting or Non-Inverting Input
Voltage Range

–0.25 — VIO + 0.25 V

Input Capacitance — 8 — pF

Input Offset Voltage –10 — +10 mV

Power Supply

Power Supply Rejection — 0.33 — mV/V

Power-Up Time — 3 — µs

Supply Current at DC

Mode 0 — 6.2 20 µA

Mode 1 — 3.8 10 µA

Mode 2 — 2.6 7.5 µA

Mode 3 — 0.6 3 µA

*Note: Vcm is the common-mode voltage on CP0+ and CP0–.

C8051F50x/F51x

53 Rev. 1.2

6.1. Modes of Operation
In a typical system, ADC0 is configured using the following steps:

1. If a gain adjustment is required, refer to Section “6.3. Selectable Gain” on page 58.

2. Choose the start of conversion source.

3. Choose Normal Mode or Burst Mode operation.

4. If Burst Mode, choose the ADC0 Idle Power State and set the Power-Up Time.

5. Choose the tracking mode. Note that Pre-Tracking Mode can only be used with Normal Mode.

6. Calculate the required settling time and set the post convert-start tracking time using the AD0TK bits.

7. Choose the repeat count.

8. Choose the output word justification (Right-Justified or Left-Justified).

9. Enable or disable the End of Conversion and Window Comparator Interrupts.

6.1.1. Starting a Conversion

A conversion can be initiated in one of four ways, depending on the programmed states of the ADC0 Start
of Conversion Mode bits (AD0CM1–0) in register ADC0CN. Conversions may be initiated by one of the fol-
lowing:

 Writing a 1 to the AD0BUSY bit of register ADC0CN

 A rising edge on the CNVSTR input signal (pin P0.1)

 A Timer 1 overflow (i.e., timed continuous conversions)

 A Timer 2 overflow (i.e., timed continuous conversions)

Writing a 1 to AD0BUSY provides software control of ADC0 whereby conversions are performed "on-
demand.” During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is
complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt
flag (AD0INT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT)
should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT
is logic 1. Note that when Timer 2 overflows are used as the conversion source, Low Byte overflows are
used if Timer2 is in 8-bit mode; High byte overflows are used if Timer 2 is in 16-bit mode. See Section
“26. Timers” on page 265 for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as Port pin P0.1. When the
CNVSTR input is used as the ADC0 conversion source, Port pin P0.1 should be skipped by the Digital
Crossbar. To configure the Crossbar to skip P0.1, set to 1 Bit1 in register P0SKIP. See Section “20. Port
Input/Output” on page 177 for details on Port I/O configuration.

6.1.2. Tracking Modes

Each ADC0 conversion must be preceded by a minimum tracking time for the converted result to be accu-
rate. ADC0 has three tracking modes: Pre-Tracking, Post-Tracking, and Dual-Tracking. Pre-Tracking Mode
provides the minimum delay between the convert start signal and end of conversion by tracking continu-
ously before the convert start signal. This mode requires software management in order to meet minimum
tracking requirements. In Post-Tracking Mode, a programmable tracking time starts after the convert start
signal and is managed by hardware. Dual-Tracking Mode maximizes tracking time by tracking before and
after the convert start signal. Figure 6.2 shows examples of the three tracking modes.

Pre-Tracking Mode is selected when AD0TM is set to 10b. Conversions are started immediately following
the convert start signal. ADC0 is tracking continuously when not performing a conversion. Software must
allow at least the minimum tracking time between each end of conversion and the next convert start signal.
The minimum tracking time must also be met prior to the first convert start signal after ADC0 is enabled.

C8051F50x/F51x

89 Rev. 1.2

Table 11.1. CIP-51 Instruction Set Summary (Prefetch-Enabled)

Mnemonic Description Bytes Clock
Cycles

Arithmetic Operations

ADD A, Rn Add register to A 1 1
ADD A, direct Add direct byte to A 2 2
ADD A, @Ri Add indirect RAM to A 1 2
ADD A, #data Add immediate to A 2 2
ADDC A, Rn Add register to A with carry 1 1
ADDC A, direct Add direct byte to A with carry 2 2
ADDC A, @Ri Add indirect RAM to A with carry 1 2
ADDC A, #data Add immediate to A with carry 2 2
SUBB A, Rn Subtract register from A with borrow 1 1
SUBB A, direct Subtract direct byte from A with borrow 2 2
SUBB A, @Ri Subtract indirect RAM from A with borrow 1 2
SUBB A, #data Subtract immediate from A with borrow 2 2
INC A Increment A 1 1
INC Rn Increment register 1 1
INC direct Increment direct byte 2 2
INC @Ri Increment indirect RAM 1 2
DEC A Decrement A 1 1
DEC Rn Decrement register 1 1
DEC direct Decrement direct byte 2 2
DEC @Ri Decrement indirect RAM 1 2
INC DPTR Increment Data Pointer 1 1
MUL AB Multiply A and B 1 4
DIV AB Divide A by B 1 8
DA A Decimal adjust A 1 1

Logical Operations

ANL A, Rn AND Register to A 1 1
ANL A, direct AND direct byte to A 2 2
ANL A, @Ri AND indirect RAM to A 1 2
ANL A, #data AND immediate to A 2 2
ANL direct, A AND A to direct byte 2 2
ANL direct, #data AND immediate to direct byte 3 3
ORL A, Rn OR Register to A 1 1
ORL A, direct OR direct byte to A 2 2
ORL A, @Ri OR indirect RAM to A 1 2
ORL A, #data OR immediate to A 2 2
ORL direct, A OR A to direct byte 2 2
ORL direct, #data OR immediate to direct byte 3 3
XRL A, Rn Exclusive-OR Register to A 1 1
XRL A, direct Exclusive-OR direct byte to A 2 2
XRL A, @Ri Exclusive-OR indirect RAM to A 1 2

Note: Certain instructions take a variable number of clock cycles to execute depending on instruction alignment and
the FLRT setting (SFR Definition 15.3).

C8051F50x/F51x

Rev. 1.2 117

14. Interrupts

The C8051F50x/F51x devices include an extended interrupt system supporting a total of 18 interrupt
sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and exter-
nal inputs pins varies according to the specific version of the device. Each interrupt source has one or
more associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets
a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI
instruction, which returns program execution to the next instruction that would have been executed if the
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the
hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-
less of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt
enable bit in an SFR (IE, EIE1, or EIE2). However, interrupts must first be globally enabled by setting the
EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0
disables all interrupt sources regardless of the individual interrupt-enable settings.

Note: Any instruction that clears a bit to disable an interrupt should be immediately followed by an instruction that has
two or more opcode bytes. Using EA (global interrupt enable) as an example:

// in 'C':
EA = 0; // clear EA bit.
EA = 0; // this is a dummy instruction with two-byte opcode.

; in assembly:
CLR EA ; clear EA bit.
CLR EA ; this is a dummy instruction with two-byte opcode.

For example, if an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction
which clears a bit to disable an interrupt source), and the instruction is followed by a single-cycle instruc-
tion, the interrupt may be taken. However, a read of the enable bit will return a 0 inside the interrupt service
routine. When the bit-clearing opcode is followed by a multi-cycle instruction, the interrupt will not be taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.
However, most are not cleared by the hardware and must be cleared by software before returning from the
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after
the completion of the next instruction.

14.1. MCU Interrupt Sources and Vectors
The C8051F50x/F51x MCUs support 18 interrupt sources. Software can simulate an interrupt by setting
any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be gener-
ated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt
sources, associated vector addresses, priority order and control bits are summarized in Table 14.1. Refer
to the datasheet section associated with a particular on-chip peripheral for information regarding valid
interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

C8051F50x/F51x

Rev. 1.2 127

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the INT0 and INT1 external inter-
rupts, respectively. If an INT0 or INT1 external interrupt is configured as edge-sensitive, the corresponding
interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When
configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined
by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The
external interrupt source must hold the input active until the interrupt request is recognized. It must then
deactivate the interrupt request before execution of the ISR completes or another interrupt request will be
generated.

C8051F50x/F51x

188 Rev. 1.2

SFR Address = 0xF4; SFR Page = 0x00

SFR Address = 0xF3; SFR Page = 0x00

SFR Definition 20.6. P1MASK: Port 1 Mask Register

Bit 7 6 5 4 3 2 1 0

Name P1MASK[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P1MASK[7:0] Port 1 Mask Value.

Selects P1 pins to be compared to the corresponding bits in P1MAT.
0: P1.n pin logic value is ignored and cannot cause a Port Mismatch event.
1: P1.n pin logic value is compared to P1MAT.n.

SFR Definition 20.7. P1MAT: Port 1 Match Register

Bit 7 6 5 4 3 2 1 0

Name P1MAT[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:0 P1MAT[7:0] Port 1 Match Value.

Match comparison value used on Port 1 for bits in P1MAT which are set to 1.
0: P1.n pin logic value is compared with logic LOW.
1: P1.n pin logic value is compared with logic HIGH.

C8051F50x/F51x

196 Rev. 1.2

SFR Address = 0xF3; SFR Page = 0x0F

SFR Address = 0xA6; SFR Page = 0x0F

SFR Definition 20.21. P2MDIN: Port 2 Input Mode

Bit 7 6 5 4 3 2 1 0

Name P2MDIN[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:0 P2MDIN[7:0] Analog Configuration Bits for P2.7–P2.0 (respectively).

Port pins configured for analog mode have their weak pull-up and digital receiver
disabled. For analog mode, the pin also needs to be configured for open-drain
mode in the P2MDOUT register.
0: Corresponding P2.n pin is configured for analog mode.
1: Corresponding P2.n pin is not configured for analog mode.

SFR Definition 20.22. P2MDOUT: Port 2 Output Mode

Bit 7 6 5 4 3 2 1 0

Name P2MDOUT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P2MDOUT[7:0] Output Configuration Bits for P2.7–P2.0 (respectively).

These bits are ignored if the corresponding bit in register P2MDIN is logic 0.
0: Corresponding P2.n Output is open-drain.
1: Corresponding P2.n Output is push-pull.

C8051F50x/F51x

Rev. 1.2 205

21.3. LIN Master Mode Operation
The master node is responsible for the scheduling of messages and sends the header of each frame con-
taining the SYNCH BREAK FIELD, SYNCH FIELD, and IDENTIFIER FIELD. The steps to schedule a mes-
sage transmission or reception are listed below.

1. Load the 6-bit Identifier into the LIN0ID register.

2. Load the data length into the LIN0SIZE register. Set the value to the number of data bytes or "1111b" if
the data length should be decoded from the identifier. Also, set the checksum type, classic or
enhanced, in the same LIN0SIZE register.

3. Set the data direction by setting the TXRX bit (LIN0CTRL.5). Set the bit to 1 to perform a master
transmit operation, or set the bit to 0 to perform a master receive operation.

4. If performing a master transmit operation, load the data bytes to transmit into the data buffer (LIN0DT1
to LIN0DT8).

5. Set the STREQ bit (LIN0CTRL.0) to start the message transfer. The LIN controller will schedule the
message frame and request an interrupt if the message transfer is successfully completed or if an error
has occurred.

This code segment shows the procedure to schedule a message in a transmission operation:

 LIN0ADR = 0x08; // Point to LIN0CTRL
 LIN0DAT |= 0x20; // Select to transmit data
 LIN0ADR = 0x0E; // Point to LIN0ID
 LIN0DAT = 0x11; // Load the ID, in this example 0x11
 LIN0ADR = 0x0B; // Point to LIN0SIZE
 LIN0DAT = (LIN0DAT & 0xF0) | 0x08; // Load the size with 8

 LIN0ADR = 0x00; // Point to Data buffer first byte
 for (i=0; i<8; i++)
 {
 LIN0DAT = i + 0x41; // Load the buffer with ‘A’, ‘B’, ...
 LIN0ADR++; // Increment the address to the next buffer
 }
 LIN0ADR = 0x08; // Point to LIN0CTRL
 LIN0DAT = 0x01; // Start Request
The application should perform the following steps when an interrupt is requested.

Table 21.3. Autobaud Parameters Examples

System Clock (MHz) Prescaler Divider

25 1 312

24.5 1 306

24 1 300

22.1184 1 276

16 1 200

12.25 0 306

12 0 300

11.0592 0 276

8 0 200

C8051F50x/F51x

216 Rev. 1.2

Indirect Address = 0x0C

Indirect Address = 0x0D

LIN Register Definition 21.9. LIN0DIV: LIN0 Divider Register

Bit 7 6 5 4 3 2 1 0

Name DIVLSB[3:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:0 DIVLSB LIN Baud Rate Divider Least Significant Bits.

The 8 least significant bits for the baud rate divider. The 9th and most significant bit
is the DIV9 bit (LIN0MUL.0). The valid range for the divider is 200 to 511.

LIN Register Definition 21.10. LIN0MUL: LIN0 Multiplier Register

Bit 7 6 5 4 3 2 1 0

Name PRESCL[1:0] LINMUL[4:0] DIV9

Type R/W R/W R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:6 PRESCL[1:0] LIN Baud Rate Prescaler Bits.

These bits are the baud rate prescaler bits.

5:1 LINMUL[4:0] LIN Baud Rate Multiplier Bits.

These bits are the baud rate multiplier bits. These bits are not used in slave mode.

0 DIV9 LIN Baud Rate Divider Most Significant Bit.

The most significant bit of the baud rate divider. The 8 least significant bits are in
LIN0DIV. The valid range for the divider is 200 to 511.

C8051F50x/F51x

Rev. 1.2 230

The SMBCS1–0 bits select the SMBus clock source, which is used only when operating as a master or
when the Free Timeout detection is enabled. When operating as a master, overflows from the selected
source determine the absolute minimum SCL low and high times as defined in Equation 23.1. Note that the
selected clock source may be shared by other peripherals so long as the timer is left running at all times.
For example, Timer 1 overflows may generate the SMBus and UART baud rates simultaneously. Timer
configuration is covered in Section “26. Timers” on page 265.

Equation 23.1. Minimum SCL High and Low Times
The selected clock source should be configured to establish the minimum SCL High and Low times as per
Equation 23.1. When the interface is operating as a master (and SCL is not driven or extended by any
other devices on the bus), the typical SMBus bit rate is approximated by Equation 23.2.

Equation 23.2. Typical SMBus Bit Rate

Figure 23.4 shows the typical SCL generation described by Equation 23.2. Notice that THIGH is typically
twice as large as TLOW. The actual SCL output may vary due to other devices on the bus (SCL may be
extended low by slower slave devices, or driven low by contending master devices). The bit rate when
operating as a master will never exceed the limits defined by equation Equation 23.1.

Figure 23.4. Typical SMBus SCL Generation

Table 23.1. SMBus Clock Source Selection

SMBCS1 SMBCS0 SMBus Clock Source

0 0 Timer 0 Overflow
0 1 Timer 1 Overflow
1 0 Timer 2 High Byte Overflow
1 1 Timer 2 Low Byte Overflow

THighMin TLowMin
1

fClockSourceOverflow
---= =

BitRate
fClockSourceOverflow

3
---=

SCL

Timer Source
Overflows

SCL High TimeoutTLow THigh

C8051F50x/F51x

233 Rev. 1.2

23.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see SFR Definition 23.2). The
higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to
jump to service routines. MASTER indicates whether a device is the master or slave during the current
transfer. TXMODE indicates whether the device is transmitting or receiving data for the current byte.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus
interrupt. STA and STO are also used to generate START and STOP conditions when operating as a mas-
ter. Writing a 1 to STA will cause the SMBus interface to enter Master Mode and generate a START when
the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a 1 to STO
while in Master Mode will cause the interface to generate a STOP and end the current transfer after the
next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be
generated.

As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit
indicates the value received during the last ACK cycle. ACKRQ is set each time a byte is received, indicat-
ing that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing
value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit
before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit;
however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further
slave events will be ignored until the next START is detected.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface
is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condi-
tion. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or
when an arbitration is lost; see Table 23.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and
the bus is stalled until software clears SI.

C8051F50x/F51x

Rev. 1.2 240

23.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will
be a receiver during the address byte, and a transmitter during all data bytes. When slave events are
enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START
followed by a slave address and direction bit (READ in this case) is received. Upon entering Slave
Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the
received slave address with an ACK, or ignore the received slave address with a NACK. The interrupt will
occur after the ACK cycle.

If the received slave address is ignored, slave interrupts will be inhibited until the next START is detected.
If the received slave address is acknowledged, zero or more data bytes are transmitted. If the received
slave address is acknowledged, data should be written to SMB0DAT to be transmitted. The interface
enters Slave Transmitter Mode, and transmits one or more bytes of data. After each byte is transmitted, the
master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should be written with the
next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to before SI is cleared
(Note: an error condition may be generated if SMB0DAT is written following a received NACK while in
Slave Transmitter Mode). The interface exits Slave Transmitter Mode after receiving a STOP. Note that the
interface will switch to Slave Receiver Mode if SMB0DAT is not written following a Slave Transmitter inter-
rupt. Figure 23.8 shows a typical slave read sequence. Two transmitted data bytes are shown, though any
number of bytes may be transmitted. Notice that all of the ‘data byte transferred’ interrupts occur after the
ACK cycle in this mode.

Figure 23.8. Typical Slave Read Sequence

23.6. SMBus Status Decoding
The current SMBus status can be easily decoded using the SMB0CN register. In the tables, STATUS
VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown
response options are only the typical responses; application-specific procedures are allowed as long as
they conform to the SMBus specification. Highlighted responses are allowed by hardware but do not con-
form to the SMBus specification.

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupts

C8051F50x/F51x

Rev. 1.2 245

24.2. Data Format
UART0 has a number of available options for data formatting. Data transfers begin with a start bit (logic
low), followed by the data bits (sent LSB-first), a parity or extra bit (if selected), and end with one or two
stop bits (logic high). The data length is variable between 5 and 8 bits. A parity bit can be appended to the
data, and automatically generated and detected by hardware for even, odd, mark, or space parity. The stop
bit length is selectable between 1 and 2 bit times, and a multi-processor communication mode is available
for implementing networked UART buses. All of the data formatting options can be configured using the
SMOD0 register, shown in SFR Definition 24.2. Figure 24.2 shows the timing for a UART0 transaction
without parity or an extra bit enabled. Figure 24.3 shows the timing for a UART0 transaction with parity
enabled (PE0 = 1). Figure 24.4 is an example of a UART0 transaction when the extra bit is enabled
(XBE0 = 1). Note that the extra bit feature is not available when parity is enabled, and the second stop bit
is only an option for data lengths of 6, 7, or 8 bits.

Figure 24.2. UART0 Timing Without Parity or Extra Bit

Figure 24.3. UART0 Timing With Parity

Figure 24.4. UART0 Timing With Extra Bit

D1D0 DN-2 DN-1

START
BIT

MARK
STOP
BIT 1

BIT TIMES

SPACE

N bits; N = 5, 6, 7, or 8

STOP
BIT 2

Optional
(6,7,8 bit

Data)

D1D0 DN-2 DN-1 PARITY
START

BIT
MARK

STOP
BIT 1

BIT TIMES

SPACE

N bits; N = 5, 6, 7, or 8

STOP
BIT 2

Optional
(6,7,8 bit

Data)

D1D0 DN-2 DN-1 EXTRA
START

BIT
MARK

STOP
BIT 1

BIT TIMES

SPACE

N bits; N = 5, 6, 7, or 8

STOP
BIT 2

Optional
(6,7,8 bit

Data)

C8051F50x/F51x

266 Rev. 1.2

SFR Address = 0x8E; SFR Page = All Pages

SFR Definition 26.1. CKCON: Clock Control

Bit 7 6 5 4 3 2 1 0

Name T3MH T3ML T2MH T2ML T1M T0M SCA[1:0]

Type R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 T3MH Timer 3 High Byte Clock Select.

Selects the clock supplied to the Timer 3 high byte (split 8-bit timer mode only).
0: Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN.
1: Timer 3 high byte uses the system clock.

6 T3ML Timer 3 Low Byte Clock Select.

Selects the clock supplied to Timer 3. Selects the clock supplied to the lower 8-bit timer
in split 8-bit timer mode.
0: Timer 3 low byte uses the clock defined by the T3XCLK bit in TMR3CN.
1: Timer 3 low byte uses the system clock.

5 T2MH Timer 2 High Byte Clock Select.

Selects the clock supplied to the Timer 2 high byte (split 8-bit timer mode only).
0: Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN.
1: Timer 2 high byte uses the system clock.

4 T2ML Timer 2 Low Byte Clock Select.

Selects the clock supplied to Timer 2. If Timer 2 is configured in split 8-bit timer mode,
this bit selects the clock supplied to the lower 8-bit timer.
0: Timer 2 low byte uses the clock defined by the T2XCLK bit in TMR2CN.
1: Timer 2 low byte uses the system clock.

3 T1 Timer 1 Clock Select.

Selects the clock source supplied to Timer 1. Ignored when C/T1 is set to 1.
0: Timer 1 uses the clock defined by the prescale bits SCA[1:0].
1: Timer 1 uses the system clock.

2 T0 Timer 0 Clock Select.

Selects the clock source supplied to Timer 0. Ignored when C/T0 is set to 1.
0: Counter/Timer 0 uses the clock defined by the prescale bits SCA[1:0].
1: Counter/Timer 0 uses the system clock.

1:0 SCA[1:0] Timer 0/1 Prescale Bits.

These bits control the Timer 0/1 Clock Prescaler:
00: System clock divided by 12
01: System clock divided by 4
10: System clock divided by 48
11: External clock divided by 8 (synchronized with the system clock)

C8051F50x/F51x

Rev. 1.2 267

26.1. Timer 0 and Timer 1
Each timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1)
and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and
Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE regis-
ter (Section “14.2. Interrupt Register Descriptions” on page 120); Timer 1 interrupts can be enabled by set-
ting the ET1 bit in the IE register (Section “14.2. Interrupt Register Descriptions” on page 120). Both
counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1–T0M0
in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating
mode is described below.

26.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration
and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same
manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions
TL0.4–TL0.0. The three upper bits of TL0 (TL0.7–TL0.5) are indeterminate and should be masked out or
ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to
0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are
enabled.

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low
transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to Section
“20.3. Priority Crossbar Decoder” on page 180 for information on selecting and configuring external I/O
pins). Clearing C/T selects the clock defined by the T0M bit (CKCON.3). When T0M is set, Timer 0 is
clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock
Scale bits in CKCON (see SFR Definition 26.1).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal
INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 14.7). Setting GATE0 to 1
allows the timer to be controlled by the external input signal INT0 (see Section “14.2. Interrupt Register
Descriptions” on page 120), facilitating pulse width measurements.

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial
value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0.
Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The
input signal INT1 is used with Timer 1; the INT1 polarity is defined by bit IN1PL in register IT01CF (see
SFR Definition 14.7).

TR0 GATE0 INT0 Counter/Timer

0 X X Disabled
1 0 X Enabled
1 1 0 Disabled
1 1 1 Enabled

Note: X = Don't Care

C8051F50x/F51x

268 Rev. 1.2

Figure 26.1. T0 Mode 0 Block Diagram

26.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The
counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

26.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start
value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all
ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If
Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is
not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be
correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the
TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal INT0
is active as defined by bit IN0PL in register IT01CF (see Section “14.3. External Interrupts INT0 and INT1”
on page 126 for details on the external input signals INT0 and INT1).

TC LK TL0
(5 b its)

TH 0
(8 b its)

 T
C

O
N

TF0
TR 0

TR 1
TF1

IE 1
IT1
IE 0
IT0

Interrupt
TR 0

0

1

0

1S Y S C LK

P re-sca led C lock

C K C O N
T
3
M
H

T
3
M
L

S
C
A
0

S
C
A
1

T
0
M

T
2
M
H

T
2
M
L

T
1
M

TM O D
T
1
M
1

T
1
M
0

C
/
T
1

G
A
T
E
1

G
A
T
E
0

C
/
T
0

T
0
M
1

T
0
M
0

G A TE 0

/IN T 0

T0

C rossbar

IT01C F
I
N
1
S
L
1

I
N
1
S
L
0

I
N
1
S
L
2

I
N
1
P
L

I
N
0
P
L

I
N
0
S
L
2

I
N
0
S
L
1

I
N
0
S
L
0

IN 0P L XO R

Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

