

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I²C), CANbus, LINbus, SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 25x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f506-imr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

21 5 Sloop Mada and Waka Up	207
21.5. Sleep Mode and Wake-Op	
21.7. LIN Registers	
21.7.1. LIN DIrect Access SFR Registers Definitions	
21.7.2. LIN Indirect Access SFR Registers Definitions	210
22. Controller Area Network (CANU)	
22.1. Bosch CAN Controller Operation	
22.1.1. CAN Controller Timing	219
22.1.2. CAN Register Access	220
22.1.3. Example Timing Calculation for 1 Mbit/Sec Communication	220
22.2. CAN Registers	222
22.2.1. CAN Controller Protocol Registers	222
22.2.2. Message Object Interface Registers	222
22.2.3. Message Handler Registers	222
22.2.4. CAN Register Assignment	223
23. SMBus	226
23.1. Supporting Documents	227
23.2. SMBus Configuration	227
23.3. SMBus Operation	227
23.3.1. Transmitter vs. Receiver	228
23.3.2. Arbitration	228
23.3.3. Clock Low Extension	228
23.3.4. SCL Low Timeout	228
23.3.5. SCL High (SMBus Free) Timeout	229
23.4. Using the SMBus	229
23.4.1. SMBus Configuration Register	229
23.4.2. SMB0CN Control Register	233
23.4.3. Data Register	236
23.5. SMBus Transfer Modes	236
23.5.1. Write Sequence (Master)	237
23.5.2. Read Sequence (Master)	238
23.5.3. Write Sequence (Slave)	239
23.5.4. Read Sequence (Slave)	240
23.6. SMBus Status Decoding	240
24. UART0	243
24.1. Baud Rate Generator	243
24.2. Data Format	245
24.3. Configuration and Operation	246
24.3.1. Data Transmission	246
24.3.2. Data Reception	246
24.3.3. Multiprocessor Communications	247
25. Enhanced Serial Peripheral Interface (SPI0)	252
25.1. Signal Descriptions	253
25.1.1. Master Out, Slave In (MOSI)	253
25.1.2. Master In, Slave Out (MISO)	253

Ordering Part Number	Flash Memory (kB)	CAN2.0B	LIN2.0	Digital Port I/Os	External Memory Interface	Package	Ordering Part Number	Flash Memory (kB)	CAN2.0B	LIN2.0	Digital Port I/Os	External Memory Interface	Package
C8051F500-IQ	64	\checkmark	~	40	\checkmark	QFP-48	C8051F505-IQ	32		—	40	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	QFP-48
C8051F500-IM	64	\checkmark	\checkmark	40	\checkmark	QFN-48	C8051F505-IM	32	—	—	40	\checkmark	QFN-48
C8051F501-IQ	64	_	_	40	\checkmark	QFP-48	C8051F506-IQ	32	\checkmark	\checkmark	25	_	QFP-32
C8051F501-IM	64	—		40	\checkmark	QFN-48	C8051F506-IM	32	\checkmark	\checkmark	25		QFN-32
C8051F502-IQ	64	\checkmark	\checkmark	25	_	QFP-32	C8051F507-IQ	32	—	—	25	_	QFP-32
C8051F502-IM	64	\checkmark	\checkmark	25		QFN-32	C8051F507-IM	32	—	—	25		QFN-32
C8051F503-IQ	64	—	—	25	—	QFP-32	C8051F508-IM	64	\checkmark	\checkmark	33	\checkmark	QFN-40
C8051F503-IM	64		_	25		QFN-32	C8051F509-IM	64	—	—	33	\checkmark	QFN-40
C8051F504-IQ	32	\checkmark	\checkmark	40	\checkmark	QFP-48	C8051F510-IM	32	\checkmark	\checkmark	33	\checkmark	QFN-40
C8051F504-IM	32	\checkmark	\checkmark	40	\checkmark	QFN-48	C8051F511-IM	32		—	33	\checkmark	QFN-40

Table 2.1. Product Selection Guide

Note: The suffix of the part number indicates the device rating and the package. All devices are RoHS compliant.

All of these devices are also available in an automotive version. For the automotive version, the -I in the ordering part number is replaced with -A. For example, the automotive version of the C8051F500-IM is the C8051F500-AM.

The -AM and -AQ devices receive full automotive quality production status, including AEC-Q100 qualification, registration with International Material Data System (IMDS) and Part Production Approval Process (PPAP) documentation. PPAP documentation is available at www.silabs.com with a registered and NDA approved user account. The -AM and -AQ devices enable high volume automotive OEM applications with their enhanced testing and processing. Please contact Silicon Labs sales for more information regarding –AM and -AQ devices for your automotive project.

Figure 3.4. QFP-32 Pinout Diagram (Top View)

Table 5.9. ADC0 Electrical Characteristics

VDDA = 1.8 to 2.75 V, -40 to +125 °C, VREF = 1.5 V (REFSL=0) unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy		1	1	.1	1
Resolution			12		bits
Integral Nonlinearity		T —	±0.5	±3	LSB
Differential Nonlinearity	Guaranteed Monotonic	T —	±0.5	±1	LSB
Offset Error ¹		-10	-1.8	10	LSB
Full Scale Error		-20	1.7	20	LSB
Offset Temperature Coefficient		1 —	-2	1 —	ppm/°C
Dynamic performance (10 kHz s	ine-wave single-ended input	t, 1 dB b	elow Full	Scale, 200	ksps)
Signal-to-Noise Plus Distortion		63	66	_	dB
Total Harmonic Distortion	Up to the 5th harmonic	1 —	82	1 —	dB
Spurious-Free Dynamic Range		—	-84	—	dB
Conversion Rate					
SAR Conversion Clock				3.6	MHz
Conversion Time in SAR Clocks ²		13	—	<u> </u>	clocks
Track/Hold Acquisition Time ³	VDDA <u>></u> 2.0 V VDDA < 2.0 V	1.5	—	—	μs
Throughput Rate ⁴	VDDA ≥ 2.0 V			200	ksps
Analog Inputs					
ADC Input Voltage Range ⁵	gain = 1.0 (default) gain = n	0 0	_	VREF VREF/n	V
Absolute Pin Voltage with Respect to GND		0		V _{IO}	V
Sampling Capacitance			32		pF
Input Multiplexer Impedance			3		kΩ
Power Specifications					
Power Supply Current (VDDA supplied to ADC0)	Operating Mode, 200 ksps	_	1100	1500	μA
Burst Mode (Idle)			1100	1500	μA
Power-On Time		5			μs
Power Supply Rejection Ratio		—	-60		dB

Notes:

1. Represents one standard deviation from the mean. Offset and full-scale error can be removed through calibration.

2. An additional 2 FCLK cycles are required to start and complete a conversion

3. Additional tracking time may be required depending on the output impedance connected to the ADC input. See Section "6.2.1. Settling Time Requirements" on page 57.

4. An increase in tracking time will decrease the ADC throughput.

5. See Section "6.3. Selectable Gain" on page 58 for more information about the setting the gain.

SFR Definition 9.5. CPT0MX: Comparator0 MUX Selection

Bit	7	6	5	4	3	2	1	0
Nam	е	CMX0	N[3:0]	I		CMX0	P[3:0]	1
Тур	e	R/	W			R/	W	
Rese	et 0	1	1	1	0	1	1	1
SFR A	Address = 0x9	C: SFR Page	e = 0x00					
Bit	Name				Function			
7:4	CMX0N[3:0]	Comparato	r0 Negative	Input MUX	Selection.			
		0000:	P0.	1				
		0001:	P0.	3				
		0010:	P0.	5				
		0011:	P0.	7				
		0100:	P1.	1				
		0101:	P1.	3				
		0110:	P1.	5				
		0111:	P1.	7				
		1000:	P2.	1				
		1001:	P2.	3				
		1010:	P2.	5				
		1011:	P2.	7				
		1100–1111:	Nor	ne				
3:0	CMX0P[3:0]	Comparato	r0 Positive	Input MUX	Selection.			
		0000:	P0.	0				
		0001:	P0.	2				
		0010:	P0.	4				
		0011:	P0.	6				
		0100:	P1.	0				
		0101:	P1.	2				
		0110:	P1.	4				
		0111:	P1.	6				
		1000:	P2.	0				
		1001:	P2.	2				
		1010:	P2.	4				
		1011:	P2.	6				
		1100–1111:	Nor	ne				

18.5. Memory Mode Selection

The external data memory space can be configured in one of four modes, shown in Figure 18.3, based on the EMIF Mode bits in the EMIOCF register (SFR Definition 18.2). These modes are summarized below. More information about the different modes can be found in Section "18.6. Timing" on page 156.

Figure 18.3. EMIF Operating Modes

18.5.1. Internal XRAM Only

When bits EMI0CF[3:2] are set to 00, all MOVX instructions will target the internal XRAM space on the device. Memory accesses to addresses beyond the populated space will wrap on 4 kB boundaries. As an example, the addresses 0x1000 and 0x2000 both evaluate to address 0x0000 in on-chip XRAM space.

- 8-bit MOVX operations use the contents of EMI0CN to determine the high-byte of the effective address and R0 or R1 to determine the low-byte of the effective address.
- 16-bit MOVX operations use the contents of the 16-bit DPTR to determine the effective address.

18.5.2. Split Mode without Bank Select

When bit EMI0CF.[3:2] are set to 01, the XRAM memory map is split into two areas, on-chip space and offchip space.

- Effective addresses below the internal XRAM size boundary will access on-chip XRAM space.
- Effective addresses above the internal XRAM size boundary will access off-chip space.
- 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is onchip or off-chip. However, in the "No Bank Select" mode, an 8-bit MOVX operation will not drive the upper 8-bits A[15:8] of the Address Bus during an off-chip access. This allows the user to manipulate the upper address bits at will by setting the Port state directly via the port latches. This behavior is in contrast with "Split Mode with Bank Select" described below. The lower 8-bits of the Address Bus A[7:0] are driven, determined by R0 or R1.
- 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-chip or off-chip, and unlike 8-bit MOVX operations, the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

18.6.2.2. 8-bit MOVX without Bank Select: EMI0CF[4:2] = 001 or 011

Muxed 8-bit WRITE Without Bank Select

Figure 18.8. Multiplexed 8-bit MOVX without Bank Select Timing

SFR Definition 19.2. OSCICN: Internal Oscillator Control

Bit	7	6	5	4	3	2	1	0	
Name	IOSCE	EN[1:0]	SUSPEND	IFRDY	Reserved		IFCN[2:0]		
Туре	R/W	R/W	R/W	R	R	R/W			
Reset	1	1	0	1	0	0	0	0	

SFR Address = 0xA1; SFR Page = 0x0F;

Bit	Name	Function
7:6	IOSCEN[1:0]	Internal Oscillator Enable Bits.
		00: Oscillator Disabled.
		01: Reserved.
		10: Reserved.
		11: Oscillator enabled in normal mode and disabled in suspend mode.
5	SUSPEND	Internal Oscillator Suspend Enable Bit.
		Setting this bit to logic 1 places the internal oscillator in SUSPEND mode. The inter- nal oscillator resumes operation when one of the SUSPEND mode awakening events occurs.
4	IFRDY	Internal Oscillator Frequency Ready Flag.
		0: Internal oscillator is not running at programmed frequency.
		1: Internal oscillator is running at programmed frequency.
3	Reserved	Read = 0b; Must Write = 0b.
2:0	IFCN[2:0]	Internal Oscillator Frequency Divider Control Bits.
		000: SYSCLK derived from Internal Oscillator divided by 128.
		001: SYSCLK derived from Internal Oscillator divided by 64.
		010: SYSCLK derived from Internal Oscillator divided by 32.
		011: SYSCLK derived from Internal Oscillator divided by 16.
		100: SYSCLK derived from Internal Oscillator divided by 8.
		101: SYSCLK derived from Internal Oscillator divided by 4.
		110: SYSCLK derived from Internal Oscillator divided by 2.
		111: SYSCLK derived from Internal Oscillator divided by 1.

Figure 20.4. Crossbar Priority Decoder in Example Configuration

20.4. Port I/O Initialization

Port I/O initialization consists of the following steps:

- 1. Select the input mode (analog or digital) for all Port pins, using the Port Input Mode register (PnMDIN).
- 2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port Output Mode register (PnMDOUT).
- 3. Select any pins to be skipped by the I/O Crossbar using the Port Skip registers (PnSKIP).
- 4. Assign Port pins to desired peripherals.
- 5. Enable the Crossbar (XBARE = 1).

All Port pins must be configured as either analog or digital inputs. Port 4 on the C8051F500/1/4/5 and C8051F508/9-F510/1 is a digital-only Port. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pullup, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a 1 indicates a digital input, and a 0 indicates an analog input. All pins default to digital inputs on reset. See SFR Definition

SFR Definition 20.23. P2SKIP: Port 2 Skip

Bit	7	6	5	4	3	2	1	0
Name	P2SKIP[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD6; SFR Page = 0x0F

Bit	Name	Function
7:0	P2SKIP[7:0]	Port 2 Crossbar Skip Enable Bits.
		 These bits select Port 2 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P2.n pin is not skipped by the Crossbar. 1: Corresponding P2.n pin is skipped by the Crossbar.

SFR Definition 20.24. P3: Port 3

Bit	7	6	5	4	3	2	1	0	
Name	P3[7:0]								
Туре	R/W								
Reset	1	1	1	1	1	1	1	1	

SFR Address = 0xB0; SFR Page = All Pages; Bit-Addressable

Bit	Name	Description	Write	Read						
7:0	P3[7:0]	Port 3 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P3.n Port pin is logic LOW. 1: P3.n Port pin is logic HIGH.						
Note:	Note: Port P3.1–P3.7 are only available on the 48-pin and 40-pin packages.									

Figure 22.3. Four segments of a CAN Bit

The length of the 4 bit segments must be adjusted so that their sum is as close as possible to the desired bit time. Since each segment must be an integer multiple of the time quantum (tq), the closest achievable bit time is 24 tq (1000.008 ns), yielding a bit rate of 0.999992 Mbit/sec. The Sync_Seg is a constant 1 tq. The Prop_Seg must be greater than or equal to the propagation delay of 400 ns and so the choice is 10 tq (416.67 ns).

The remaining time quanta (13 tq) in the bit time are divided between Phase_Seg1 and Phase_Seg2 as shown in. Based on this equation, Phase_Seg1 = 6 tq and Phase_Seg2 = 7 tq.

Phase_Seg1 + Phase_Seg2 = Bit_Time - (Synch_Seg + Prop_Seg)

- 1. If Phase_Seg1 + Phase_Seg2 is even, then Phase_Seg2 = Phase_Seg1. If the sum is odd, Phase_Seg2 = Phase_Seg1 + 1.
- **2.** Phase_Seg2 should be at least 2 tq.

Equation 22.1. Assigning the Phase Segments

The Synchronization Jump Width (SJW) timing parameter is defined by. It is used for determining the value written to the Bit Timing Register and for determining the required oscillator tolerance. Since we are using a quartz crystal as the system clock source, an oscillator tolerance calculation is not needed.

SJW = minimum (4, Phase_Seg1)

Equation 22.2. Synchronization Jump Width (SJW)

The value written to the Bit Timing Register can be calculated using Equation 18.3. The BRP Extension register is left at its reset value of 0x0000.

BRPE = BRP - 1 = BRP Extension Register = 0x0000 SJWp = SJW - 1 = minimum (4, 6) - 1 = 3 $TSEG1 = Prop_Seg + Phase_Seg1 - 1 = 10 + 6 - 1 = 15$ $TSEG2 = Phase_Seg2 - 1 = 6$ Bit Timing Register = (TSEG2 x 0x1000) + (TSEG1 x 0x0100)
Bit Timing Register = (TSEG2 x 0x1000) + (SJWp x 0x0040) + BRPE = 0x6FC0
Equation 22.3. Calculating the Bit Timing Register Value

CAN	Name	SFR Name	SFR	SFR Name	SFR	16-bit	Reset
Addr.		(High)	Addr.	(Low)	Addr.	SFR	Value
0x50	IF2 Data A 2	CAN0IF2DA2H	0xFB	CAN0IF2DA2L	0xFA	CAN0IF2DA2	0x0000
0x52	IF2 Data B 1	CAN0IF2DB1H	0xFD	CAN0IF2DB1L	0xFC	CAN0IF2DB1	0x0000
0x54	IF2 Data B 2	CAN0IF2DB2H	0xFF	CAN0IF2DB2L	0xFE	CAN0IF2DB2	0x0000
0x80	Transmission Request 1 ¹	CAN0TR1H	0xA3	CAN0TR1L	0xA2	CAN0TR1	0x0000
0x82	Transmission Request 2 ¹	CAN0TR2H	0xA5	CAN0TR2L	0xA4	CAN0TR2	0x0000
0x90	New Data 1 ¹	CAN0ND1H	0xAB	CAN0ND1L	0xAA	CAN0ND1	0x0000
0x92	New Data 2 ¹	CAN0ND2H	0xAD	CAN0ND2L	0xAC	CAN0ND2	0x0000
0xA0	Interrupt Pending 1 ¹	CAN0IP1H	0xAF	CAN0IP1L	0xAE	CAN0IP1	0x0000
0xA2	Interrupt Pending 2 ¹	CAN0IP2H	0xB3	CAN0IP2L	0xB2	CAN0IP2	0x0000
0xB0	Message Valid 1 ¹	CAN0MV1H	0xBB	CAN0MV1L	0xBA	CAN0MV1	0x0000
0xB2	Message Valid 2 ¹	CAN0MV2H	0xBD	CAN0MV2L	0xBC	CAN0MV2	0x0000

Table 22.2. Standard CAN Registers and Reset Values(Continued)

Notes:

1. Read-only register.

2. Write-enabled by CCE.

3. The reset value of CAN0TST could also be r0000000b, where r signifies the value of the CAN RX pin.

4. Write-enabled by Test.

23.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data. An interrupt is generated after each received byte.

Software must write the ACK bit at that time to ACK or NACK the received byte. Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to the ACK bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if SMB0DAT is written while an active Master Receiver. Figure 23.6 shows a typical master read sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur **before** the ACK cycle in this mode.

Figure 23.6. Typical Master Read Sequence

26.1. Timer 0 and Timer 1

Each timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register (Section "14.2. Interrupt Register Descriptions" on page 120); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (Section "14.2. Interrupt Register (Section "14.2. Interrupt Register (Section "14.2. Interrupt Register Descriptions" on page 120); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (Section "14.2. Interrupt Register Descriptions" on page 120). Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1–T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

26.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4–TL0.0. The three upper bits of TL0 (TL0.7–TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to Section "20.3. Priority Crossbar Decoder" on page 180 for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the T0M bit (CKCON.3). When T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 26.1).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 14.7). Setting GATE0 to 1 allows the timer to be controlled by the external input signal INT0 (see Section "14.2. Interrupt Register Descriptions" on page 120), facilitating pulse width measurements.

TR0	GATE0	INT0	Counter/Timer			
0	Х	Х	Disabled			
1	0	Х	Enabled			
1	1	0	Disabled			
1	1	1	Enabled			
Note: X = Don't Care						

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT1 is used with Timer 1; the INT1 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 14.7).

SFR Definition 26.3. TMOD: Timer Mode

Bit	7	6	5	4	3	2	1	0	
Name	GATE1	C/T1	T1M	1[1:0]	GATE0	C/T0	TOM	[1:0]	
Туре	R/W	R/W	R	/W	R/W	R/W	R/	W	
Rese	t 0	0	0	0	0	0	0	0	
SFR Address = 0x89; SFR Page = All Pages									
Bit Name Function									
7	GATE1	Timer 1 Ga 0: Timer 1 e 1: Timer 1 e register IT0	te Control. enabled whe enabled only 1CF (see SF	n TR1 = 1 ir when TR1 = FR Definitior	respective of = 1 AND INT1 n 14.7).	INT1 logic le is active as	evel. defined by t	bit IN1PL in	
6	C/T1	Counter/Tin 0: Timer: Tin 1: Counter:	mer 1 Selec mer 1 incren Timer 1 incr	r t. nented by cl remented by	ock defined b high-to-low t	y T1M bit in ransitions or	register CK	CON. n (T1).	
5:4	T1M[1:0]	Timer 1 Mo These bits s 00: Mode 0, 01: Mode 1, 10: Mode 2, 11: Mode 3,	de Select. select the Tir 13-bit Cour 16-bit Cour 8-bit Count Timer 1 Ina	mer 1 opera hter/Timer hter/Timer er/Timer wit ictive	tion mode. h Auto-Reloa	d			
3	GATE0	Timer 0 Ga 0: Timer 0 e 1: Timer 0 e register IT0	te Control. enabled whe enabled only 1CF (see SF	n TR0 = 1 ir when TR0 = FR Definitior	respective of = 1 AND INT(1 14.7).	INT0 logic le	evel. defined by t	bit IN0PL in	
2	C/T0	Counter/Tin 0: Timer: Tin 1: Counter:	mer 0 Selec mer 0 incren Timer 0 incr	i t. nented by cl remented by	ock defined b high-to-low t	y T0M bit in ransitions or	register CK	CON. n (T0).	
1:0	TOM[1:0]	Timer 0 Mo These bits s 00: Mode 0, 01: Mode 1, 10: Mode 2, 11: Mode 3,	Timer 0 Mode Select. These bits select the Timer 0 operation mode. 00: Mode 0, 13-bit Counter/Timer 01: Mode 1, 16-bit Counter/Timer 10: Mode 2, 8-bit Counter/Timer with Auto-Reload 11: Mode 3, Two 8-bit Counter/Timers						

Operational Mode	PCA0CPMn PCA0PWM												
Bit Number	7	6	5	4	3	2	1	0	7	6	5	4–2	1–0
Capture triggered by positive edge on CEXn	Х	Х	1	0	0	0	0	Α	0	Х	В	XXX	XX
Capture triggered by negative edge on CEXn	Х	Х	0	1	0	0	0	А	0	Х	В	XXX	XX
Capture triggered by any transition on CEXn	Х	Х	1	1	0	0	0	А	0	Х	В	XXX	XX
Software Timer	Х	С	0	0	1	0	0	А	0	Х	В	XXX	XX
High Speed Output	Х	С	0	0	1	1	0	А	0	Х	В	XXX	XX
Frequency Output	Х	С	0	0	0	1	1	А	0	Х	В	XXX	XX
8-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	Α	0	Х	В	XXX	00
9-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	01
10-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	Α	D	Х	В	XXX	10
11-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	Α	D	Х	В	XXX	11
16-Bit Pulse Width Modulator	1	С	0	0	Е	0	1	А	0	Х	В	XXX	XX
 Notes: 1. X = Don't Care (no functional difference for individual module if 1 or 0). 2. A = 1 to enable interrupts for this module (PCA interrupt triggered on CCFn set to 1). 3. B = 1 to enable 8th 9th 10th or 11th bit overflow interrupt (Depends on setting of CL SEL[1:0]). 													

Table 27.2. PCA0CPM and PCA0PWM Bit Settings for PCA Capture/Compare Modules

4. C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).

5. D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated channel is accessed via addresses PCA0CPHn and PCA0CPLn.

6. E = When set to 1, a match event will cause the CCFn flag for the associated channel to be set.

7. All modules set to 8, 9, 10 or 11-bit PWM mode use the same cycle length setting.

27.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or fall-ing-edge caused the capture.

SFR Definition 27.3. PCA0PWM: PCA PWM Configuration

Bit	7	6	5	4	3	2	1	0
Name	ARSEL	ECOV	COVF				CLSE	L[1:0]
Туре	R/W	R/W	R/W	R	R	R	R/	W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD9; SFR Page = 0x0F

Bit	Name	Function
7	ARSEL	Auto-Reload Register Select.
		This bit selects whether to read and write the normal PCA capture/compare registers (PCA0CPn), or the Auto-Reload registers at the same SFR addresses. This function is used to define the reload value for 9, 10, and 11-bit PWM modes. In all other modes, the Auto-Reload registers have no function. 0: Read/Write Capture/Compare Registers at PCA0CPHn and PCA0CPLn. 1: Read/Write Auto-Reload Registers at PCA0CPHn and PCA0CPLn.
6	ECOV	Cycle Overflow Interrupt Enable.
		This bit sets the masking of the Cycle Overflow Flag (COVF) interrupt.
		0: COVF will not generate PCA interrupts.
		1: A PCA interrupt will be generated when COVF is set.
5	COVF	Cycle Overflow Flag.
		This bit indicates an overflow of the 8th, 9th, 10th, or 11th bit of the main PCA counter (PCA0). The specific bit used for this flag depends on the setting of the Cycle Length Select bits. The bit can be set by hardware or software, but must be cleared by software.
		0: No overflow has occurred since the last time this bit was cleared.
		1: An overflow has occurred since the last time this bit was cleared.
4:2	Unused	Read = 000b; Write = Don't care.
1:0	CLSEL[1:0]	Cycle Length Select.
		 When 16-bit PWM mode is not selected, these bits select the length of the PWM cycle, between 8, 9, 10, or 11 bits. This affects all channels configured for PWM which are not using 16-bit PWM mode. These bits are ignored for individual channels configured to16-bit PWM mode. 00: 8 bits. 01: 9 bits. 10: 10 bits. 11: 11 bits.

28. C2 Interface

C8051F50x/F51x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

28.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 28.1. C2ADD: C2 Address

Bit	7	6	5	4	3	2	1	0
Name	C2ADD[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

Bit	Name		Function					
7:0	C2ADD[7:0]	C2 Address.	C2 Address.					
		The C2ADD regist for C2 Data Read	The C2ADD register is accessed via the C2 interface to select the target Data register or C2 Data Read and Data Write commands.					
		Address Description						
		0x00	Selects the Device ID register for Data Read instructions					
		0x01	Selects the Revision ID register for Data Read instructions					
		0x02	Selects the C2 Flash Programming Control register for Data Read/Write instructions					
		0xB4	Selects the C2 Flash Programming Data register for Data Read/Write instructions					

C2 Register Definition 28.4. FPCTL: C2 Flash Programming Control

Bit	7	6	5	4	3	2	1	0
Name	FPCTL[7:0]							
Туре		R/W						
Reset	0	0	0	0	0	0	0	0

C2 Address: 0x02

Bit	Name	Function
7:0	FPCTL[7:0]	Flash Programming Control Register.
		This register is used to enable Flash programming via the C2 interface. To enable C2 Flash programming, the following codes must be written in order: 0x02, 0x01. Note that once C2 Flash programming is enabled, a system reset must be issued to resume normal operation.

C2 Register Definition 28.5. FPDAT: C2 Flash Programming Data

Bit	7	6	5	4	3	2	1	0
Name	FPDAT[7:0]							
Туре		R/W						
Reset	0	0	0	0	0	0	0	0

C2 Address: 0xB4

Bit	Name		Function					
7:0	FPDAT[7:0]	C2 Flash Program	2 Flash Programming Data Register.					
		This register is use accesses. Valid co	ed to pass Flash commands, addresses, and data during C2 Flash mmands are listed below.					
		Code Command						
		0x06	Flash Block Read					
		0x07	Flash Block Write					
		0x08	Flash Page Erase					
		0x03	Device Erase					

