

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), CANbus, LINbus, SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 25x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f506-iq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

25.1.3. Serial Clock (SCK)	
25.1.4. Slave Select (NSS)	
25.2. SPI0 Master Mode Operation	
25.3. SPI0 Slave Mode Operation	
25.4. SPI0 Interrupt Sources	
25.5. Serial Clock Phase and Polarity	
25.6. SPI Special Function Registers	258
26. Timers	
26.1. Timer 0 and Timer 1	
26.1.1. Mode 0: 13-bit Counter/Timer	267
26.1.2. Mode 1: 16-bit Counter/Timer	
26.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload	268
26.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	269
26.2. Timer 2	275
26.2.1. 16-bit Timer with Auto-Reload	275
26.2.2. 8-bit Timers with Auto-Reload	275
26.2.3. External Oscillator Capture Mode	
26.3. Timer 3	
26.3.1. 16-bit Timer with Auto-Reload	
26.3.2. 8-bit Timers with Auto-Reload	
26.3.3. External Oscillator Capture Mode	
27. Programmable Counter Array	
27.1. PCA Counter/Timer	
27.2. PCA0 Interrupt Sources	
27.3. Capture/Compare Modules	
27.3.1. Edge-triggered Capture Mode	
27.3.2. Software Timer (Compare) Mode	
27.3.3. High-Speed Output Mode	
27.3.4. Frequency Output Mode	
27.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes	
27.3.5.1. 8-bit Pulse Width Modulator Mode	
27.3.5.2. 9/10/11-bit Pulse Width Modulator Mode	
27.3.6. 16-Bit Pulse Width Modulator Mode	
27.4. Watchdog Timer Mode	
27.4.1. Watchdog Timer Operation	
27.4.2. Watchdog Timer Usage	
27.5. Register Descriptions for PCA0	
28. C2 Interface	
28.1. C2 Interface Registers	
28.2. C2 Pin Sharing	
Document Change List	
Contact Information	

2. Ordering Information

The following features are common to all devices in this family:

- 50 MHz system clock and 50 MIPS throughput (peak)
- 4352 bytes of RAM (256 internal bytes and 4096 XRAM bytes)
- SMBus/I²C, Enhanced SPI, Enhanced UART
- Four Timers
- Six Programmable Counter Array channels
- Internal 24 MHz oscillator
- Internal Voltage Regulator
- 12-bit, 200 ksps ADC
- Internal Voltage Reference and Temperature Sensor
- Two Analog Comparators

Table 2.1 shows the feature that differentiate the devices in this family.

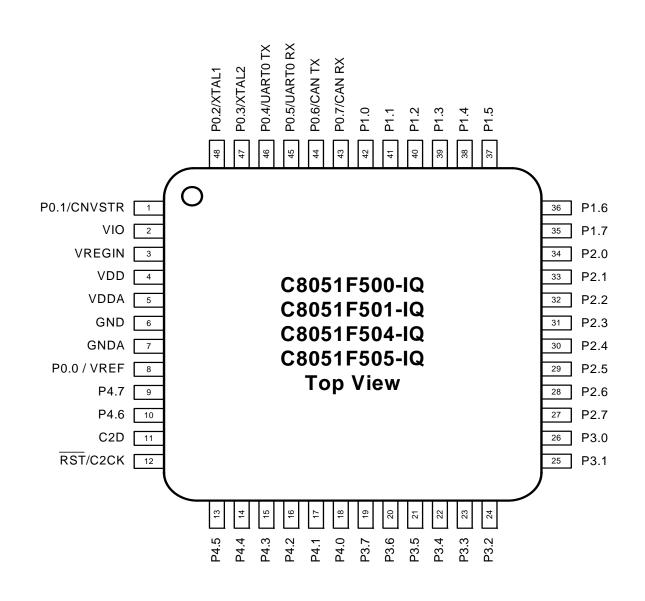
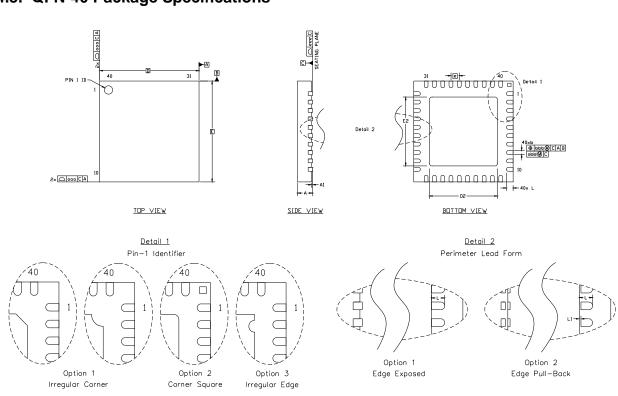



Figure 3.1. QFP-48 Pinout Diagram (Top View)

4.3. QFN-40 Package Specifications

Figure 4.5. Typical QFN-40 Package Drawing

Dimension	Min	Тур	Max	Dimension	Min	Тур	Мах
A	0.80	0.85	0.90	E2	4.00	4.10	4.20
A1	0.00		0.05	L	0.35	0.40	0.45
b	0.18	0.23	0.28	L1			0.10
D	6.00 BSC			aaa			0.10
D2	4.00	4.10	4.20	bbb			0.10
е	0.50 BSC			ddd			0.05
E	6.00 BSC			eee			0.08

Table 4.5. QFN-40 Package Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220, variation VJJD-5, except for features A, D2, and E2 which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

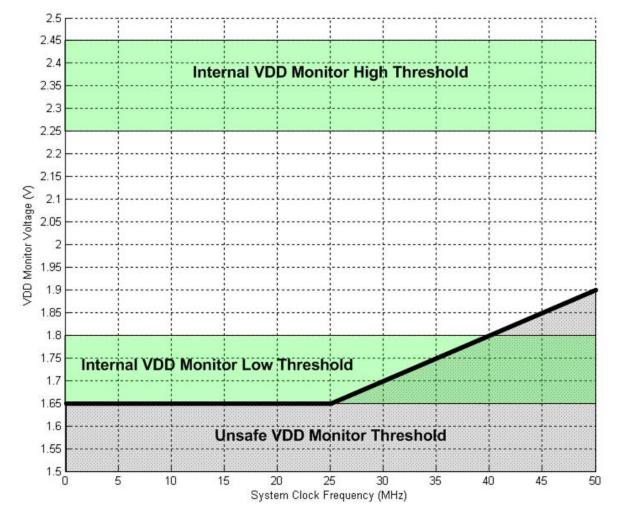


Figure 5.1. Minimum VDD Monitor Threshold vs. System Clock Frequency

Note: With system clock frequencies greater than 25 MHz, the VDD monitor level should be set to the high threshold (VDMLVL = 1b in SFR VDM0CN) to prevent undefined CPU operation. The high threshold should only be used with an external regulator powering VDD directly. See Figure 10.2 on page 85 for the recommended power supply connections.

SFR Definition 9.2. CPT0MD: Comparator0 Mode Selection

Bit	7	6	5	4	3	2	1	0
Name			CP0RIE	CP0FIE			CP0M	ID[1:0]
Туре	R	R	R/W	R/W	R	R	R/W	
Reset	0	0	0	0	0	0	1	0

SFR Address = 0x9B; SFR Page = 0x00

Bit	Name	Function
7:6	Unused	Read = 00b, Write = Don't Care.
5	CP0RIE	Comparator0 Rising-Edge Interrupt Enable. 0: Comparator0 Rising-edge interrupt disabled.
		1: Comparator0 Rising-edge interrupt enabled.
4	CP0FIE	Comparator0 Falling-Edge Interrupt Enable. 0: Comparator0 Falling-edge interrupt disabled. 1: Comparator0 Falling-edge interrupt enabled.
3:2	Unused	Read = 00b, Write = don't care.
1:0	CP0MD[1:0]	Comparator0 Mode Select. These bits affect the response time and power consumption for Comparator0. 00: Mode 0 (Fastest Response Time, Highest Power Consumption) 01: Mode 1 10: Mode 2 11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

SFR Definition 9.6. CPT1MX: Comparator1 MUX Selection

Bit	7	6	5	4	3	2	1	0		
Nam	е	CMX1	N[3:0]			CMX	1P[3:0]	•		
Туре	e	R/	W			R/W				
Rese	et 0	1	1	1	0	1	1	1		
SFR A	Address = 0x9	 F: SER Page	- 0x00							
Bit	Name		- 0,00		Function					
7:4	CMX1N[3:0]	Comparator1 Negative Input MUX Selection.								
		0000:	P0.1	-						
		0001:	P0.3							
		0010:	P0.							
		0011:	P0.1							
		0100:	P1. ⁻	1						
		0101:	P1.3	3						
		0110:	P1.	5						
		0111:	P1.	7						
		1000:	P2.1	1						
		1001:	P2.3	3						
		1010:	P2.	5						
		1011:	P2.1							
		1100–1111:	Nor	ne						
3:0	CMX1P[3:0]	Comparato	r1 Positive	Input MUX	Selection.					
		0000:	P0.0	0						
		0001:	P0.2	2						
		0010:	P0.4	4						
		0011:	P0.0							
		0100:	P1.0							
		0101:	P1.2							
		0110:	P1.4							
		0111:	P1.0							
		1000:	P2.0							
		1001:	P2.2							
		1010:	P2.4							
		1011:	P2.0							
		1100–1111:	Nor	ne						

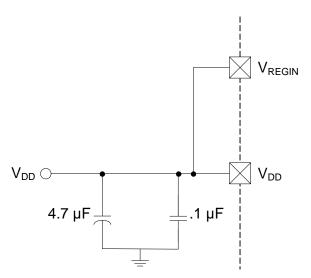


Figure 10.2. External Capacitors for Voltage Regulator Input/Output— Regulator Disabled

SFR Definition 10.1. REG0CN: Regulator Control

Bit	7	6	5	4	3	2	1	0
Name	REGDIS	Reserved		REG0MD				DROPOUT
Туре	R/W	R/W	R	R/W	R	R	R	R
Reset	0	1	0	1	0	0	0	0

SFR Address = 0xC9; SFR Page = 0x00

Bit	Name	Function				
7	REGDIS	Voltage Regulator Disable Bit.				
		0: Voltage Regulator Enabled 1: Voltage Regulator Disabled				
6	Reserved	ead = 1b; Must Write 1b.				
5	Unused	Read = 0b; Write = Don't Care.				
4	REG0MD	Voltage Regulator Mode Select Bit.				
		0: Voltage Regulator Output is 2.1V.				
		1: Voltage Regulator Output is 2.6V.				
3:1	Unused	Read = 000b. Write = Don't Care.				
0	DROPOUT	Voltage Regulator Dropout Indicator.				
		0: Voltage Regulator is not in dropout				
		1: Voltage Regulator is in or near dropout.				

SFR Definition 11.3. SP: Stack Pointer

Bit	7	6	5	4	3	2	1	0
Name	SP[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	1	1	1
SFR Address = 0x81; SFR Page = All Pages								

Bit	Name	Function
7:0	SP[7:0]	Stack Pointer.
		The Stack Pointer holds the location of the top of the stack. The stack pointer is incre- mented before every PUSH operation. The SP register defaults to 0x07 after reset.

SFR Definition 11.4. ACC: Accumulator

Bit	7	6	5	4	3	2	1	0	
Name		ACC[7:0]							
Туре		R/W							
Reset	0	0	0	0	0	0	0	0	
SFR Ad	dress = 0xE	0; SFR Page	e = All Pages	; Bit-Addres	sable				
Rit	Name				Function				

Bit	Name	Function
7:0	ACC[7:0]	Accumulator.
		This register is the accumulator for arithmetic operations.

SFR Definition 11.5. B: B Register

Bit 7 6	Э	4	3	2	1	0
Name	B[7:0]					
Туре	R/W					
Reset 0 0	0	0	0	0	0	0

SFR Address = 0xF0; SFR Page = All Pages; Bit-Addressable

Bit	Name	Function
7:0	B[7:0]	B Register.
		This register serves as a second accumulator for certain arithmetic operations.

Table 13.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page	
IT01CF	0xE4	INT0/INT1 Configuration	128	
LIN0ADR	0xD3	LIN0 Address	208	
LIN0CF	0xC9	LIN0 Configuration	208	
LIN0DAT	0xD2	LIN0 Data	209	
OSCICN	0xA1	Internal Oscillator Control	168	
OSCICRS	0xA2	Internal Oscillator Coarse Control	169	
OSCIFIN	0x9E	Internal Oscillator Fine Calibration	169	
OSCXCN	0x9F	External Oscillator Control	173	
P0	0x80	Port 0 Latch	191	
POMASK	0xF2	Port 0 Mask Configuration	187	
P0MAT	0xF1	Port 0 Match Configuration	187	
POMDIN	0xF1	Port 0 Input Mode Configuration	192	
P0MDOUT	0xA4	Port 0 Output Mode Configuration	192	
P0SKIP	0xD4	Port 0 Skip	193	
P1	0x90	Port 1 Latch	193	
P1MASK	0xF4	Port 1 Mask Configuration	188	
P1MAT	0xF3	Port 1 Match Configuration	188	
P1MDIN	0xF2	Port 1 Input Mode Configuration	194	
P1MDOUT	0xA5	Port 1 Output Mode Configuration	194	
P1SKIP	0xD5	Port 1 Skip	195	
P2	0xA0	Port 2 Latch	195	
P2MASK	0xB2	Port 2 Mask Configuration	189	
P2MAT	0xB1	Port 2 Match Configuration	189	
P2MDIN	0xF3	Port 2 Input Mode Configuration	196	
P2MDOUT	0xA6	Port 2 Output Mode Configuration	196	
P2SKIP	0xD6	Port 2 Skip	197	
P3	0xB0	Port 3 Latch	197	
P3MASK	0xAF	Port 3 Mask Configuration	190	
P3MAT	0xAE	Port 3 Match Configuration	190	
P3MDIN	0xF4	Port 3 Input Mode Configuration	198	
P3MDOUT	0xAE	Port 3 Output Mode Configuration		
P3SKIP	0xD7	Port 3 Skip	199	
P4	0xB5	Port 4 Latch	199	
P4MDOUT	0xAF	Port 4 Output Mode Configuration	200	
PCA0CN	0xD8	PCA Control	300	
PCA0CPH0	0xFC	PCA Capture 0 High	305	

SFR Definition 14.2. IP: Interrupt Priority

Bit	7	6	5	4	3	2	1	0
Nam	e	PSPI0	PT2	PS0	PT1	PX1	PT0	PX0
Туре	, R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Rese	et 1	0	0	0	0	0	0	0
SFR A	Address = 0	xB8; Bit-Addres	sable; SFR	Page = All F	Pages			
Bit	Name				Function			
7	Unused	Read = 1b, W	rite = Don't (Care.				
6	PSPI0	Serial Periph This bit sets th 0: SPI0 interru 1: SPI0 interru	ne priority of opt set to low	the SPI0 int	errupt. el.	ity Control.		
5	PT2	Timer 2 Intern This bit sets th 0: Timer 2 inter 1: Timer 2 inter	ne priority of errupt set to	the Timer 2 low priority le	evel.			
4	PS0	UART0 Interrupt Priority Control. This bit sets the priority of the UART0 interrupt. 0: UART0 interrupt set to low priority level. 1: UART0 interrupt set to high priority level.						
3	PT1	This bit sets th 0: Timer 1 inte	Timer 1 Interrupt Priority Control.This bit sets the priority of the Timer 1 interrupt.0: Timer 1 interrupt set to low priority level.1: Timer 1 interrupt set to high priority level.					
2	PX1	This bit sets th 0: External Int	External Interrupt 1 Priority Control. This bit sets the priority of the External Interrupt 1 interrupt. 0: External Interrupt 1 set to low priority level. 1: External Interrupt 1 set to high priority level.					
1	PT0	Timer 0 Interrupt Priority Control. This bit sets the priority of the Timer 0 interrupt. 0: Timer 0 interrupt set to low priority level. 1: Timer 0 interrupt set to high priority level.						
0	PX0	This bit sets th 0: External Int	: Timer 0 interrupt set to high priority level. External Interrupt 0 Priority Control. This bit sets the priority of the External Interrupt 0 interrupt. D: External Interrupt 0 set to low priority level. I: External Interrupt 0 set to high priority level.					

20.1.3. Interfacing Port I/O in a Multi-Voltage System

All Port I/O are capable of interfacing to digital logic operating at a supply voltage higher than VDD and less than 5.25 V. Connect the VIO pin to the voltage source of the interface logic.

20.2. Assigning Port I/O Pins to Analog and Digital Functions

Port I/O pins P0.0–P3.7 can be assigned to various analog, digital, and external interrupt functions. P4.0-P4.7 can be assigned to only digital functions. The Port pins assigned to analog functions should be configured for analog I/O, and Port pins assigned to digital or external interrupt functions should be configured for digital I/O.

20.2.1. Assigning Port I/O Pins to Analog Functions

Table 20.1 shows all available analog functions that require Port I/O assignments. **Port pins selected for these analog functions should have their corresponding bit in PnSKIP set to 1.** This reserves the pin for use by the analog function and does not allow it to be claimed by the Crossbar. Table 20.1 shows the potential mapping of Port I/O to each analog function.

Analog Function	Potentially Assignable Port Pins	SFR(s) used for Assignment					
ADC Input	P0.0–P3.7*	ADC0MX, PnSKIP					
Comparator0 or Compartor1 Input	P0.0-P2.7	CPT0MX, CPT1MX, PnSKIP					
Voltage Reference (VREF0)	P0.0	REF0CN, PnSKIP					
External Oscillator in Crystal Mode (XTAL1)	P0.2	OSCXCN, PnSKIP					
External Oscillator in RC, C, or Crystal Mode (XTAL2)	P0.3	OSCXCN, PnSKIP					
*Note: P3.1-P3.7 are only available on the 48-pin and 40-pi	*Note: P3.1–P3.7 are only available on the 48-pin and 40-pin packages						

Table 20.1. Port I/O Assignment for Analog Functions

20.2.2. Assigning Port I/O Pins to Digital Functions

Any Port pins not assigned to analog functions may be assigned to digital functions or used as GPIO. Most digital functions rely on the Crossbar for pin assignment; however, some digital functions bypass the Crossbar in a manner similar to the analog functions listed above. **Port pins used by these digital func-tions and any Port pins selected for use as GPIO should have their corresponding bit in PnSKIP set to 1.** Table 20.2 shows all available digital functions and the potential mapping of Port I/O to each digital function.

Table 20.2.	Port I/O	Assignment	for Dig	gital Functions
-------------	----------	------------	---------	-----------------

Digital Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
UART0, SPI0, SMBus, CAN0, LIN0, CP0, CP0A, CP1, CP1A, SYSCLK, PCA0 (CEX0-5 and ECI), T0 or T1.	 Any Port pin available for assignment by the Crossbar. This includes P0.0–P4.7* pins which have their PnSKIP bit set to 0. Note: The Crossbar will always assign UART0 pins to P0.4 and P0.5 and always assign CAN0 to P0.6 and P0.7. 	XBR0, XBR1, XBR2
Any pin used for GPIO	P0.0–P4.7*	P0SKIP, P1SKIP, P2SKIP, P3SKIP
	only available on the 48-pin and 40pin packages. P4.1–l o register is not available for P4.	P4.7 are only available on

24. UART0

UART0 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates (details in Section "24.1. Baud Rate Generator" on page 243). A received data FIFO allows UART0 to receive up to three data bytes before data is lost and an overflow occurs.

UART0 has six associated SFRs. Three are used for the Baud Rate Generator (SBCON0, SBRLH0, and SBRLL0), two are used for data formatting, control, and status functions (SCON0, SMOD0), and one is used to send and receive data (SBUF0). The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete). If additional bytes are available in the Receive FIFO, the RI0 bit cannot be cleared by software.

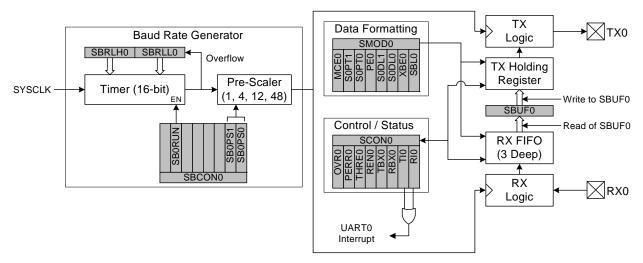


Figure 24.1. UART0 Block Diagram

24.1. Baud Rate Generator

The UART0 baud rate is generated by a dedicated 16-bit timer which runs from the controller's core clock (SYSCLK) and has prescaler options of 1, 4, 12, or 48. The timer and prescaler options combined allow for a wide selection of baud rates over many clock frequencies.

The baud rate generator is configured using three registers: SBCON0, SBRLH0, and SBRLL0. The UART0 Baud Rate Generator Control Register (SBCON0, SFR Definition 24.4) enables or disables the baud rate generator, selects the clock source for the baud rate generator, and selects the prescaler value for the timer. The baud rate generator must be enabled for UART0 to function. Registers SBRLH0 and SBRLL0 contain a 16-bit reload value for the dedicated 16-bit timer. The internal timer counts up from the reload value on every clock tick. On timer overflows (0xFFFF to 0x0000), the timer is reloaded. The baud rate for UART0 is defined in Equation 24.1, where "BRG Clock" is the baud rate generator's selected clock source. For reliable UART operation, it is recommended that the UART baud rate is not configured for baud rates faster than SYSCLK/16.

If the extra bit function is enabled (XBE0 = 1) and the parity function is disabled (PE0 = 0), the extra bit for the oldest byte in the FIFO can be read from the RBX0 bit (SCON0.2). If the extra bit function is not enabled, the value of the stop bit for the oldest FIFO byte will be presented in RBX0. When the parity function is enabled (PE0 = 1), hardware will check the received parity bit against the selected parity type (selected with S0PT[1:0]) when receiving data. If a byte with parity error is received, the PERR0 flag will be set to 1. This flag must be cleared by software. Note: when parity is enabled, the extra bit function is not available.

24.3.3. Multiprocessor Communications

UART0 supports multiprocessor communication between a master processor and one or more slave processors by special use of the extra data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its extra bit is logic 1; in a data byte, the extra bit is always set to logic 0.

Setting the MCE0 bit (SMOD0.7) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the extra bit is logic 1 (RBX0 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data byte(s) bits of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

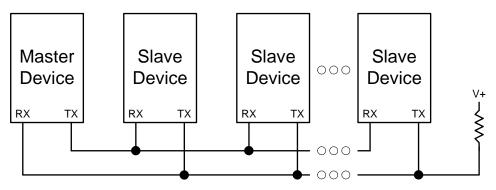


Figure 24.6. UART Multi-Processor Mode Interconnect Diagram

SFR Definition 24.3. SBUF0: Serial (UART0) Port Data Buffer

Bit	7	6	5	4	3	2	1	0
Name		SBUF0[7:0]						
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x99; SFR Page = 0x00

Bit	Name	Function
7:0	SBUF0[7:0]	Serial Data Buffer Bits 7–0 (MSB–LSB).
		This SFR accesses two registers; a transmit shift register and a receive latch register. When data is written to SBUF0, it goes to the transmit shift register and is held for serial transmission. Writing a byte to SBUF0 initiates the transmission. A read of SBUF0 returns the contents of the receive latch.

SFR Definition 24.4. SBCON0: UART0 Baud Rate Generator Control

Bit	7	6	5	4	3	2	1	0
Name	Reserved	SB0RUN	Reserved	Reserved	Reserved	Reserved	SB0P	S[1:0]
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xAB; SFR Page = 0x0F

Bit	Name	Function
7	Reserved	Read = 0b; Must Write 0b;
6	SBORUN	Baud Rate Generator Enable.
		0: Baud Rate Generator disabled. UART0 will not function. 1: Baud Rate Generator enabled.
5:2	Reserved	Read = 0000b; Must Write = 0000b;
1:0	SB0PS[1:0]	
		00: Prescaler = 12. 01: Prescaler = 4. 10: Prescaler = 48. 11: Prescaler = 1.

25.5. Serial Clock Phase and Polarity

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 25.5. For slave mode, the clock and data relationships are shown in Figure 25.6 and Figure 25.7. CKPHA must be set to 0 on both the master and slave SPI when communicating between two of the following devices: C8051F04x, C8051F06x, C8051F12x, C8051F31x, C8051F32x, and C8051F33x.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 25.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency.

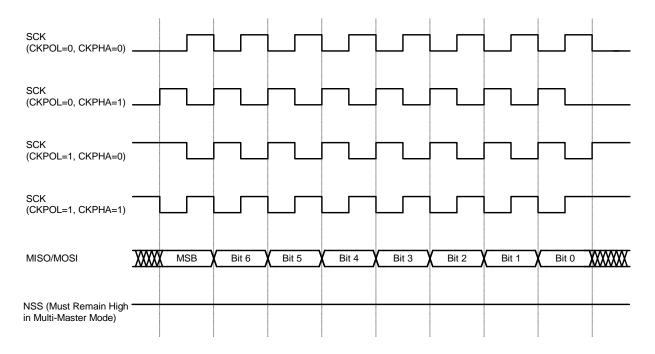


Figure 25.5. Master Mode Data/Clock Timing

Parameter	Description	Min	Max	Units
Master Mod	e Timing [*] (See Figure 25.8 and Figure 25.9))	1	1
т _{мскн}	SCK High Time	1 x T _{SYSCLK}	—	ns
T _{MCKL}	SCK Low Time	1 x T _{SYSCLK}	—	ns
T _{MIS}	MISO Valid to SCK Shift Edge	1 x T _{SYSCLK} + 20	—	ns
Т _{МІН}	SCK Shift Edge to MISO Change	0	—	ns
Slave Mode	Timing [*] (See Figure 25.10 and Figure 25.1	1)		
T _{SE}	NSS Falling to First SCK Edge	2 x T _{SYSCLK}	—	ns
T _{SD}	Last SCK Edge to NSS Rising	2 x T _{SYSCLK}	—	ns
T _{SEZ}	NSS Falling to MISO Valid	_	4 x T _{SYSCLK}	ns
T _{SDZ}	NSS Rising to MISO High-Z		4 x T _{SYSCLK}	ns
т _{скн}	SCK High Time	5 x T _{SYSCLK}	—	ns
Т _{СКL}	SCK Low Time	5 x T _{SYSCLK}	—	ns
T _{SIS}	MOSI Valid to SCK Sample Edge	2 x T _{SYSCLK}	—	ns
T _{SIH}	SCK Sample Edge to MOSI Change	2 x T _{SYSCLK}	—	ns
т _{ѕон}	SCK Shift Edge to MISO Change	—	4 x T _{SYSCLK}	ns
T _{SLH}	Last SCK Edge to MISO Change (CKPHA = 1 ONLY)	6 x T _{SYSCLK}	8 x T _{SYSCLK}	ns
*Note: T _{SYSC}	LK is equal to one period of the device system cl	ock (SYSCLK).		

Table 25.1. SPI Slave Timing Parameters

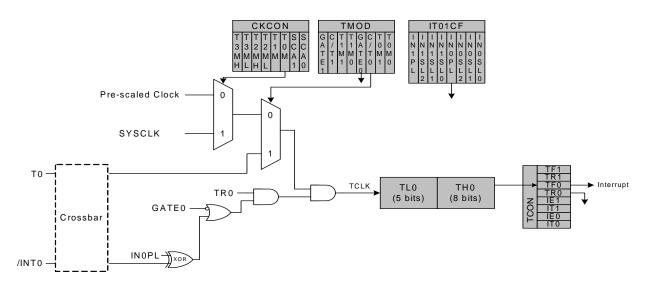


Figure 26.1. T0 Mode 0 Block Diagram

26.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

26.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal INT0 is active as defined by bit INOPL in register IT01CF (see Section "14.3. External Interrupts INT0 and INT1" on page 126 for details on the external input signals INT0 and INT1).

T2MH	T2XCLK	TMR2H Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

T2ML	T2XCLK	TMR2L Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows from 0xFF to 0x00. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is generated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be manually cleared by software.

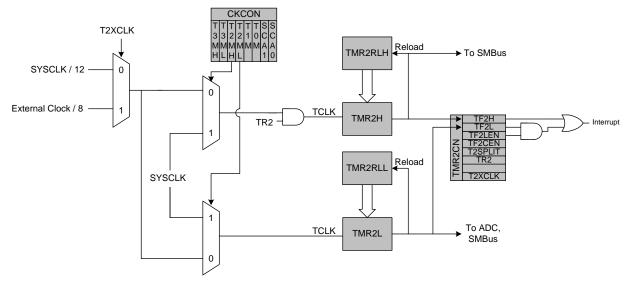


Figure 26.5. Timer 2 8-Bit Mode Block Diagram

26.2.3. External Oscillator Capture Mode

Capture Mode allows the external oscillator to be measured against the system clock. Timer 2 can be clocked from the system clock, or the system clock divided by 12, depending on the T2ML (CKCON.4), and T2XCLK bits. When a capture event is generated, the contents of Timer 2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag is set. A capture event is generated by the falling edge of the clock source being measured, which is the external oscillator / 8. By recording the difference between two successive timer capture values, the external oscillator frequency can be determined with respect to the Timer 2 clock. The Timer 2 clock should be much faster than the capture clock to achieve an accurate reading. Timer 2 should be in 16-bit auto-reload mode when using Capture Mode.

For example, if T2ML = 1b and TF2CEN = 1b, Timer 2 will clock every SYSCLK and capture every external clock divided by 8. If the SYSCLK is 24 MHz and the difference between two successive captures is 5984, then the external clock frequency is as follows:

24 MHz/(5984/8) = 0.032086 MHz or 32.086 kHz

This mode allows software to determine the external oscillator frequency when an RC network or capacitor is used to generate the clock source.

28.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (RST) and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 28.1.

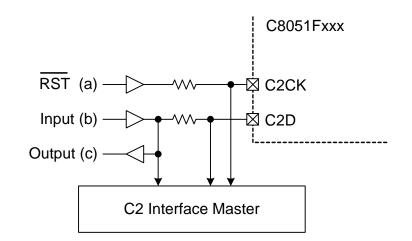


Figure 28.1. Typical C2 Pin Sharing

The configuration in Figure 28.1 assumes the following:

- 1. The user input (b) cannot change state while the target device is halted.
- 2. The $\overline{\text{RST}}$ pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

