

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 25x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f507-im

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Electrical Characteristics

5.1. Absolute Maximum Specifications

Table 5.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Тур	Max	Units	
Ambient Temperature under Bias		-55	_	135	°C	
Storage Temperature		-65	_	150	°C	
Voltage on V _{REGIN} with Respect to GND		-0.3	_	5.5	V	
Voltage on V _{DD} with Respect to GND		-0.3		2.8	V	
Voltage on VDDA with Respect to GND		-0.3		2.8	V	
Voltage on V _{IO} with Respect to GND		-0.3		5.5	V	
Voltage on any Port I/O Pin or \overline{RST} with Respect to GND		-0.3	_	V _{IO} + 0.3	V	
Maximum Total Current through V _{REGIN} or GND			_	500	mA	
Maximum Output Current Sunk by \overline{RST} or any Port Pin		_	_	100	mA	
Maximum Output Current Sourced by any Port Pin			_	100	mA	
Maximum Output Current Sourced by any Port Pin — — 100 mA Note: Stresses outside of the range of the "Absolute Maximum Ratings" may cause permanent damage to the						

ote: Stresses outside of the range of the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

6.5. ADC0 Analog Multiplexer

ADC0 includes an analog multiplexer to enable multiple analog input sources. Any of the following may be selected as an input: P0.0–P3.7, the on-chip temperature sensor, the core power supply (V_{DD}), or ground (GND). **ADC0 is single-ended and all signals measured are with respect to GND.** The ADC0 input channels are selected using the ADC0MX register as described in SFR Definition 6.13.

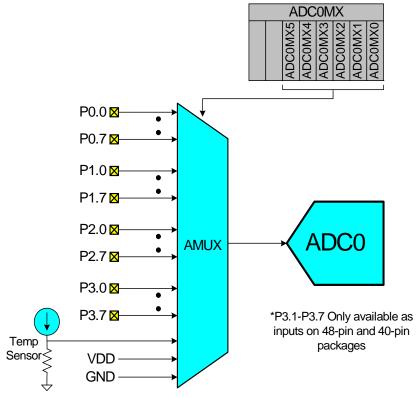


Figure 6.8. ADC0 Multiplexer Block Diagram

Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to 0 the corresponding bit in register PnMDIN. To force the Crossbar to skip a Port pin, set to 1 the corresponding bit in register PnSKIP. See Section "20. Port Input/Output" on page 177 for more Port I/O configuration details.

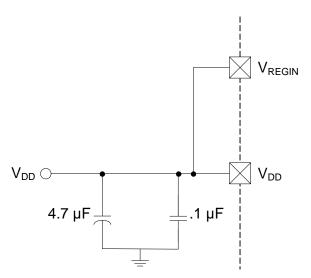


Figure 10.2. External Capacitors for Voltage Regulator Input/Output— Regulator Disabled

SFR Definition 10.1. REG0CN: Regulator Control

Bit	7	6	5	4	3	2	1	0
Name	REGDIS	Reserved		REG0MD				DROPOUT
Туре	R/W	R/W	R	R/W	R	R	R	R
Reset	0	1	0	1	0	0	0	0

SFR Address = 0xC9; SFR Page = 0x00

Bit	Name	Function
7	REGDIS	Voltage Regulator Disable Bit.
		0: Voltage Regulator Enabled 1: Voltage Regulator Disabled
6	Reserved	Read = 1b; Must Write 1b.
5	Unused	Read = 0b; Write = Don't Care.
4	REG0MD	Voltage Regulator Mode Select Bit.
		0: Voltage Regulator Output is 2.1V.
		1: Voltage Regulator Output is 2.6V.
3:1	Unused	Read = 000b. Write = Don't Care.
0	DROPOUT	Voltage Regulator Dropout Indicator.
		0: Voltage Regulator is not in dropout
		1: Voltage Regulator is in or near dropout.

SFR Definition 11.6. PSW: Program Status Word

Bit	7	6	5	4	3	2	1	0
Name	e CY	AC F0 RS[1:0] C			OV	F1	PARITY	
Туре	R/W	R/W R/W R/W			W	R/W	R/W	R
Rese	t 0	0 0 0 0 0 0				0	0	
SFR A	ddress = 0	D0; SFR Page	e = All Pages	: Bit-Addres	sable			
Bit	Name				Function			
7	CY	Carry Flag.						
		This bit is set row (subtraction			•			n) or a bor-
6	AC	Auxiliary Car	ry Flag.					
		borrow from (s	This bit is set when the last arithmetic operation resulted in a carry into (addition) or a porrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arithmetic operations.					
5	F0	User Flag 0.	Jser Flag 0.					
		This is a bit-ad	This is a bit-addressable, general purpose flag for use under software control.					
4:3	RS[1:0]	Register Ban	k Select.					
		These bits sel		-	s used durin	g register ac	cesses.	
		00: Bank 0, A 01: Bank 1, A						
		10: Bank 2, A						
		11: Bank 3, Ao	ddresses 0x	18-0x1F				
2	OV	Overflow Flag	g.					
		This bit is set		-				
		 An ADD, A A MUL ins⁻ 						
		 A MOL INS A DIV instr 			,	•	an 200).	
		The OV bit is			•		d DIV instruc	ctions in all
	-	other cases.						
1	F1	User Flag 1.					4	
		This is a bit-ad	Juressable, (general purp	use hag for	use under so	ntware contr	01.
0	PARITY	Parity Flag.			oight hite in	the accurry	lator is odd a	and closered
		This bit is set t if the sum is e	-		eigni bits in	the accumu	18 000 8	

12. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory organization is shown in Figure 12.1

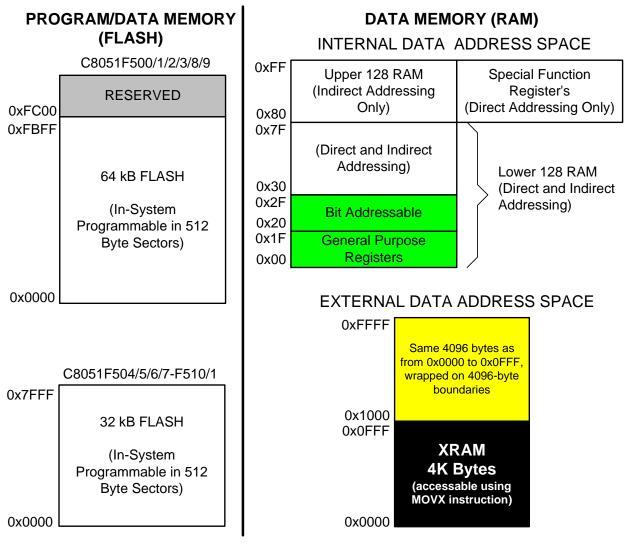


Figure 12.1. C8051F50x/F51x Memory Map

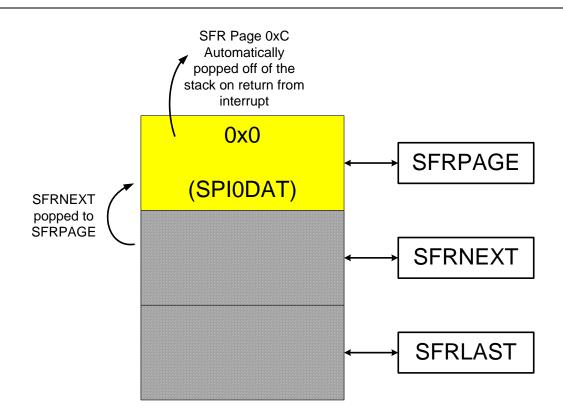


Figure 13.6. SFR Page Stack Upon Return From CAN0 Interrupt

In the example above, all three bytes in the SFR Page Stack are accessible via the SFRPAGE, SFRNEXT, and SFRLAST special function registers. If the stack is altered while servicing an interrupt, it is possible to return to a different SFR Page upon interrupt exit than selected prior to the interrupt call. Direct access to the SFR Page stack can be useful to enable real-time operating systems to control and manage context switching between multiple tasks.

Push operations on the SFR Page Stack only occur on interrupt service, and pop operations only occur on interrupt exit (execution on the RETI instruction). The automatic switching of the SFRPAGE and operation of the SFR Page Stack as described above can be disabled in software by clearing the SFR Automatic Page Enable Bit (SFRPGEN) in the SFR Page Control Register (SFR0CN). See SFR Definition 13.1.

Table 14.1. Interrupt Summary

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag	Bit addressable?	Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	· · · ·
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y	N	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	N	ET2 (IE.5)	PT2 (IP.5)
SPIO	0x0033	6	SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5) RXOVRN (SPI0CN.4)	Y	N	ESPI0 (IE.6)	PSPI0 (IP.6)
SMB0	0x003B	7	SI (SMB0CN.0)	Y	N	ESMB0 (EIE1.0)	PSMB0 (EIP1.0)
ADC0 Window Com- pare	0x0043	8	AD0WINT (ADC0CN.3)	Y	N	EWADC0 (EIE1.1)	PWADC0 (EIP1.1)
ADC0 Conversion Complete	0x004B	9	AD0INT (ADC0CN.5)	Y	N	EADC0 (EIE1.2)	PADC0 (EIP1.2)
Programmable Counter Array	0x0053	10	CF (PCA0CN.7) CCFn (PCA0CN.n) COVF (PCA0PWM.6)	Y	N	EPCA0 (EIE1.3)	PPCA0 (EIP1.3)
Comparator0	0x005B	11	CP0FIF (CPT0CN.4) CP0RIF (CPT0CN.5)	Ν	N	ECP0 (EIE1.4)	PCP0 (EIP1.4)
Comparator1	0x0063	12	CP1FIF (CPT1CN.4) CP1RIF (CPT1CN.5)	Ζ	N	ECP1 (EIE1.5)	PCP1 (EIP1.5)
Timer 3 Overflow	0x006B	13	TF3H (TMR3CN.7) TF3L (TMR3CN.6)	Ν	Ν	ET3 (EIE1.6)	PT3 (EIP1.6)
LINO	0x0073	14	LIN0INT (LINST.3)	Ν	N*	ELIN0 (EIE1.7)	PLIN0 (EIP1.7)
Voltage Regulator Dropout	0x007B	15	N/A	N/A	N/A	EREG0 (EIE2.0)	PREG0 (EIP2.0)
CANO	0x0083	16	CAN0INT (CAN0CN.7)	Ν	Y	ECAN0 (EIE2.1)	PCAN0 (EIP2.1)
Port Match	0x008B	17	None	N/A	N/A	EMAT (EIE2.2)	PMAT (EIP2.2)

SFR Definition 14.7. IT01CF: INT0/INT1 Configuration

Bit	7	6	5	4	3	2	1	0
Name	IN1PL		IN1SL[2:0]		IN0PL		IN0SL[2:0]	
Туре	R/W	R/W			R/W		R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE4; SFR Page = 0x0F

Bit	Name	Function
7	IN1PL	INT1 Polarity. 0: INT1 input is active low. 1: INT1 input is active high.
6:4	IN1SL[2:0]	INT1 Port Pin Selection Bits. These bits select which Port pin is assigned to INT1. Note that this pin assignment is independent of the Crossbar; INT1 will monitor the assigned Port pin without disturb- ing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P1.0 001: Select P1.1 010: Select P1.2 011: Select P1.3 100: Select P1.4 101: Select P1.5 110: Select P1.6 111: Select P1.7
3	IN0PL	INTO Polarity. 0: INTO input is active low. 1: INTO input is active high.
2:0	IN0SL[2:0]	INTO Port Pin Selection Bits. These bits select which Port pin is assigned to INTO. Note that this pin assignment is independent of the Crossbar; INTO will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P1.0 001: Select P1.1 010: Select P1.2 011: Select P1.3 100: Select P1.4 101: Select P1.5 110: Select P1.6 111: Select P1.7

Multiplexed Mode					
Signal Name	Port Pin				
RD	P1.6				
WR	P1.7				
ALE	P1.5				
D0/A0	P4.0				
D1/A1	P4.1				
D2/A2	P4.2				
D3/A3	P4.3				
D4/A4	P4.4				
D5/A5	P4.5				
D6/A6	P4.6				
D7/A7	P4.7				
A8	P3.0				
A9	P3.1				
A10	P3.2				
A11	P3.3				
A12	P3.4				
A13	P3.5				
A14	P3.6				
A15	P3.7				
—	_				
—	—				
—	—				
—	_				
—	_				
—	—				
—	_				

Table 18.1. EMIF Pinout (C8051F500/1/4/5)

Non Multiplexed Mode					
Signal Name	Port Pin				
RD	P1.6				
WR	P1.7				
D0	P4.0				
D1	P4.1				
D2	P4.2				
D3	P4.3				
D4	P4.4				
D5	P4.5				
D6	P4.6				
D7	P4.7				
A0	P3.0				
A1	P3.1				
A2	P3.2				
A3	P3.3				
A4	P3.4				
A5	P3.5				
A6	P3.6				
A7	P3.7				
A8	P2.0				
A9	P2.1				
A10	P2.2				
A11	P2.3				
A12	P2.4				
A13	P2.5				
A14	P2.6				
A15	P2.7				

19. Oscillators and Clock Selection

C8051F50x/F51x devices include a programmable internal high-frequency oscillator, an external oscillator drive circuit, and a clock multiplier. The internal oscillator can be enabled/disabled and calibrated using the OSCICN, OSCICRS, and OSCIFIN registers, as shown in Figure 19.1. The system clock can be sourced by the external oscillator circuit or the internal oscillator. The clock multiplier can produce three possible base outputs which can be scaled by a programmable factor of 1, 2/3, 2/4 (or 1/2), 2/5, 2/6 (or 1/3), or 2/7: Internal Oscillator x 2, Internal Oscillator x 4.

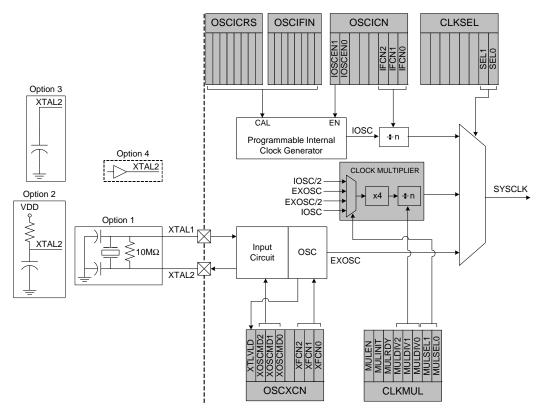


Figure 19.1. Oscillator Options

19.1. System Clock Selection

The CLKSL[1:0] bits in register CLKSEL select which oscillator source is used as the system clock. CLKSL[1:0] must be set to 01b for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator, external oscillator, and Clock Multiplier so long as the selected clock source is enabled and has settled.

The internal oscillator requires little start-up time and may be selected as the system clock immediately following the register write which enables the oscillator. The external RC and C modes also typically require no startup time.

External crystals and ceramic resonators however, typically require a start-up time before they are settled and ready for use. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to 1 by hardware when the external crystal or ceramic resonator is settled. In crystal mode, to avoid reading a false XTLVLD, software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD.

19.2. Programmable Internal Oscillator

All C8051F50x/F51x devices include a programmable internal high-frequency oscillator that defaults as the system clock after a system reset. The internal oscillator period can be adjusted via the OSCICRS and OSCIFIN registers defined in SFR Definition 19.3 and SFR Definition 19.4. On C8051F50x/F51x devices, OSCICRS and OSCIFIN are factory calibrated to obtain a 24 MHz base frequency. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, 8, 16, 32, 64, or 128, as defined by the IFCN bits in register OSCICN. The divide value defaults to 128 following a reset.

19.2.1. Internal Oscillator Suspend Mode

When software writes a logic 1 to SUSPEND (OSCICN.5), the internal oscillator is suspended. If the system clock is derived from the internal oscillator, the input clock to the peripheral or CIP-51 will be stopped until one of the following events occur:

- Port 0 Match Event.
- Port 1 Match Event.
- Port 2 Match Event.
- Port 3 Match Event.
- Comparator 0 enabled and output is logic 0.

When one of the oscillator awakening events occur, the internal oscillator, CIP-51, and affected peripherals resume normal operation, regardless of whether the event also causes an interrupt. The CPU resumes execution at the instruction following the write to SUSPEND.

Note: When entering suspend mode, firmware must set the ZTCEN bit in REF0CN (SFR Definition 8.1).

20.5. Port Match

Port match functionality allows system events to be triggered by a logic value change on P0, P1, P2 or P3. A software controlled value stored in the PnMATCH registers specifies the expected or normal logic values of P0, P1, P2, and P3. A Port mismatch event occurs if the logic levels of the Port's input pins no longer match the software controlled value. This allows Software to be notified if a certain change or pattern occurs on P0, P1, P2, or P3 input pins regardless of the XBRn settings.

The PnMASK registers can be used to individually select which of the port pins should be compared against the PnMATCH registers. A Port mismatch event is generated if (Pn & PnMASK) does not equal (PnMATCH & PnMASK), where n is 0, 1, 2 or 3

A Port mismatch event may be used to generate an interrupt or wake the device from a low power mode, such as IDLE or SUSPEND. See the Interrupts and Power Options chapters for more details on interrupt and wake-up sources.

Bit	7	6	5	4	3	2	1	0	
Nam	e	POMAŠK[7:0]							
Туре	Type R/W								
Rese	et 0	0	0	0	0	0	0	0	
SFR A	Address = 0xF2	; SFR Page	$e = 0 \times 00$						
Bit	Name		Function						
7:0	P0MASK[7:0]	Port 0 M	ask Value.						

SFR Definition 20.4. P0MASK: Port 0 Mask Register

P0MASK[7:0]	Port 0 Mask Value.
	Selects P0 pins to be compared to the corresponding bits in P0MAT.
	0: P0.n pin logic value is ignored and cannot cause a Port Mismatch event.
	1: P0.n pin logic value is compared to P0MAT.n.

SFR Definition 20.5. P0MAT: Port 0 Match Register

Bit	7	6	5	4	3	2	1	0
Name	POMAT[7:0]							
Туре	R/W							
Reset	1 1 1 1 1 1 1 1							

SFR Address = 0xF1; SFR Page = 0x00

Bit	Name	Function
7:0	P0MAT[7:0]	Port 0 Match Value.
		Match comparison value used on Port 0 for bits in P0MAT which are set to 1. 0: P0.n pin logic value is compared with logic LOW. 1: P0.n pin logic value is compared with logic HIGH.

SFR Definition 20.29. P4MDOUT: Port 4 Output Mode

Bit	7	6	5	4	3	2	1	0				
Nam	e	P4MDOUT[7:0]										
Type R/W												
Rese	et 0	0	0	0	0	0	0	0				
SFR A	Address = 0xA	F; SFR Page	e = 0x0F									
Bit	Name	e Function										
7:0	P4MDOUT[7:0] Output Configuration Bits for P4.7–P4.0 (respectively).											
		0: Corresponding P4.n Output is open-drain. 1: Corresponding P4.n Output is push-pull.										

Note: Port 4.0 is only available on the 48-pin and 40-pin packages. P4.1-P4.7 are only available on the 48-pin packages.

LIN Register Definition 21.11. LIN0ID: LIN0 Identifier Register

Bit	7	6	5	4	3	2	1	0		
Name					ID[:	5:0]				
Туре	R	R		R/W						
Reset	et 0 0 0 0 0 0 0				0					

Indirect Address = 0x0E

Bit	Name	Function
7:6	Unused	Read = 00b; Write = Don't Care.
5:0	ID[5:0]	LIN Identifier Bits. These bits form the data identifier. If the LINSIZE bits (LIN0SIZE[3:0]) are 1111b, bits ID[5:4] are used to determine the
		data size and are interpreted as follows: 00: 2 bytes 01: 2 bytes 10: 4 bytes 11: 8 bytes

SFR Definition 22.1. CAN0CFG: CAN Clock Configuration

Bit	7	6	5	4	3	2	1	0	
Name	Unused	Unused	Unused	Unused	Unused	Unused	SYSDIV[1:0]		
Туре	R	R	R	R	R	R	R/	W	
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0x92; SFR Page = 0x0C

Bit	Name	Function
7:2	Unused	Read = 000000b; Write = Don't Care.
1:0	SYSDIV[1:0]	CAN System Clock Divider Bits.
		The CAN controller clock is derived from the CIP-51 system clock. The CAN control- ler clock must be less than or equal to 25 MHz. 00: CAN controller clock = System Clock/1. 01: CAN controller clock = System Clock/2. 10: CAN controller clock = System Clock/4. 11: CAN controller clock = System Clock/8.

	Valu	es F	Rea	ad		Current SMbus State	Typical Response Options	Va Wr	lues ite	sto	s ected
Mode	Status Vector		ACKKG	ARBLOST	ACK			STA	STO	ACK	Next Status Vector Expected
	0100	0		0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	Х	0001
ter		0		0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	Х	0100
ansmitt		0		1	Х	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	Х	0001
Slave Transmitter	0101	0		X	Х	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	Х	—
	0010	1	(0	Х	A slave address + R/W was received; ACK requested.	If Write, Acknowledge received address	0	0	1	0000
							If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
							NACK received address.	0	0	0	—
		1		1	Х	Lost arbitration as master; slave address + R/W received;	If Write, Acknowledge received address	0	0	1	0000
						ACK requested.	If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
							NACK received address.	0	0	0	—
							Reschedule failed transfer; NACK received address.	1	0	0	1110
	0001	0		0	Х	A STOP was detected while addressed as a Slave Trans- mitter or Slave Receiver.	Clear STO.	0	0	Х	
eiver		1		1	Х	Lost arbitration while attempt- ing a STOP.	No action required (transfer complete/aborted).	0	0	0	—
Slave Rece	0000	1	(0	Х	A slave byte was received; ACK requested.	Acknowledge received byte; Read SMB0DAT.	0	0	1	0000
Slav							NACK received byte.	0	0	0	
	0010	0)	1	Х	Lost arbitration while attempt-	Abort failed transfer.	0	0	Х	—
ditic						ing a repeated START.	Reschedule failed transfer.	1	0	Х	1110
Con	0001	0)	1	Х	Lost arbitration due to a	Abort failed transfer.	0	0	Х	—
Bus Error Condition						detected STOP.	Reschedule failed transfer.	1	0	Х	1110
sЦ	0000	1		1	Х	Lost arbitration while transmit-	Abort failed transfer.	0	0	0	—
Bu						ting a data byte as master.	Reschedule failed transfer.	1	0	0	1110

Table 23.4. SMBus Status Decoding

25.5. Serial Clock Phase and Polarity

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 25.5. For slave mode, the clock and data relationships are shown in Figure 25.6 and Figure 25.7. CKPHA must be set to 0 on both the master and slave SPI when communicating between two of the following devices: C8051F04x, C8051F06x, C8051F12x, C8051F31x, C8051F32x, and C8051F33x.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 25.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency.

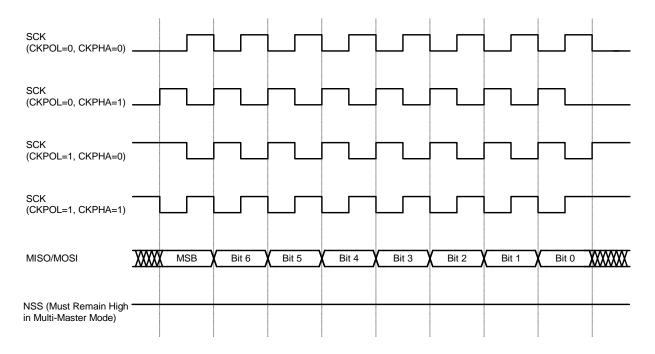


Figure 25.5. Master Mode Data/Clock Timing

SFR Definition 26.1. CKCON: Clock Control

Bit	7	6	5	4	3	2	1	0		
Name	ТЗМН	T3ML	T2MH	T2ML	T1M	ТОМ	SCA[1:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0		

SFR Address = 0x8E; SFR Page = All Pages

Bit	Name	Function
7	ТЗМН	Timer 3 High Byte Clock Select.
		Selects the clock supplied to the Timer 3 high byte (split 8-bit timer mode only). 0: Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN. 1: Timer 3 high byte uses the system clock.
6	T3ML	Timer 3 Low Byte Clock Select.
		 Selects the clock supplied to Timer 3. Selects the clock supplied to the lower 8-bit timer in split 8-bit timer mode. 0: Timer 3 low byte uses the clock defined by the T3XCLK bit in TMR3CN. 1: Timer 3 low byte uses the system clock.
5	T2MH	
5	TZINIT	 Timer 2 High Byte Clock Select. Selects the clock supplied to the Timer 2 high byte (split 8-bit timer mode only). 0: Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN. 1: Timer 2 high byte uses the system clock.
4	T2ML	Timer 2 Low Byte Clock Select.
		 Selects the clock supplied to Timer 2. If Timer 2 is configured in split 8-bit timer mode, this bit selects the clock supplied to the lower 8-bit timer. 0: Timer 2 low byte uses the clock defined by the T2XCLK bit in TMR2CN. 1: Timer 2 low byte uses the system clock.
3	T1	Timer 1 Clock Select.
		Selects the clock source supplied to Timer 1. Ignored when C/T1 is set to 1. 0: Timer 1 uses the clock defined by the prescale bits SCA[1:0]. 1: Timer 1 uses the system clock.
2	Т0	Timer 0 Clock Select.
		Selects the clock source supplied to Timer 0. Ignored when C/T0 is set to 1. 0: Counter/Timer 0 uses the clock defined by the prescale bits SCA[1:0]. 1: Counter/Timer 0 uses the system clock.
1:0	SCA[1:0]	Timer 0/1 Prescale Bits.
		These bits control the Timer 0/1 Clock Prescaler: 00: System clock divided by 12 01: System clock divided by 4 10: System clock divided by 48 11: External clock divided by 8 (synchronized with the system clock)

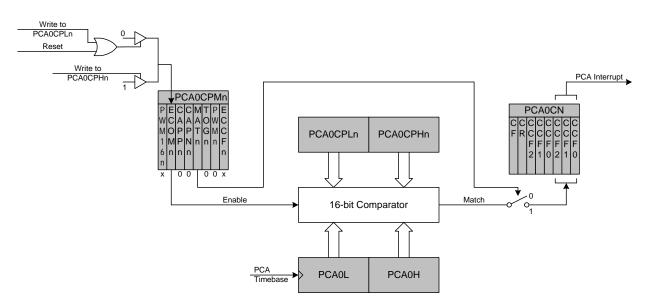


Figure 27.5. PCA Software Timer Mode Diagram

27.3.3. High-Speed Output Mode

In High-Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode. If ECOMn is cleared, the associated pin will retain its state, and not toggle on the next match event.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

27.5. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 27.1. PCA0CN: PCA Control

Bit	7 6		5 4		3 2		1	0	
Name	CF	CR	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0xD8; Bit-Addressable; SFR Page = 0x00

Bit	Name	Function
7	CF	PCA Counter/Timer Overflow Flag.
		Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
6	CR	PCA Counter/Timer Run Control.
		This bit enables/disables the PCA Counter/Timer. 0: PCA Counter/Timer disabled. 1: PCA Counter/Timer enabled.
5	CCF5	PCA Module 5 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF5 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
4	CCF4	PCA Module 4 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF4 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
3	CCF3	PCA Module 3 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF3 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
2	CCF2	PCA Module 2 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF2 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
1	CCF1	PCA Module 1 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
0	CCF0	PCA Module 0 Capture/Compare Flag.
		This bit is set by hardware when a match or capture occurs. When the CCF0 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.

