E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), CANbus, LINbus, SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	33
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.25V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f510-im

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1. System Overview	. 16
2. Ordering Information	. 20
3. Pin Definitions	. 22
4. Package Specifications	. 30
4.1. QFP-48 Package Specifications	. 30
4.2. QFN-48 Package Specifications	. 32
4.3. QFN-40 Package Specifications	. 34
4.4. QFP-32 Package Specifications	. 36
4.5. QFN-32 Package Specifications	. 38
5. Electrical Characteristics	. 40
5.1. Absolute Maximum Specifications	. 40
5.2. Electrical Characteristics	. 41
6. 12-Bit ADC (ADC0)	. 52
6.1. Modes of Operation	. 53
6.1.1. Starting a Conversion	. 53
6.1.2. Tracking Modes	. 53
6.1.3. Timing	. 54
6.1.4. Burst Mode	. 55
6.2. Output Code Formatting	. 57
6.2.1. Settling Time Requirements	. 57
6.3. Selectable Gain	. 58
6.3.1. Calculating the Gain Value	. 58
6.3.2. Setting the Gain Value	. 60
6.4. Programmable Window Detector	. 66
6.4.1. Window Detector In Single-Ended Mode	. 68
6.5. ADC0 Analog Multiplexer	. 70
7. Temperature Sensor	. 72
8. Voltage Reference	. 73
9. Comparators	. 75
9.1. Comparator Multiplexer	. 81
10. Voltage Regulator (REG0)	. 84
11. CIP-51 Microcontroller	. 86
11.1. Performance	. 86
11.2. Instruction Set	. 88
11.2.1. Instruction and CPU Timing	. 88
11.3. CIP-51 Register Descriptions	. 92
11.4. Serial Number Special Function Registers (SFRs)	. 96
12. Memory Organization	. 97
12.1. Program Memory	. 98
12.1.1. MOVX Instruction and Program Memory	. 98
12.2. Data Memory	. 98
12.2.1. Internal RAM	. 98
12.2.1.1. General Purpose Registers	. 99
12.2.1.2. Bit Addressable Locations	. 99

Figure 25.5. Master Made Data/Clack Timing	057
Figure 25.5. Master Mode Data/Clock Timing	257
Figure 25.6. Slave Mode Data/Clock Timing (CKPHA = 0)	258
Figure 25.7. Slave Mode Data/Clock Timing (CKPHA = 1)	258
Figure 25.8. SPI Master Timing (CKPHA = 0)	262
Figure 25.9. SPI Master Timing (CKPHA = 1)	262
Figure 25.10. SPI Slave Timing (CKPHA = 0)	263
Figure 25.11. SPI Slave Timing (CKPHA = 1)	263
Figure 26.1. T0 Mode 0 Block Diagram	268
Figure 26.2. T0 Mode 2 Block Diagram	269
Figure 26.3. T0 Mode 3 Block Diagram	270
Figure 26.4. Timer 2 16-Bit Mode Block Diagram	275
Figure 26.5. Timer 2 8-Bit Mode Block Diagram	276
Figure 26.6. Timer 2 External Oscillator Capture Mode Block Diagram	277
Figure 26.7. Timer 3 16-Bit Mode Block Diagram	281
Figure 26.8. Timer 3 8-Bit Mode Block Diagram	282
Figure 26.9. Timer 3 External Oscillator Capture Mode Block Diagram	283
Figure 27.1. PCA Block Diagram	287
Figure 27.2. PCA Counter/Timer Block Diagram	288
Figure 27.3. PCA Interrupt Block Diagram	289
Figure 27.4. PCA Capture Mode Diagram	291
Figure 27.5. PCA Software Timer Mode Diagram	292
Figure 27.6. PCA High-Speed Output Mode Diagram	293
Figure 27.7. PCA Frequency Output Mode	294
Figure 27.8. PCA 8-Bit PWM Mode Diagram	295
Figure 27.9. PCA 9, 10 and 11-Bit PWM Mode Diagram	296
Figure 27.10. PCA 16-Bit PWM Mode	297
Figure 27.11. PCA Module 2 with Watchdog Timer Enabled	298
Figure 28.1. Typical C2 Pin Sharing	309

SFR Definition 6.9. ADC0GTH: ADC0 Greater-Than Data High Byte

Bit	7	6	5	4	3	2	1	0				
Nam	e	ADC0GTH[7:0]										
Туре	Type R/W											
Rese	et 1	1	1	1	1	1	1	1				
SFR A	Address = 0xC4	4; SFR Page	e = 0x00									
Bit	Name		Function									
7:0	ADC0GTH[7:0	D] ADC0 G	reater-Than	Data Word	High-Order	Bits.	DC0 Greater-Than Data Word High-Order Bits.					

SFR Definition 6.10. ADC0GTL: ADC0 Greater-Than Data Low Byte

Bit	7	6	5	4	3	2	1	0		
Nam	e	ADC0GTL[7:0]								
Туре	R/W									
Rese	et 1	1	1	1	1	1	1	1		
SFR A	Address = 0xC	3; SFR Page	e = 0x00							
Bit	Name		Function							
7:0	ADC0GTL[7:0	D] ADC0 G	ADC0 Greater-Than Data Word Low-Order Bits.							

SFR Definition 6.11. ADC0LTH: ADC0 Less-Than Data High Byte

Bit	7	6	5	4	3	2	1	0		
Nam	e	ADC0LTH[7:0]								
Туре	ype R/W									
Rese	et 0	0	0	0	0	0	0	0		
SFR A	Address = 0xC6	; SFR Page	e = 0x00							
Bit	Name				Function					
7:0	ADC0LTH[7:0]	ADC0 Le	ess-Than Da	ta Word Hig	ah-Order Bi	ts.				

SFR Definition 6.12. ADC0LTL: ADC0 Less-Than Data Low Byte

Bit	7	6	5	4	3	2	1	0	
Name	ADC0LTL[7:0]								
Туре	R/W								
Reset	0	0	0	0	0	0	0	0	
SFR Ad	SFR Address = 0xC5: SFR Page = 0x00								

Bit	Name	Function
7:0	ADC0LTL[7:0]	ADC0 Less-Than Data Word Low-Order Bits.

6.4.1. Window Detector In Single-Ended Mode

Figure 6.6 example data shows two window comparisons for right-justified with ADC0LTH:ADC0LTL = 0x0200 (512d) and ADC0GTH:ADC0GTL = 0x0100 (256d). The input voltage can range from 0 to V_{REF} x (4095/4096) with respect to GND, and is represented by a 12-bit unsigned integer value. The repeat count is set to one. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0100 < ADC0H:ADC0L < 0x0200). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0100 or ADC0H:ADC0L > 0x0200). Figure 6.7 shows an example using left-justified data with the same comparison values.

SFR Definition 9.6. CPT1MX: Comparator1 MUX Selection

Bit	7	6	5	4	3	2	1	0	
Nam	е	CMX1	N[3:0]			CMX1P[3:0]			
Type R/W						R/	W		
Rese	et O	1	1 1 0 1 1						
SFR /	Address = 0x9	F; SFR Page	= 0x00						
Bit	Name	Function							
7:4	CMX1N[3:0]	Comparato	r1 Negative	Input MUX	Selection.				
		0000:	- P0.	1					
		0001:	P0.	3					
		0010:	P0.	5					
		0011:	P0.	7					
		0100:	P1.	1					
		0101:	P1.	3					
		0110: P1.5							
	0111: P1.7								
		1000:	P2.	1					
		1001:	P2.	3					
		1010:	P2.	5					
		1011:	P2.	7					
		1100–1111:	Nor	ne					
3:0	CMX1P[3:0]	Comparato	r1 Positive	Input MUX	Selection.				
		0000:	P0.	0					
		0001:	P0.	2					
		0010:	P0.	4					
		0011:	P0.	6					
		0100:	P1.	0					
		0101:	P1.	2					
		0110:	P1.	4					
		0111:	P1.	6					
		1000:	P2.	0					
		1001:	P2.	2					
		1010:	P2.	4					
		1011:	P2.	6					
		1100–11111:	Nor	ne					

Notes on Registers, Operands and Addressing Modes:

Rn—Register R0–R7 of the currently selected register bank.

@Ri—Data RAM location addressed indirectly through R0 or R1.

rel—8-bit, signed (two's complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct—8-bit internal data location's address. This could be a direct-access Data RAM location (0x00–0x7F) or an SFR (0x80–0xFF).

#data—8-bit constant

#data16—16-bit constant

bit—Direct-accessed bit in Data RAM or SFR

addr11—11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.

addr16—16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 64 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

11.3. CIP-51 Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic I. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

Figure 13.3. SFR Page Stack After CAN0 Interrupt Occurs

While in the CAN0 ISR, a PCA interrupt occurs. Recall the PCA interrupt is configured as a high priority interrupt, while the CAN0 interrupt is configured as a *low* priority interrupt. Thus, the CIP-51 will now vector to the high priority PCA ISR. Upon doing so, the CIP-51 will automatically place the SFR page needed to access the PCA's special function registers into the SFRPAGE register, SFR Page 0x00. The value that was in the SFRPAGE register before the PCA interrupt (SFR Page 0x0C for CAN0) is pushed down the stack into SFRNEXT. Likewise, the value that was in the SFRNEXT register before the PCA interrupt (in this case SFR Page 0x00 for SPI0DAT) is pushed down to the SFRLAST register, the "bottom" of the stack. Note that a value stored in SFRLAST (via a previous software write to the SFRLAST register) will be overwritten. See Figure 13.4.

Table 14.1. Interrupt Summary

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag	Bit addressable?	Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y	N	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	N	ET2 (IE.5)	PT2 (IP.5)
SPI0	0x0033	6	SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5) RXOVRN (SPI0CN.4)	Y	N	ESPI0 (IE.6)	PSPI0 (IP.6)
SMB0	0x003B	7	SI (SMB0CN.0)	Y	N	ESMB0 (EIE1.0)	PSMB0 (EIP1.0)
ADC0 Window Com- pare	0x0043	8	ADOWINT (ADC0CN.3)	Y	N	EWADC0 (EIE1.1)	PWADC0 (EIP1.1)
ADC0 Conversion Complete	0x004B	9	AD0INT (ADC0CN.5)	Y	N	EADC0 (EIE1.2)	PADC0 (EIP1.2)
Programmable Counter Array	0x0053	10	CF (PCA0CN.7) CCFn (PCA0CN.n) COVF (PCA0PWM.6)	Y	N	EPCA0 (EIE1.3)	PPCA0 (EIP1.3)
Comparator0	0x005B	11	CP0FIF (CPT0CN.4) CP0RIF (CPT0CN.5)	N	N	ECP0 (EIE1.4)	PCP0 (EIP1.4)
Comparator1	0x0063	12	CP1FIF (CPT1CN.4) CP1RIF (CPT1CN.5)	N	N	ECP1 (EIE1.5)	PCP1 (EIP1.5)
Timer 3 Overflow	0x006B	13	TF3H (TMR3CN.7) TF3L (TMR3CN.6)	N	N	ET3 (EIE1.6)	PT3 (EIP1.6)
LINO	0x0073	14	LIN0INT (LINST.3)	N	N*	ELIN0 (EIE1.7)	PLIN0 (EIP1.7)
Voltage Regulator Dropout	0x007B	15	N/A	N/A	N/A	EREG0 (EIE2.0)	PREG0 (EIP2.0)
CANO	0x0083	16	CAN0INT (CAN0CN.7)	N	Y	ECAN0 (EIE2.1)	PCAN0 (EIP2.1)
Port Match	0x008B	17	None	N/A	N/A	EMAT (EIE2.2)	PMAT (EIP2.2)
Note: The LIN0INT bit is	cleared by se	tting RSTIN	IT (LINCTRL.3)	•	•		

Figure 18.5. Non-multiplexed 8-bit MOVX without Bank Select Timing

20.1. Port I/O Modes of Operation

Port pins P0.0–P4.7 use the Port I/O cell shown in Figure 20.2. Each Port I/O cell can be configured by software for analog I/O or digital I/O using the PnMDIN registers. On reset, all Port I/O cells default to a high impedance state with weak pull-ups enabled until the Crossbar is enabled (XBARE = 1).

20.1.1. Port Pins Configured for Analog I/O

Any pins to be used as Comparator or ADC inputs, external oscillator inputs, or VREF should be configured for analog I/O (PnMDIN.n = 0). When a pin is configured for analog I/O, its weak pullup, digital driver, and digital receiver are disabled. Port pins configured for analog I/O will always read back a value of 0.

Configuring pins as analog I/O saves power and isolates the Port pin from digital interference. Port pins configured as digital inputs may still be used by analog peripherals; however, this practice is not recommended and may result in measurement errors.

20.1.2. Port Pins Configured For Digital I/O

Any pins to be used by digital peripherals (UART, SPI, SMBus, etc.), external digital event capture functions, or as GPIO should be configured as digital I/O (PnMDIN.n = 1). For digital I/O pins, one of two output modes (push-pull or open-drain) must be selected using the PnMDOUT registers.

Push-pull outputs (PnMDOUT.n = 1) drive the Port pad to the VIO or GND supply rails based on the output logic value of the Port pin. Open-drain outputs have the high side driver disabled; therefore, they only drive the Port pad to GND when the output logic value is 0 and become high impedance inputs (both high low drivers turned off) when the output logic value is 1.

When a digital I/O cell is placed in the high impedance state, a weak pull-up transistor pulls the Port pad to the VIO supply voltage to ensure the digital input is at a defined logic state. Weak pull-ups are disabled when the I/O cell is driven to GND to minimize power consumption and may be globally disabled by setting WEAKPUD to 1. The user should ensure that digital I/O are always internally or externally pulled or driven to a valid logic state to minimize power consumption. Port pins configured for digital I/O always read back the logic state of the Port pad, regardless of the output logic value of the Port pin.

20.1.3. Interfacing Port I/O in a Multi-Voltage System

All Port I/O are capable of interfacing to digital logic operating at a supply voltage higher than VDD and less than 5.25 V. Connect the VIO pin to the voltage source of the interface logic.

20.2. Assigning Port I/O Pins to Analog and Digital Functions

Port I/O pins P0.0–P3.7 can be assigned to various analog, digital, and external interrupt functions. P4.0-P4.7 can be assigned to only digital functions. The Port pins assigned to analog functions should be configured for analog I/O, and Port pins assigned to digital or external interrupt functions should be configured for digital I/O.

20.2.1. Assigning Port I/O Pins to Analog Functions

Table 20.1 shows all available analog functions that require Port I/O assignments. **Port pins selected for these analog functions should have their corresponding bit in PnSKIP set to 1.** This reserves the pin for use by the analog function and does not allow it to be claimed by the Crossbar. Table 20.1 shows the potential mapping of Port I/O to each analog function.

Analog Function	Potentially Assignable Port Pins	SFR(s) used for Assignment				
ADC Input	P0.0–P3.7*	ADC0MX, PnSKIP				
Comparator0 or Compartor1 Input	P0.0-P2.7	CPT0MX, CPT1MX, PnSKIP				
Voltage Reference (VREF0)	P0.0	REF0CN, PnSKIP				
External Oscillator in Crystal Mode (XTAL1)	P0.2	OSCXCN, PnSKIP				
External Oscillator in RC, C, or Crystal Mode (XTAL2)	P0.3	OSCXCN, PnSKIP				
*Note: P3.1–P3.7 are only available on the 48-pin and 40-pin packages						

Table 20.1. Port I/O Assignment for Analog Functions

20.2.2. Assigning Port I/O Pins to Digital Functions

Any Port pins not assigned to analog functions may be assigned to digital functions or used as GPIO. Most digital functions rely on the Crossbar for pin assignment; however, some digital functions bypass the Crossbar in a manner similar to the analog functions listed above. **Port pins used by these digital func-tions and any Port pins selected for use as GPIO should have their corresponding bit in PnSKIP set to 1.** Table 20.2 shows all available digital functions and the potential mapping of Port I/O to each digital function.

Table 20.2	. Port I/O	Assignment	for Digita	I Functions
-------------------	------------	------------	------------	-------------

Digital Function	Potentially Assignable Port Pins	SFR(s) used for Assignment						
UART0, SPI0, SMBus, CAN0, LIN0, CP0, CP0A, CP1, CP1A, SYSCLK, PCA0 (CEX0-5 and ECI), T0 or T1.	 Any Port pin available for assignment by the Crossbar. This includes P0.0–P4.7* pins which have their PnSKIP bit set to 0. Note: The Crossbar will always assign UART0 pins to P0.4 and P0.5 and always assign CAN0 to P0.6 and P0.7. 	XBR0, XBR1, XBR2						
Any pin used for GPIO	P0.0–P4.7*	P0SKIP, P1SKIP, P2SKIP, P3SKIP						
*Note: P3.1–P3.7 and P4.0 are the 48-pin package. A ski	*Note: P3.1–P3.7 and P4.0 are only available on the 48-pin and 40pin packages. P4.1–P4.7 are only available on the 48-pin package. A skip register is not available for P4.							

SFR Definition 21.3. LIN0CF: LIN0 Control Mode Register

		-	-					
Bit	7	6	5	4	3	2	1	0
Name	LINEN	MODE	ABAUD					
Туре	R/W	R/W	R/W	R	R	R	R	R
Reset	0	1	1	0	0	0	0	0

SFR Address = 0xC9; SFR Page = 0x0F

Bit	Name	Function
7	LINEN	LIN Interface Enable Bit.
		0: LIN0 is disabled. 1: LIN0 is enabled.
6	MODE	LIN Mode Selection Bit.
		0: LIN0 operates in slave mode.
		1: LIN0 operates in master mode.
5	ABAUD	LIN Mode Automatic Baud Rate Selection.
		This bit only has an effect when the MODE bit is configured for slave mode.
		0: Manual baud rate selection is enabled.
		1: Automatic baud rate selection is enabled.
4:0	Unused	Read = 00000b; Write = Don't Care

22.2.4. CAN Register Assignment

The standard Bosch CAN registers are mapped to SFR space as shown below and their full definitions are available in the CAN User's Guide. The name shown in the Name column matches what is provided in the CAN User's Guide. One additional SFR which is not a standard Bosch CAN register, CAN0CFG, is provided to configure the CAN clock. All CAN registers are located on SFR Page 0x0C.

CAN	Name	SFR Name	SFR	SFR Name	SFR	16-bit	Reset
Addr.		(High)	Addr.	(Low)	Addr.	SFR	Value
0x00	CAN Control Register	_	—	CAN0CN	0xC0	—	0x01
0x02	Status Register	_	—	CAN0STAT	0x94	—	0x00
0x04	Error Counter ¹	CAN0ERRH	0x97	CAN0ERRL	0x96	CAN0ERR	0x0000
0x06	Bit Timing Register ²	CAN0BTH	0x9B	CAN0BTL	0x9A	CAN0BT	0x2301
0x08	Interrupt Register ¹	CAN0IIDH	0x9D	CAN0IIDL	0x9C	CAN0IID	0x0000
0x0A	Test Register	_	—	CAN0TST	0x9E	—	0x00 ^{3,4}
0x0C	BRP Extension Register ²	_	—	CAN0BRPE	0xA1	—	0x00
0x10	IF1 Command Request	CAN0IF1CRH	0xBF	CAN0IF1CRL	0xBE	CAN0IF1CR	0x0001
0x12	IF1 Command Mask	CAN0IF1CMH	0xC3	CAN0IF1CML	0xC2	CAN0IF1CM	0x0000
0x14	IF1 Mask 1	CAN0IF1M1H	0xC5	CAN0IF1M1L	0xC4	CAN0IF1M1	0xFFFF
0x16	IF1 Mask 2	CAN0IF1M2H	0xC7	CAN0IF1M2L	0xC6	CAN0IF1M2	0xFFFF
0x18	IF1 Arbitration 1	CAN0IF1A1H	0xCB	CAN0IF1A1L	0xCA	CAN0IF1A1	0x0000
0x1A	IF1 Arbitration 2	CAN0IF1A2H	0xCD	CAN0IF1A2L	0xCC	CAN0IF1A2	0x0000
0x1C	IF1 Message Control	CAN0IF1MCH	0xD3	CAN0IF1MCL	0xD2	CAN0IF1MC	0x0000
0x1E	IF1 Data A 1	CAN0IF1DA1H	0xD5	CAN0IF1DA1L	0xD4	CAN0IF1DA1	0x0000
0x20	IF1 Data A 2	CAN0IF1DA2H	0xD7	CAN0IF1DA2L	0xD6	CAN0IF1DA2	0x0000
0x22	IF1 Data B 1	CAN0IF1DB1H	0xDB	CAN0IF1DB1L	0xDA	CAN0IF1DB1	0x0000
0x24	IF1 Data B 2	CAN0IF1DB2H	0xDD	CAN0IF1DB2L	0xDC	CAN0IF1DB2	0x0000
0x40	IF2 Command Request	CAN0IF2CRH	0xDF	CAN0IF2CRL	0xDE	CAN0IF2CR	0x0001
0x42	IF2 Command Mask	CAN0IF2CMH	0xE3	CAN0IF2CML	0xE2	CAN0IF2CM	0x0000
0x44	IF2 Mask 1	CAN0IF2M1H	0xEB	CAN0IF2M1L	0xEA	CAN0IF2M1	0xFFFF
0x46	IF2 Mask 2	CAN0IF2M2H	0xED	CAN0IF2M2L	0xEC	CAN0IF2M2	0xFFFF
0x48	IF2 Arbitration 1	CAN0IF2A1H	0xEF	CAN0IF2A1L	0xEE	CAN0IF2A1	0x0000
0x4A	IF2 Arbitration 2	CAN0IF2A2H	0xF3	CAN0IF2A2L	0xF2	CAN0IF2A2	0x0000
0x4C	IF2 Message Control	CAN0IF2MCH	0xCF	CAN0IF2MCL	0xCE	CAN0IF2MC	0x0000
0x4E	IF2 Data A 1	CAN0IF2DA1H	0xF7	CAN0IF2DA1L	0xF6	CAN0IF2DA1	0x0000

Notes:

1. Read-only register.

2. Write-enabled by CCE.

3. The reset value of CAN0TST could also be r0000000b, where r signifies the value of the CAN RX pin.

4. Write-enabled by Test.

SFR Definition 23.1. SMB0CF: SMBus Clock/Configuration

Bit	7	6	5	4	3	2	1	0		
Name	ENSMB	INH	BUSY	EXTHOLD	SMBTOE	SMBFTE	SMBC	SMBCS[1:0]		
Туре	R/W	R/W	R	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0		

SFR Address = 0xC1; SFR Page = 0x00

Bit	Name	Function
7	ENSMB	SMBus Enable.
		This bit enables the SMBus interface when set to 1. When enabled, the interface constantly monitors the SDA and SCL pins.
6	INH	SMBus Slave Inhibit.
		When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected.
5	BUSY	SMBus Busy Indicator.
		This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free-timeout is sensed.
4	EXTHOLD	SMBus Setup and Hold Time Extension Enable.
		This bit controls the SDA setup and hold times according to Table 23.2.
		0: SDA Extended Setup and Hold Times disabled.
2	SMRTOE	SMBus SCI Timoout Detection Enable
3	SIVIDIOE	This bit enables SCL low timeout detection. If set to logic 1, the SMBus forces
		Timer 3 to reload while SCL is high and allows Timer 3 to count when SCL goes low. If Timer 3 is configured to Split Mode, only the High Byte of the timer is held in reload while SCL is high. Timer 3 should be programmed to generate interrupts at 25 ms, and the Timer 3 interrupt service routine should reset SMBus communication.
2	SMBFTE	SMBus Free Timeout Detection Enable.
		When this bit is set to logic 1, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods.
1:0	SMBCS[1:0]	SMBus Clock Source Selection.
		These two bits select the SMBus clock source, which is used to generate the SMBus bit rate. The selected device should be configured according to Equation 23.1. 00: Timer 0 Overflow 01: Timer 1 Overflow 10: Timer 2 High Byte Overflow 11: Timer 2 Low Byte Overflow

23.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will be a receiver during the address byte, and a transmitter during all data bytes. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. Upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. The interrupt will occur after the ACK cycle.

If the received slave address is ignored, slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are transmitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmitted. The interface enters Slave Transmitter Mode, and transmits one or more bytes of data. After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to before SI is cleared (Note: an error condition may be generated if SMB0DAT is written following a received NACK while in Slave Transmitter Mode). The interface exits Slave Transmitter Mode after receiving a STOP. Note that the interface will switch to Slave Receiver Mode if SMB0DAT is not written following a Slave Transmitter interrupt. Figure 23.8 shows a typical slave read sequence. Two transmitted data bytes are shown, though any number of bytes may be transmitted. Notice that all of the 'data byte transferred' interrupts occur **after** the ACK cycle in this mode.

23.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. In the tables, STATUS VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typical responses; application-specific procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

	Values	s Re	ead		Current SMbus State	Typical Response Options	Val Wr	lues ite	sto	s ected
Mode	Status Vector	ACKRQ	ARBLOST	ACK			STA	STO	ACK	Next Status Vector Exp
	1110	0	0	Х	A master START was gener- ated.	Load slave address + R/W into SMB0DAT.	0	0	Х	1100
	1100	0	0	0	A master data or address byte	Set STA to restart transfer.	1	0	Х	1110
					received.	Abort transfer.	0	1	Х	—
		0	0	1	A master data or address byte was transmitted; ACK	Load next data byte into SMB0DAT.	0	0	Х	1100
					received.	End transfer with STOP.	0	1	Х	—
nsmitter						End transfer with STOP and start another transfer.	1	1	Х	
rans	Send repeated START.		1	0	Х	1110				
Master T						Switch to Master Receiver Mode (clear SI without writing new data to SMB0DAT).	0	0	Х	1000
	1000	1	0	Х	A master data byte was received; ACK requested.	Acknowledge received byte; Read SMB0DAT.	0	0	1	1000
						Send NACK to indicate last byte, and send STOP.	0	1	0	
						Send NACK to indicate last byte, and send STOP followed by START.	1	1	0	1110
						Send ACK followed by repeated START.	1	0	1	1110
					Send NACK to indicate last byte, and send repeated START.	1	0	0	1110	
eceiver						Send ACK and switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	1	1100
Master R						Send NACK and switch to Mas- ter Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	0	1100

Table 23.4. SMBus Status Decoding

	Values	s Re	ead		Current SMbus State	Typical Response Options	Val Wr	lues ite	sto	s ected
Mode	Status Vector	ACKRQ	ARBLOST	ACK			STA	STO	ACK	Next Status Vector Exp
	0100	0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	Х	0001
ter		0	0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	Х	0100
ansmit		0	1	Х	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	Х	0001
Slave Tra	0101	0	Х	Х	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	Х	
	0010	1	0	Х	A slave address + R/W was received; ACK requested.	If Write, Acknowledge received address	0	0	1	0000
						If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
						NACK received address.	0	0	0	_
		1	1	Х	Lost arbitration as master; slave address + R/W received;	If Write, Acknowledge received address	0	0	1	0000
					ACK requested.	If Read, Load SMB0DAT with data byte; ACK received address	0	0	1	0100
						NACK received address.	0	0	0	—
						Reschedule failed transfer; NACK received address.	1	0	0	1110
	0001	0	0	Х	A STOP was detected while addressed as a Slave Trans- mitter or Slave Receiver.	Clear STO.	0	0	Х	
ceiver		1	1	Х	Lost arbitration while attempt- ing a STOP.	No action required (transfer complete/aborted).	0	0	0	—
ve Rec	0000	1	0	Х	A slave byte was received; ACK requested.	Acknowledge received byte; Read SMB0DAT.	0	0	1	0000
Sla						NACK received byte.	0	0	0	_
u	0010	0	1	Х	Lost arbitration while attempt-	Abort failed transfer.	0	0	Х	—
Iditic					ing a repeated START.	Reschedule failed transfer.	1	0	Х	1110
Con	0001	0	1	Х	Lost arbitration due to a	Abort failed transfer.	0	0	Х	—
ror					aetected STOP.	Reschedule failed transfer.	1	0	Х	1110
s	0000	1	1	Х	Lost arbitration while transmit-	Abort failed transfer.	0	0	0	—
Bu:					ting a data byte as master.	Reschedule failed transfer.	1	0	0	1110

Table 23.4. SMBus Status Decoding

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 25.9. SPI Master Timing (CKPHA = 1)

SFR Definition 26.13. TMR3CN: Timer 3 Control

Bit	7	6	5	4	3	2	1	0
Name	TF3H	TF3L	TF3LEN	TF3CEN	T3SPLIT	TR3		T3XCLK
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x91; SFR Page = 0x00

Bit	Name	Function
7	TF3H	Timer 3 High Byte Overflow Flag.
		Set by hardware when the Timer 3 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 3 overflows from 0xFFFF to 0x0000. When the Timer 3 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 3 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF3L	Timer 3 Low Byte Overflow Flag.
		Set by hardware when the Timer 3 low byte overflows from 0xFF to 0x00. TF3L will be set when the low byte overflows regardless of the Timer 3 mode. This bit is not automatically cleared by hardware.
5	TF3LEN	Timer 3 Low Byte Interrupt Enable.
		When set to 1, this bit enables Timer 3 Low Byte interrupts. If Timer 3 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 3 overflows.
4	TF3CEN	Timer 3 Capture Mode Enable.
		0: Timer 3 Capture Mode is disabled.
		1: Timer 3 Capture Mode is enabled.
3	T3SPLIT	Timer 3 Split Mode Enable.
		When this bit is set, Timer 3 operates as two 8-bit timers with auto-reload.
		0: Timer 3 operates in 16-bit auto-reload mode.
2	TD2	Timor 2 Pup Control
2	163	Timer 2 is applied by setting this bit to 1. In 8 bit made, this bit applies/display
		TMR3H only; TMR3L is always enabled in split mode.
1	Unused	Read = 0b; Write = Don't Care
0	T3XCLK	Timer 3 External Clock Select.
		This bit selects the external clock source for Timer 3. If Timer 3 is in 8-bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 3 Clock Select bits (T3MH and T3ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0: Timer 3 clock is the system clock divided by 12. 1: Timer 3 clock is the external clock divided by 8 (synchronized with SYSCLK).

Rev. 1.2

SFR Definition 27.7. PCA0CPLn: PCA Capture Module Low Byte

Bit	7	6	5	4	3	2	1	0
Name				PCA0C	Pn[7:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA0CPL0 = 0xFB, PCA0CPL1 = 0xE9, PCA0CPL2 = 0xEB, PCA0CPL3 = 0xED, PCA0CPL4 = 0xFD, PCA0CPL5 = 0xCE; SFR Page (all registers) = 0x00

Bit	Name	Function				
7:0	PCA0CPn[7:0]	PCA Capture Module Low Byte.				
		The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n. This register address also allows access to the low byte of the corresponding PCA channel's auto-reload value for 9, 10, or 11-bit PWM mode. The ARSEL bit in register PCA0PWM controls which register is accessed.				
Note:	Note: A write to this register will clear the module's ECOMn bit to a 0.					

SFR Definition 27.8. PCA0CPHn: PCA Capture Module High Byte

Bit	7	6	5	4	3	2	1	0
Name	PCA0CPn[15:8]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA0CPH0 = 0xFC, PCA0CPH1 = 0xEA, PCA0CPH2 = 0xEC, PCA0CPH3 = 0xEE, PCA0CPH4 = 0xFE, PCA0CPH5 = 0xCF; SFR Page (all registers) = 0x00

Bit	Name	Function				
7:0	PCA0CPn[15:8]	PCA Capture Module High Byte.				
		The PCA0CPHn register holds the high byte (MSB) of the 16-bit capture module n. This register address also allows access to the high byte of the corresponding PCA channel's auto-reload value for 9, 10, or 11-bit PWM mode. The ARSEL bit in register PCA0PWM controls which register is accessed.				
Note	Note: A write to this register will set the module's ECOMn bit to a 1.					

