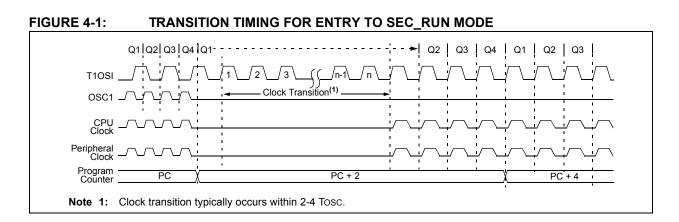
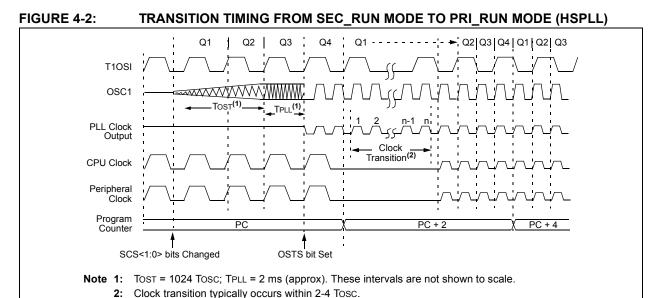
Microchip Technology - PIC18F2221-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2221-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

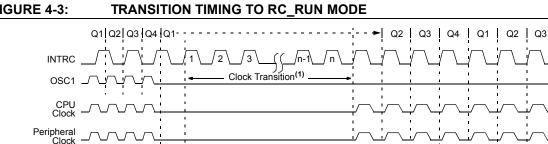
4.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer. In this mode, the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either INTRC or INTOSC), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended. This mode is entered by setting the SCS1 bit to '1'. Although it is ignored, it is recommended that the SCS0 bit also be cleared; this is to maintain software compatibility with future devices. When the clock source is switched to the INTOSC multiplexer (see Figure 4-3), the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed.

Note:	Caution should be used when modifying a										
	single IRCF bit. If VDD is less than 3V, it is										
	possible to select a higher clock speed										
	than is supported by the low VDD.										
	Improper device operation may result if										
	the VDD/FOSC specifications are violated.										

© 2009 Microchip Technology Inc.


If the IRCF bits and the INTSRC bit are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear; there will be no indication of the current clock source. The INTRC source is providing the device clocks.

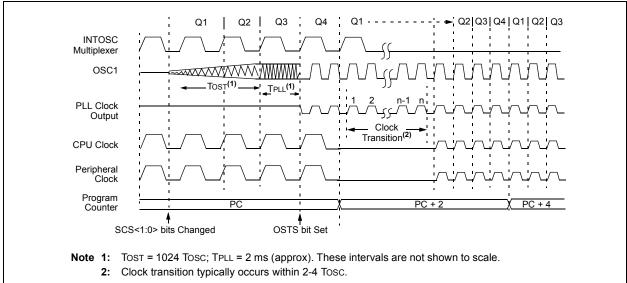
If the IRCF bits are changed from all clear (thus, enabling the INTOSC output) or if INTSRC is set, the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the device continue while the INTOSC source stabilizes after an interval of TIOBST (parameter 39, Table 27-10).

If the IRCF bits were previously at a non-zero value, or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the IOFS bit will remain set.

On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

PC + 4

FIGURE 4-3:


Note 1: Clock transition typically occurs within 2-4 Tosc.

Program Counter

PC

FIGURE 4-4: TRANSITION TIMING FROM RC RUN MODE TO PRI RUN MODE

PC + 2

REGISTER 7-1:	EECON1:	DATA EEF	ROM CO	NTROL RE	GISTER 1				
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0	
	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	
	bit 7				· · · · ·			bit 0	
bit 7	EEPGD: FI	lash Prograr	n or Data E	EPROM Mei	mory Select	bit			
	1 = Access	s Flash prog s data EEPF	ram memor	тy	2				
bit 6	CFGS: Flag	sh Program/	Data EEPR	OM or Confi	iguration Sel	lect bit			
		s Configurat s Flash prog	•	s I EEPROM n	nemory				
bit 5	Unimplem	ented: Read	d as '0'						
bit 4	 FREE: Flash Row Erase Enable bit 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write-only 								
bit 3	1 = A write normal	e operation i	s premature or an improj	PROM Error ely terminate per write atte	d (any Rese	t during selt	f-timed prog	ramming in	
	Note:			rs, the EEPO he error con		S bits are n	ot cleared.		
bit 2	1 = Allows	write cycles	s to Flash pr	ROM Write E rogram/data rogram/data	EEPROM				
bit 1	WR: Write	Control bit							
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase/write cycle. (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle to the EEPROM is complete 								
bit 0	RD: Read (Control bit							
	 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.) 0 = Does not initiate an EEPROM read 								
	Legend:								
	R = Reada	ble bit	W = M	/ritable bit					
				not cleared	U = Unim	plemented	bit, read as	ʻ0'	
							,		

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

8.5 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 24.0 "Special Features of the CPU" for additional information.

8.6 Protection Against Spurious Write

To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33).

The write initiate sequence and the WREN bit together help prevent an accidental write during Brown-out Reset, power glitch or software malfunction.

8.7 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing data. Such data is typically updated at least one time within the number of writes defined by specification, D124. If any location storing data is not written at least this often, the data EEPROM array must be refreshed. For this reason, values that change infrequently, or not at all, should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 8-3.

Note: If data EEPROM is only used to store constants and/or data that changes often, an array refresh is likely not required. See specification, D124.

EXAMPLE 8-3:	DATA EEPROM REFRESH ROUTINE
--------------	-----------------------------

		DATA EEL KG	
	CLRF	EEADR	; Start at address 0
	BCF	EECON1, CFGS	; Set for memory
	BCF	EECON1, EEPGD	; Set for Data EEPROM
	BCF	INTCON, GIE	; Disable interrupts
	BSF	EECON1, WREN	; Enable writes
LOOP			; Loop to refresh array
	BSF	EECON1, RD	; Read current address
	MOVLW	55h	;
	MOVWF	EECON2	; Write 55h
	MOVLW	0AAh	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete
	BRA	\$-2	
	INCFSZ	EEADR, F	; Increment address
	BRA	LOOP	; Not zero, do it again
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts
1			

12.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS<2:0> bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256 in power-of-2 increments are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0 will clear the prescaler
	count but will not change the prescaler
	assignment.

12.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

12.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before reenabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

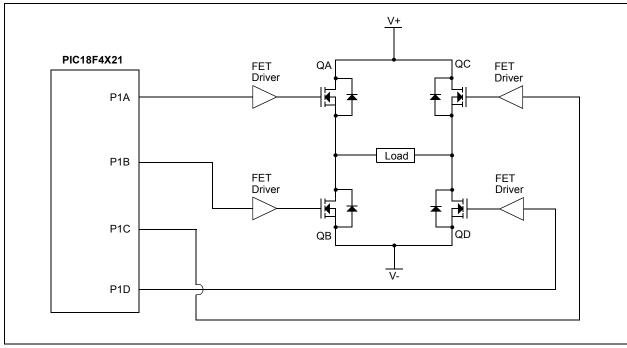

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page			
TMR0L	Timer0 Reg	Timer0 Register Low Byte										
TMR0H	Timer0 Reg	ister High By	/te						56			
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55			
TOCON	TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0											
TRISA	RA7 ⁽¹⁾ RA6 ⁽¹⁾ RA5 RA4 RA3 RA2 RA1 RA0								58			

 TABLE 12-1:
 REGISTERS ASSOCIATED WITH TIMER0

Legend: Shaded cells are not used by Timer0.

Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

NOTES:

FIGURE 17-7: EXAMPLE OF FULL-BRIDGE APPLICATION

17.4.5.1 Direction Change in Full-Bridge Mode

In the Full-Bridge Output mode, the P1M1 bit in the CCP1CON register allows user to control the forward/ reverse direction. When the application firmware changes this direction control bit, the module will assume the new direction on the next PWM cycle.

Just before the end of the current PWM period, the modulated outputs (P1B and P1D) are placed in their inactive state, while the unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. This occurs in a time interval of 4 Tosc * (Timer2 Prescale Value) before the next PWM period begins. The Timer2 prescaler will be either 1, 4 or 16, depending on the value of the T2CKPS<1:0> bits (T2CON<1:0>). During the interval from the switch of the unmodulated outputs to the beginning of the next period, the modulated outputs (P1B and P1D) remain inactive. This relationship is shown in Figure 17-8.

Note that in the Full-Bridge Output mode, the ECCP1 module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

Figure 17-9 shows an example where the PWM direction changes from forward to reverse at a near 100% duty cycle. At time t1, the outputs P1A and P1D become inactive, while output P1C becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current may flow through power devices, QC and QD (see Figure 17-7), for the duration of 't'. The same phenomenon will occur to power devices, QA and QB, for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met:

- 1. Reduce PWM for a PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

17.4.9 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the ECCP module for PWM operation:

- 1. Configure the PWM pins, P1A and P1B (and P1C and P1D, if used), as inputs by setting the corresponding TRIS bits.
- 2. Set the PWM period by loading the PR2 register.
- 3. If auto-shutdown is required, do the following:
 - Disable auto-shutdown (ECCPASE = 0)
 - Configure source (FLT0, Comparator 1 or Comparator 2)
 - Wait for non-shutdown condition
- Configure the ECCP module for the desired PWM mode and configuration by loading the CCP1CON register with the appropriate values:
 - Select one of the available output configurations and direction with the P1M<1:0 bits.
 - Select the polarities of the PWM output signals with the CCP1M<3:0> bits.
- 5. Set the PWM duty cycle by loading the CCPR1L register and CCP1CON<5:4> bits.
- 6. For Half-Bridge Output mode, set the deadband delay by loading ECCP1DEL<6:0> with the appropriate value.
- 7. If auto-shutdown operation is required, load the ECCP1AS register:
 - Select the auto-shutdown sources using the ECCPAS<2:0> bits.
 - Select the shutdown states of the PWM output pins using the PSSAC<1:0> and PSSBD<1:0> bits.
 - Set the ECCPASE bit (ECCP1AS<7>).
 - Configure the comparators using the CMCON register.
 - Configure the comparator inputs as analog inputs.
- 8. If auto-restart operation is required, set the PRSEN bit (ECCP1DEL<7>).
- 9. Configure and start TMR2:
 - Clear the TMR2 interrupt flag bit by clearing the TMR2IF bit (PIR1<1>).
 - Set the TMR2 prescale value by loading the T2CKPS bits (T2CON<1:0>).
 - Enable Timer2 by setting the TMR2ON bit (T2CON<2>).
- 10. Enable PWM outputs after a new PWM cycle has started:
 - Wait until TMRx overflows (TMRxIF bit is set).
 - Enable the CCP1/P1A, P1B, P1C and/or P1D pin outputs by clearing the respective TRIS bits.
 - Clear the ECCPASE bit (ECCP1AS<7>).

17.4.10 OPERATION IN POWER-MANAGED MODES

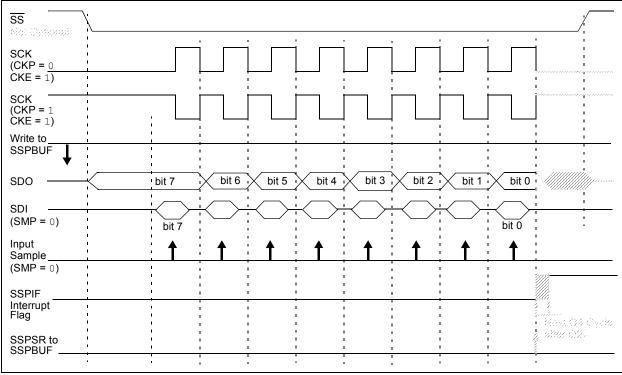
In Sleep mode, all clock sources are disabled. Timer2 will not increment and the state of the module will not change. If the ECCP pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. If Two-Speed Start-ups are enabled, the initial start-up frequency from INTOSC and the postscaler may not be stable immediately.

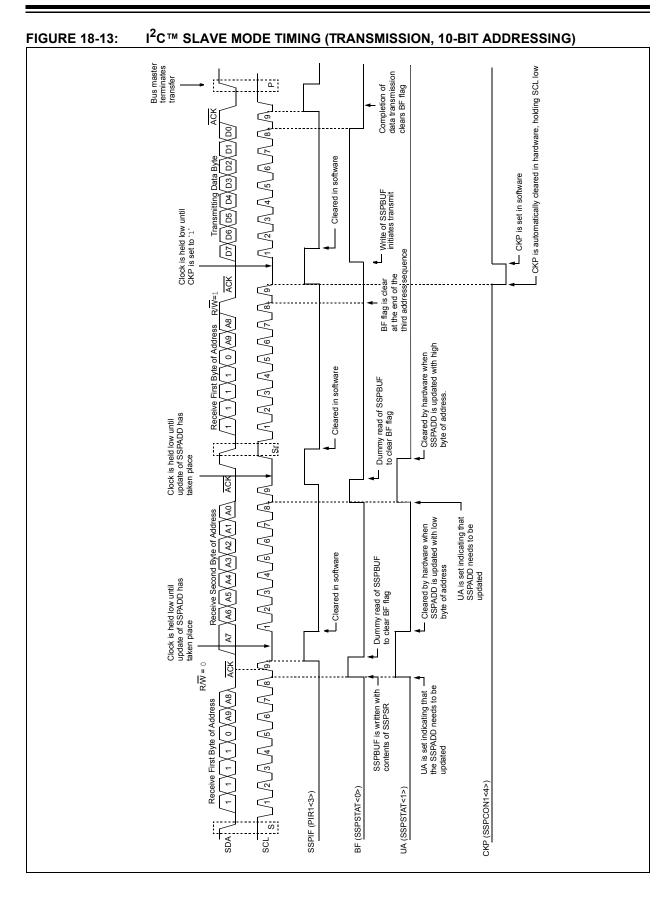
In PRI_IDLE mode, the primary clock will continue to clock the ECCP module without change. In all other power-managed modes, the selected power-managed mode clock will clock Timer2. Other power-managed mode clocks will most likely be different than the primary clock frequency.

17.4.10.1 Operation with Fail-Safe Clock Monitor

If the Fail-Safe Clock Monitor is enabled, a clock failure will force the device into the power-managed RC_RUN mode and the OSCFIF bit (PIR2<7>) will be set. The ECCP will then be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock.

See the previous section for additional details.


17.4.11 EFFECTS OF A RESET


Both Power-on Reset and subsequent Resets will force all ports to Input mode and the CCP registers to their Reset states.

This forces the Enhanced CCP module to reset to a state compatible with the standard CCP module.

FIGURE 18-5:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	H CKE :	= 0)			
- SS Opäend	• • •										
90X (CRP = 0 (CRS = 0)											
497°Z	: 4		· · ·	· · ·		· ·		· : : ······			3 3
(CR49 + 1 CY48 + 0)	: : :										
VARA IN SSPRUF		•	2 2 2 2	: : : :	e Garana E E	•	2 2 2	· 	(*
9870		K 158 V	 X	X 58.6		×68.3	X 68.0			<u>(3</u> 3-6)	
809 (9849 = 0)	· · · · ·			dijijijijiji							* 1
inguja Samagoiae	- - - 		, , , , , , , , , , , , , , , , , , , ,	. 49.						<i>a</i> .	
(53492 == 0) (5359292 ============ =====================	: : :		- 5 5 5 5	e • • • •	- 5 5 6 6	: :	· 5 5 5 5	, , ; ;		Next ()	
SSPSR 5 SSPSRF	, , 6	• • •)) //////////////////////////////////	: : 	t t 5	• • •) ; ,	: : · · · · · · · · · · · · · · · · · ·		2002 (22 2022 (22 2023 (22	

FIGURE 18-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

REGISTER 20-3:	ADCON2:	A/D CONT	ROL REG	ISTER 2				
	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
	bit 7							bit 0
bit 7	ADFM: A/D	Result For	mat Select b	bit				
	1 = Right ju 0 = Left jus							
bit 6	Unimplem	ented: Read	d as '0'					
bit 5-3	ACQT<2:0	>: A/D Acqu	isition Time	Select bits				
	111 = 20 T 110 = 16 T 101 = 12 T 100 = 8 TA 011 = 6 TA 010 = 4 TA 001 = 2 TA 000 = 0 TA	AD AD D D D D						
bit 2-0	111 = FRC 110 = FOS 101 = FOS 010 = FOS 011 = FRC 010 = FOS 001 = FOS	(clock deriv c/64 c/16 c/4 (clock deriv c/32 c/8 c/2 If the A/D I	ed from A/D ed from A/D FRC clock so		or) ⁽¹⁾ or) ⁽¹⁾ ected, a dela		CY (instructio	
	Lagand		re the A/D c ting a conve		his allows th	ne SLEEP in:	struction to b	e executed

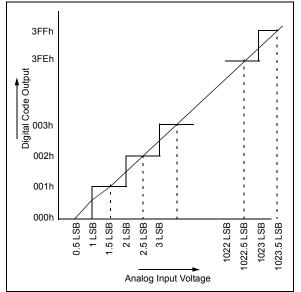
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

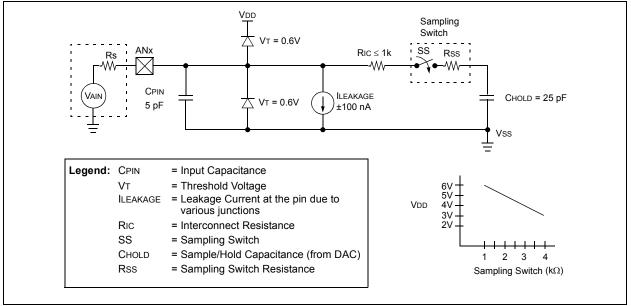
The value in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 20.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)


5. Wait for A/D conversion to complete, by either:


• Polling for the GO/DONE bit to be cleared OR

• Waiting for the A/D interrupt

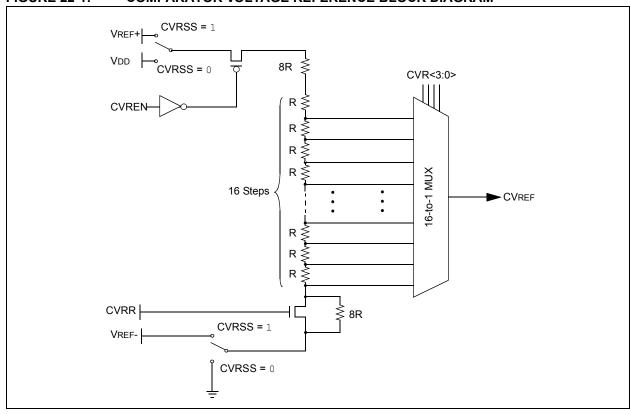

- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 20-2: A/D TRANSFER FUNCTION

FIGURE 20-3: ANALOG INPUT MODEL

FIGURE 22-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

22.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 22-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 27.0 "Electrical Characteristics"**.

22.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

22.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

22.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RA2 as a digital output with CVRSS enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 22-2 shows an example buffering technique.

CLRF	Clear f			CLRWDT	Clear Wat	tchdog Time	er				
Syntax:	CLRF f{,a	}		Syntax:	Syntax: CLRWDT						
Operands:	$0 \leq f \leq 255$			Operands:	None	None					
	a ∈[0,1]			Operation:	$000h \rightarrow Wl$,					
Operation:	$\begin{array}{l} 000h \rightarrow f, \\ 1 \rightarrow Z \end{array}$				$000h \rightarrow WI$ $1 \rightarrow TO,$ $1 \rightarrow PD$	OT postscaler,					
Status Affected:	Z			Status Affected							
Encoding:	0110	101a fff	ff ffff				0.0 0.1 0.0				
Description:		ontents of the	specified	Encoding:	0000	0000 00					
	lf 'a' is '1', th GPR bank (o	e BSR is use default).	nk is selected. d to select the	Description:		on resets the It also resets the					
		d the extende		Words:	1						
		iteral Offset A	tion operates	Cycles:	1						
		ever f ≤ 95 (5F	0	Q Cycle Activit	v:						
		2.3 "Byte-Ori		Q1	Q2	Q3	Q4				
		et Mode" for		Decode		Process	No				
Words:	1				operation	Data	operation				
Cycles:	1			Example:	CLRWDT						
Q Cycle Activity:				Before Ins							
Q1	Q2	Q3	Q4		Counter =	?					
Decode	Read register 'f'	Process Data	Write register 'f'		uction Counter = Postscaler =	00h 0					
Example:	CLRF	FLAG_REG,	1	TO PD	=	1 1					
Before Instru FLAG_F After Instruct FLAG_F	REG = 5Ah on										

SLE	EP	Enter Sle	ep mode		SU	BFWB	Subtract	f from W w	ith Borrow
Synta	ax:	SLEEP			Syr	ntax:	SUBFWB	f {,d {,a}}	
Oper	ands:	None			Op	erands:	$0 \le f \le 255$	i	
Oper	ation: $00h \rightarrow WDT$,						d ∈ [0,1] a ∈ [0,1]		
		$0 \rightarrow \underline{WDT}$ $1 \rightarrow \overline{TO},$	postscaler,		On	eration:		$(\overline{C}) \rightarrow dest$	
		$1 \rightarrow \frac{10}{PD}$				tus Affected:	(W) = (I) = N, OV, C,		
Statu	s Affected:	TO, PD				coding:	0101	01da ff	ff ffff
Enco	ding:	0000	0000 000	0 0011		scription:		egister 'f' and C	
Encoding: 0000 0000 0011 Description: The Power-Down status bit (PD) is cleared. The Time-out status bit (TO) is set. Watchdog Timer and its postscaler are cleared. The processor is put into Sleep mode with the oscillator stopped.				De	сприон.	(borrow) fr method). If in W. If 'd' register 'f' If 'a' is '0', '	om W (2's com 'd' is '0', the re is '1', the resul	nplement esult is stored t is stored in nk is selected.	
Word	ls:	1					GPR bank	(default). and the extend	ad instruction
Cycle	es:	1						led, this instru	
QC	ycle Activity:						in Indexed	Literal Offset A	Addressing
	Q1	Q2	Q3	Q4				never f ≤ 95 (5 5.2.3 "Byte-Or	,
	Decode	No operation	Process Data	Go to Sleep			Bit-Orient	ed Instruction set Mode" for	is in Indexed
_					Wo	rds:	1		
Exan		SLEEP			Сус	cles:	1		
	Before Instruc TO =	tion ?			Q	Cycle Activity:			
	$\frac{10}{PD} =$?				Q1	Q2	Q3	Q4
	After Instruction					Decode	Read	Process	Write to
	$\frac{TO}{PD} = 0$				register 'f'	Data	destination		
		U U			Exa	ample 1: Defens lastru	SUBFWB	REG, 1, 0	
† If	WDT causes v	wake-up, this t	bit is cleared.			Before Instruc REG W C	ction = 3 = 2 = 1		

After Instruction

REG

Before Instruction REG W

W

C Z N

С

After Instruction

REG W C Z N

Before Instruction REG W

After Instruction REG = W = C = Z = N =

С

Example 2:

Example 3:

FF 2 0

0 1 = =

2 5 = = 1

2 3 1 = = = = 0 = 0

SUBFWB

1 2 0

SUBFWB

; result is negative

; result is positive

; result is zero

REG, 1, 0

REG, 0, 0

=

=

=

=

= =

=

25.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, PIC18F2221/2321/4221/4321 family devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

The additional features of the extended instruction set are disabled by default. To enable them, users must set the XINST Configuration bit.

The instructions in the extended set (with the exception of CALLW, MOVSF and MOVSS) can all be classified as literal operations, which either manipulate the File Select Registers, or use them for indexed addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- Dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- Function Pointer invocation
- Software Stack Pointer manipulation
- Manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 25-3. Detailed descriptions are provided in **Section 25.2.2** "**Extended Instruction Set**". The opcode field descriptions in Table 25-1 (page 280) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in the assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

25.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. The MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byteoriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 25.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemo	onic,	Description	Cycles	16-E	Bit Instru	uction W	/ord	Status
Opera	nds	Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st Word	2	1110	1011	0 z z z	ZZZZ	None
		f _d (destination) 2nd Word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	1zzz	ZZZZ	None
		z _d (destination) 2nd Word		1111	XXXX	XZZZ	ZZZZ	
PUSHL	k	Store Literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		Decrement FSR2						
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract Literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		Return						

TABLE 25-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

27.2 DC Characteristics:

Power-Down and Supply Current PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial) (Continued)

PIC18LF2	221/2321/4221/4321 :rial)		ird Ope	-	Conditions (unles $e -40^{\circ}C \le TA$	ss otherwise sta ≤ +85°C for indu		
	21/2321/4221/4321 trial, Extended)		ing tem	•		ss otherwise sta $\leq +85^{\circ}$ C for indus $\leq +125^{\circ}$ C for exte	strial	
Param No.	Device	Тур	Max	Units		Conditio	ns	
D025	Timer1 Oscillator	2.1	4.5	μA	-40°C ⁽⁵⁾			
(∆IOSCB)			4.5	μΑ	-10°C	VDD = 2.0V		
		1.8	4.5	μA	+25°C	VDD - 2.0V		
		2.1	4.5	μA	+85°C		32 kHz Tuning Fork, Crystal on Timer1	
		2.2	6.0	μA	-40°C ⁽⁵⁾			
		—	6	μA	-10°C	VDD = 3.0V		
		2.6	6.0	μA	+25°C	VDD - 5.0V	Oscillator ⁽³⁾	
		2.9	6.0	μA	+85°C			
		3.0	8.0	μA	-40°C ⁽⁵⁾			
		_	8	μA	-10°C	VDD = 5.0V		
		3.2	8.0	μA	+25°C	VDD - 5.0V		
		3.4	8.0	μA	+85°C			
D026	A/D Converter	1.0	2.0	μA	-40°C to +85°C	VDD = 2.0V		
(ΔAD)		1.0	2.0	μA	-40°C to +85°C	VDD = 3.0V	A/D on, Not Converting	
		1.0	2.0	μA	-40°C to +85°C	VDD = 5.0V	Arb on, Not Converting	
		2.0	8.0	μA	-40°C to +125°C	v DD = 3.0V		

Legend: Shading of rows is to assist in readability of the table.

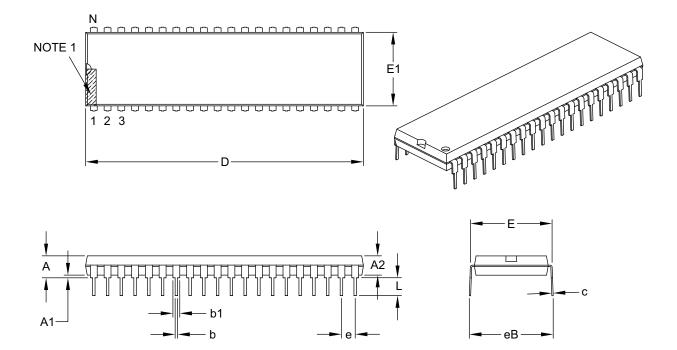
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.


3: Low-power, Timer1 oscillator is selected unless otherwise indicated, where LPT1OSC (CONFIG3H<2>) = 1.

4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

5: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0.

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		40	•
Pitch	e		.100 BSC	
Top to Seating Plane	A	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	_	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	_	.023
Overall Row Spacing §	eB	_	-	.700

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

High/Low-Voltage Detect	
Applications	
Associated Registers	
Characteristics	351
Current Consumption	
Effects of a Reset	
Operation	
During Sleep	
Setup	
Start-up Time	
Typical Application	
HLVD. See High/Low-Voltage Detect	
Effects of a Reset Operation During Sleep Setup Start-up Time Typical Application	

I

I/O Ports	111
I ² C Mode (MSSP)	
Acknowledge Sequence Timing	
Associated Registers	
Baud Rate Generator	197
Bus Collision	
During a Repeated Start Condition	208
During a Start Condition	206
During a Stop Condition	209
Clock Arbitration	
Clock Stretching	190
10-Bit Slave Receive Mode (SEN = 1)	190
10-Bit Slave Transmit Mode	
7-Bit Slave Receive Mode (SEN = 1)	
7-Bit Slave Transmit Mode	
Clock Synchronization and the CKP Bit	
Effects of a Reset	205
General Call Address Support	
I ² C Clock Rate w/BRG	107
Master Mode	
Operation	
Reception	
Repeated Start Condition Timing	
Start Condition Timing	
Transmission	
Multi-Master Communication, Bus Collision	005
and Arbitration	
Multi-Master Mode	
Operation	
Read/Write Bit Information (R/W Bit)	
Read/Write Bit Information (R/W Bit)	
Registers	
Serial Clock (RC3/SCK/SCL)	
Slave Mode	
Address Masking	
Addressing	
Reception	
Transmission	
Sleep Operation	
Stop Condition Timing	
ID Locations	-
INCF	
INCFSZ	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	259, 277
Single-Supply	
Indexed Literal Offset Addressing	
and Standard PIC18 Instructions	
Indexed Literal Offset Mode	
Indirect Addressing	
INFSNZ	
Initialization Conditions for all Registers	55–58

Instruction Cycle	
Clocking Scheme	
Instruction Flow/Pipelining	
Instruction Set	
ADDLW	
ADDWF	
ADDWF (Indexed Literal Offset Mode)	
ADDWFC	
ANDLW	
ANDWF	
BC	
BCF	
BN	
BNC	
BNN	
BNOV	
BNZ	
BOV	
BRA	
BSF	
BSF (Indexed Literal Offset Mode)	
BTFSC	
BTFSS	292
BTG	293
BZ	294
CALL	294
CLRF	295
CLRWDT	295
COMF	296
CPFSEQ	296
CPFSGT	297
CPFSLT	297
DAW	298
DCFSNZ	299
DECF	298
DECFSZ	299
Extended Instruction Set	321
General Format	281
GOTO	300
INCF	300
INCFSZ	301
INFSNZ	301
IORLW	302
IORWF	302
LFSR	303
MOVF	303
MOVFF	304
MOVLB	304
MOVLW	305
MOVWF	305
MULLW	306
MULWF	306
NEGF	307
NOP	307
Opcode Field Descriptions	280
POP	308
PUSH	308
RCALL	309
RESET	309
RETFIE	310
RETLW	310
RETURN	311
RLCF	311
RLNCF	
RRCF	312

RA2/AN2/VREF-/CVREF	
RA3/AN3/VREF+	
RA4/T0CKI/C1OUT	15, 19
RA5/AN4/SS/HLVDIN/C2OUT	15, 19
RB0/INT0/FLT0/AN12	16, 20
RB1/INT1/AN10	16, 20
RB2/INT2/AN8	16, 20
RB3/AN9/CCP2	16, 20
RB4/KBI0/AN11	16, 20
RB5/KBI1/PGM	16, 20
RB6/KBI2/PGC	16, 20
RB7/KBI3/PGD	
RC0/T10S0/T13CKI	17, 21
RC1/T1OSI/CCP2	17. 21
RC2/CCP1	
RC2/CCP1/P1A	
RC3/SCK/SCL	
RC4/SDI/SDA	,
RC5/SDO	-
RC6/TX/CK	,
RC7/RX/DT	,
RD0/PSP0	,
RD1/PSP1	
RD2/PSP2	
RD3/PSP3	
RD4/PSP4	
RD5/PSP5/P1B	
RD6/PSP6/P1C	
RD7/PSP7/P1D	
RE0/RD/AN5	
RE1/WR/AN6	
RE2/CS/AN7	
VDD	,
Vss	17, 23
Pinout I/O Descriptions	
PIC18F2221/2321	
PIC18F4221/4321	
PIR Registers	
PLL Frequency Multiplier	
HSPLL Oscillator Mode	
Use with INTOSC	31
POP	308
POR. See Power-on Reset.	
PORTA	
Associated Registers	113
LATA Register	111
PORTA Register	111
TRISA Register	111
PORTB	
Associated Registers	116
LATB Register	
PORTB Register	
TRISB Register	
PORTC	
Associated Registers	119
LATC Register	
PORTC Register	
RC3/SCK/SCL Pin	
	183
TRISC Register	183
TRISC Register	183 117
TRISC Register PORTD Associated Registers	183 117 122
TRISC Register PORTD Associated Registers LATD Register	183 117 122 120
TRISC Register PORTD Associated Registers LATD Register Parallel Slave Port (PSP) Function	183 117 122 120 120
TRISC Register PORTD Associated Registers LATD Register	183 117 122 120 120 120

Associated Registers 125
LATE Register
PORTE Register 123
PSP Mode Select (PSPMODE Bit) 120
TRISE Register
Power-Managed Modes
and A/D Operation
and EUSART Operation
and PWM Operation165
and SPI Operation
Clock Sources
Clock Transitions and Status Indicators
Effects on Clock Sources
Entering
Exiting Idle and Sleep Modes
By Interrupt
By Reset
By WDT Time-out
Without an Oscillator Start-up Delay
Idle Modes
PRI IDLE
RC IDLE
-
SEC_IDLE
Run Modes
PRI_RUN
RC_RUN
SEC_RUN
Sleep Mode
Summary (table)
Power-on Reset (POR)
Power-up Timer (PWRT)51
Time-out Sequence
Power-up Delays
Power-up Timer (PWRT)
Prescaler
Timer2 156
Timer2
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151 PRI_IDLE Mode 44
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151 PRI_IDLE Mode 44
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151 PRI_IDLE Mode 44 PRI_RUN Mode 40
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151 PRI_IDLE Mode 44 PRI_RUN Mode 40 Program Counter 60
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151 PRI_IDLE Mode 44 PRI_RUN Mode 40 Program Counter 60 PCL, PCH and PCU Registers 60
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memory60
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memory77
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Set77Instructions64
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Program Verification274
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Verification274Programming, Device Instructions279PSP. See Parallel Slave Port.131
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Verification274Programming, Device Instructions279PSP. See Parallel Slave Port.Pulse-Width Modulation. See PWM (CCP Module) and
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Verification274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUIse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module).
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Meming, Device Instructions274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUSH308
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Verification274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUSH308PUSH308PUSH308PUSH308
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Werification274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUSH308PUSH308PUSH308PUSH324
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Werification274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUSH308PUSH308PUSH308PUSH304PWM (CCP Module).324PWM (CCP Module)324
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Werification274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUSH308PUSH and POP Instructions61PUSHL324PWM (CCP Module)324PWM (CCP Module)352
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Werification274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUSH308PUSH308PUSH308PUSH304PWM (CCP Module).324PWM (CCP Module)324