

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2221-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4 ICSP Pins

The PGC and PGD pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGC/PGD pins) programmed into the device matches the physical connections for the ICSP to the MPLAB[®] ICD 2, MPLAB ICD 3 or REAL ICE[™] emulator.

For more information on the ICD 2, ICD 3 and REAL ICE emulator connection requirements, refer to the following documents that are available on the Microchip web site.

- *"MPLAB[®] ICD 2 In-Circuit Debugger User's Guide"* (DS51331)
- *"Using MPLAB[®] ICD 2"* (poster) (DS51265)
- *"MPLAB[®] ICD 2 Design Advisory"* (DS51566)
- *"Using MPLAB[®] ICD 3"* (poster) (DS51765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS51764)
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" (DS51616)
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) (DS51749)

2.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 3.0 "Oscillator Configurations"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

TOSH — — Top-of-Stack Log Pyte (TOS-20:16-) - - 0.000 55, 60 TOSH Top-of-Stack Log Myte (TOS-15.8-) 0.000 0.000 55, 60 STKPT STKPUK® STKVLW® SP4 SP3 SP2 SP1 SP0 0.000 55, 60 PCLATU — — Holding Register for PC-15.8- -00 0.000 55, 60 PCLATU — Image Memory Table Pointer Low Byte (TBLPTR<20:16-) 0.000 0.000 55, 60 PLIPTRU — Image Memory Table Pointer Low Byte (TBLPTR<15.8-) 0.000 0.000 55, 62 TBLPTRU Program Memory Table Pointer Low Byte (TBLPTR<7.0-) 0.000 0.000 55, 62 TRLAT Program Memory Table Pointer Low Byte TMR01F INT01F RBF 2.000 0.000 55, 62 PRODH Product Register High Byte	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TOSH Top-d-Stack Lyen Byte (TOS+15.8) 0000 0000 55, 60 TOSL Top-d-Stack Lyen Byte (TOS+7.0>) 0000 0000 55, 60 STKPTR STKUNF ¹⁶ — SP4 SP3 SP2 SP1 SP0 0000 0000 55, 60 PCLATU — Hoking Register for PC-31:8> — 0000 0000 55, 60 PCLATH Hoking Register for PC-31:8> 0000 0000 55, 60 0000 0000 55, 60 TBLPTRU — bit 21 Program Memory Table Pointer High Byte (TBLPTR<5:8>) 0000 0000 55, 82 TBLPTRU Program Memory Table Pointer Low Byte (TBLPTR<7:0>) 0000 0000 55, 82 TABLAT Program Memory Table Pointer Low Byte (TBLPTR<7:0)	TOSU	—	—	_	Top-of-Stack	Upper Byte (T	OS<20:16>)			0 0000	55, 60
TOSL Top-d-Stack Low Byte (TOS-70>) SP3 SP3 SP2 SP1 SP0 000 0000 55, 60 STKPTR STKVLU ⁶ STKUL ⁶ STKUL ⁶ 0000 0000 55, 60 PCLATU — — Holding Register for PC<15.8> 0000 0000 55, 60 PCLATU — — bit 21 Program Memory Table Pointer High Byte (TBLPTR<15.8>) 0000 0000 55, 82 TBLFTRU Program Memory Table Pointer Low Byte (TBLPTR<-7.0>) 0000 0000 55, 82 TBLATR Program Memory Table Pointer Low Byte (TBLPTR<-7.0>) 0000 0000 55, 82 PRODH Product Register Low Byte	TOSH	Top-of-Stack	High Byte (TC) S<15:8>)	•					0000 0000	55, 60
STKCPU STKUL(#) STKUNF(#) — SP4 SP3 SP2 SP1 SP0 0 = 0 = 0000 55, 61 PCLATH Holding Register for PC<15.8> 0 = 0000 55, 60 DEL PCLow Byte (PC<7.0>) 0000 56, 60 TBLPTRH Program Memory Table Pointer Low Byte (TBLPTR<15.8>) 0 = 0000 56, 82 TBLPTRH Program Memory Table Pointer Low Byte (TBLPTR<7.0>) 0000 0000 56, 82 TABLAT Program Memory Table Pointer Low Byte (TBLPTR<7.0>) 0000 0000 56, 82 TABLAT Program Memory Table Pointer High Byte	TOSL	Top-of-Stack	Low Byte (TO	S<7:0>)						0000 0000	55, 60
PCLATH Holding Register for PC<11:6> 0 0.000 65, 60 PCLATH Holding Register for PC<15.3> 0.000 0.000 65, 60 TBLPTRU bit 21 Program Memory Table Pointer High Byte (TBLPTR<15.4>) 0.000 0.000 65, 82 TBLPTRL Program Memory Table Pointer High Byte (TBLPTR<15.4>) 0.000 0.000 65, 82 TABLAT Program Memory Table Pointer Low Byte (TBLPTR<15.4>) 0.000 0.000 65, 82 TABLAT Program Memory Table Pointer Low Byte (TBLPTR<15.4>) 0.000 0.000 55, 82 TABLAT Program Memory Table Pointer Low Byte (TBLPTR<15.4>) 0.000 0.000 55, 82 TABLAT Program Memory Table Dinter Low Byte (TBLPTR<15.4)	STKPTR	STKFUL ⁽⁶⁾	STKUNF ⁽⁶⁾	_	SP4	SP3	SP2	SP1	SP0	00-0 0000	55, 61
PCLATH Holding Register for PC<15:8> 0000 0000 65, 60 PCL PC Low Byte (PC<7:0>) 0000 0000 55, 62 TBLPTRU Program Memory Table Pointer High Byte (TBLPTR<15:8>) 0000 0000 55, 82 TBLPTRU Program Memory Table Pointer Low Byte (TBLPTR<7:0>) 0000 0000 55, 82 TBLPTRU Program Memory Table Pointer Low Byte (TBLPTR<7:0>) 0000 0000 55, 82 TRLATA Program Memory Table Pointer Low Byte (TBLPTR<7:0>) 0000 0000 55, 82 NTCON GB/GIEH PEIGEL TMR0IE INT01P RBIF 0000 0000 55, 100 NTCON2 GRZPU INT2IP INT1P INT2IE INT2IE INT2IF INT2IF INT1F 11-0 0-000 55, 74 POSTINCO Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 55, 74 POSTINCO Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 55, 74 POSTINCO Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A	PCLATU	_	—	Holding Regi	ster for PC<21	1:16>				00 0000	55, 60
PCL Dec U Image: Dec Constraints I	PCLATH	Holding Regi	ster for PC<15	5:8>						0000 0000	55, 60
TBLPTRN — ibit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>) 000000 65, 62 TBLPTRN Program Memory Table Pointer Like Byte (TBLPTR<15:8>) 0000 0000 55, 62 TBLPTRN Program Memory Table Pointer Like Byte (TBLPTR<7:>) 0000 0000 55, 82 TABLAT Program Memory Table Pointer Like Byte (TBLPTR<7:>) 0000 0000 55, 82 PRODH Product Register High Byte INTOIN BRIF 0000 0000 55, 95 INTCON GIE/GIEH PEIE/GIEL TMROIE INTOIE RBIF 0000 0000 55, 95 INTCON GIE/GIEH PEIE/GIEL TMROIE INTOIE RBIP 1111 -1 55, 76 INTOON INT2IP INTTIP INT1P INT2IP INT1P 10.0 55, 74 POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register) N/A 55, 74 POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register) N/A 55, 74 POSTINC0 Uses contents of FSR0 to address data memory – value of FSR1 pos	PCL	PC Low Byte	(PC<7:0>)							0000 0000	55, 60
TBLPTRH Program Memory Table Pointer Ligh Byte (TBLPTR<15.8>) 0000 0000 55, 82 TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR<7.0>) 0000 0000 55, 82 TBLAT Program Memory Table Latc- 0000 0000 55, 82 PRODH Product Register Low Byte xxxxx \$5, 95 INTCON GIE/GIEH PEIC/GIEL TMR0IF INTOIF RBIP 1011 1-1 \$5, 95 INTCON2 RBPU INTEDC0 INTEDC1 INTEDC2 - TMR0IP - RBIP 1011 1-5 \$5, 74 POSTINC Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register) N/A \$5, 74 POSTINC Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register) N/A \$5, 74 POSTINC Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register) N/A \$5, 74 POSTINC Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register) N/A \$5, 74 POSTINC Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a phy	TBLPTRU	—	—	bit 21	Program Mer	mory Table Poi	inter Upper By	te (TBLPTR<20):16>)	00 0000	55, 82
TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR-7:0-) 00000000 56, 82 TABLAT Program Memory Table Loth 0000000 56, 82 PRODH Product Register Low Byte xxxxx 55, 95 INTCON GIE/GIEH PEIE/GIEL INTOIE INTOIE RBI INTOIF RBI 0000000 55, 99 INTCON GIE/GIEH PEIE/GIEL INTOIGI INTOIE RBI INTOIF RBIF 0000000 55, 99 INTCON GIE/GIEH PEIE/GIEL INTOIGI INTOIE INTIE INTIE NIA 55, 701 INTCON Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 55, 74 POSTIDCO Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 55, 74 POSTIDCO Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 55, 74 POSTIDCO Uses contents of FSR1 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 55, 74 FSR0H —	TBLPTRH	Program Mer	nory Table Poi	inter High Byte	e (TBLPTR<15	5:8>)				0000 0000	55, 82
TABLAT Program Memory Table Latch 0000 0000 65, 62 PRODIL Product Register High Byte xxxx xxxx 55, 95 INTCON GIE/GIEH PEIE/GIEL TMR0IE INTOIF RBIP 111 -1 55, 95 INTCON2 REPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP RBIP 111 -1 55, 05 INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF 11-0 0-00 55, 74 POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 55, 74 POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 55, 74 POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 55, 74 POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 55, 74 PULSW0 Uses contents of FSR0 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 55, 74 <t< td=""><td>TBLPTRL</td><td>Program Mer</td><td>nory Table Poi</td><td>inter Low Byte</td><td>(TBLPTR<7:0</td><td>)>)</td><td></td><td></td><td></td><td>0000 0000</td><td>55, 82</td></t<>	TBLPTRL	Program Mer	nory Table Poi	inter Low Byte	(TBLPTR<7:0)>)				0000 0000	55, 82
PRODH Product Register High Byte xxxx <	TABLAT	Program Mer	nory Table Lat	ch						0000 0000	55, 82
PRODL Product Register Low Byte xxxx xxxx <t< td=""><td>PRODH</td><td>Product Regi</td><td>ster High Byte</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>XXXX XXXX</td><td>55, 95</td></t<>	PRODH	Product Regi	ster High Byte	1						XXXX XXXX	55, 95
INTCON GIE/GIEH PEIE/GIEL TMROIE INTOIE RBIE TMROIF INTOIF RBIF 0000 0000x 55, 99 INTCON2 RBPU INTEDG0 INTEDG1 INTEDG2 — TMROIP — RBIP 1111 -1 55, 100 INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF 11-0 0-0 55, 101 INDF0 Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register) N/A 55, 74 POSTINC0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 55, 74 PLUSW0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 55, 74 PLUSW0 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 55, 74 PRINC0 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 55, 74 PREIDC1 Uses contents of FSR1 to address data memory - value of FSR1 pro	PRODL	Product Regi	ster Low Byte		-		-		-	XXXX XXXX	55, 95
INTCON2 RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP 1111 - 1-1 55, 100 INTCON3 INT2IP INT1P — INT2IE INT1IE — INT2IF INT1F 110 0 -00 55, 101 INDF0 Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register) N/A 55, 74 POSTINC0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 55, 74 POSTINC0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 55, 74 PLUSW0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 55, 74 FSR0H — — — Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 55, 74 WREG Working Register N/A 55, 74 Xxxx xxxx 55, 74 POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTINC1 Uses contents	INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	55, 99
INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF 1=0 0-00 55, 101 INDF0 Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register) N/A 55, 74 POSTDEC0 Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register) N/A 55, 74 POSTDEC0 Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register) N/A 55, 74 PLUSW0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 55, 74 FSR0 — — — Indirect Data Memory Address Pointer 0 High Byte 0000 55, 74 FSR0 Indirect Data Memory Address Pointer 0 Low Byte ×xxx xxxx 55 INDF1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 55, 74 WREG Working Register FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTDEC1 Uses contents of FSR1 to address data memory - valu	INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	_	RBIP	1111 -1-1	55, 100
INDF0 Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register) N/A 55, 74 POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 55, 74 POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 55, 74 PREINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 55, 74 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 55, 74 FSR0H — — Indirect Data Memory Address Pointer 0 High Byte 0000 55, 74 WREG Working Register	INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF	11-0 0-00	55, 101
POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 55, 74 POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register) N/A 55, 74 PREINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 55, 74 PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 55, 74 FSR0H — — — Indirect Data Memory Address Pointer 0 Low Byte ====================================	INDF0	Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register) N/A 55									55, 74
POSTDEC0 Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register) N/A 55, 74 PREINC0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 55, 74 PLUSW0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 55, 74 FSR0H — — — Indirect Data Memory Address Pointer 0 High Byte 0000 55, 74 FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 55, 74 WREG Working Register xxxx xxxx 55 INDF1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTDEC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTDEC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 55, 74 PQSTDEC1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 55, 74 PLUSW1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) <	POSTINC0	Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A								55, 74	
PREINC0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 55, 74 PLUSW0 Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) N/A 55, 74 FSR0H — — — Indirect Data Memory Address Pointer 0 High Byte 0000 55, 74 FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 55 55 INDF1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTIDC1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 55, 74 PREINC1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 55, 74 PLUSW1 Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) N/A 5	POSTDEC0	EC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register) N/A								55, 74	
PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – N/A 55, 74 FSR0H — — Indirect Data Memory Address Pointer 0 Low Byte 0000 55, 74 FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 55 WREG Working Register xxxx xxxx 55 INDF1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 55, 74 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 55, 74 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 55, 74 FSR1L Indirect Data Memory Address Pointer 1 Low Byte	PREINC0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A							55, 74		
FSR0H — — Indirect Data Memory Address Pointer 0 High Byte 0000 55, 74 FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 55, 74 WREG Working Register xxxx xxxx 55 INDF1 Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register) N/A 55, 74 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 55, 74 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 55, 74 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 55, 74 PLUSU1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 55, 74 FSR1H	PLUSW0	Uses content value of FSR	s of FSR0 to a 0 offset by W	address data m	nemory – valu	e of FSR0 pre-	-incremented (not a physical r	egister) –	N/A	55, 74
FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 55, 74 WREG Working Register xxxx xxxx 55 INDF1 Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register) N/A 55, 74 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 55, 74 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 55, 74 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 55, 74 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 55, 74 FSR1H	FSR0H	_	_	—	—	Indirect Data	Memory Addre	ess Pointer 0 H	igh Byte	0000	55, 74
WREG Working Register xxxx xxx xxxx xxx xxx xxxx xxx xxxx xxx xxx<	FSR0L	Indirect Data	Memory Addr	ess Pointer 0 I	Low Byte					XXXX XXXX	55, 74
INDF1 Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register) N/A 55, 74 POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 55, 74 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 55, 74 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 55, 74 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 56, 74 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 56, 74 xxxx xxxx 56, 74 BSR — — — Bank Select Register 0000 56, 65 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 56, 74 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 56, 74 POSTINC2 Uses contents	WREG	Working Reg	ister							XXXX XXXX	55
POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 55, 74 POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 55, 74 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 55, 74 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 55, 74 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 56, 74 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 56, 74 55, 74 BSR — — — Bank Select Register 0000 56, 65 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 56, 74 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 56, 74 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 56, 74 POSTINC2 Uses contents of FSR2 to address dat	INDF1	Uses content	s of FSR1 to a	address data m	nemory – valu	e of FSR1 not	changed (not a	a physical regis	ter)	N/A	55, 74
POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) N/A 55, 74 PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 55, 74 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – N/A 55, 74 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 56, 74 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 56, 74 xxxx xxxx 56, 74 BSR — — — Bank Select Register 0000 56, 65 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 56, 74 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 56, 74 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to addr	POSTINC1	Uses content	s of FSR1 to a	address data m	nemory – valu	e of FSR1 pos	t-incremented	(not a physical	register)	N/A	55, 74
PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 55, 74 PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – value of FSR1 offset by W N/A 55, 74 FSR1H — — Indirect Data Memory Address Pointer 1 High Byte 0000 56, 74 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 56, 74 BSR — — — Bank Select Register 0000 56, 74 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 56, 74 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 56, 74 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to address data memory – value	POSTDEC1	Uses content	s of FSR1 to a	address data m	nemory – valu	e of FSR1 pos	t-decremented	l (not a physica	l register)	N/A	55, 74
PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) – N/A 55, 74 FSR1H — — — Indirect Data Memory Address Pointer 1 High Byte 0000 56, 74 FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 56, 74 BSR — — — Bank Select Register 0000 56, 65 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 56, 74 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 56, 74 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 56, 74 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented	PREINC1	Uses content	s of FSR1 to a	address data m	nemory – valu	e of FSR1 pre-	-incremented (not a physical r	egister)	N/A	55, 74
FSR1H————Indirect Data Memory Address Pointer 1 High Byte 000056, 74FSR1LIndirect Data Memory Address Pointer 1 Low Bytexxxx xxxx56, 74BSR———Bank Select Register 000056, 65INDF2Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)N/A56, 74POSTINC2Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)N/A56, 74POSTDEC2Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)N/A56, 74POSTDEC2Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)N/A56, 74PREINC2Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)N/A56, 74PLUSW2Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) –N/A56, 74PLUSW2Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) –N/A56, 74FSR2H————Indirect Data Memory Address Pointer 2 High Byte 000056, 74FSR2LIndirect Data Memory Address Pointer 2 Low Byte </td <td>PLUSW1</td> <td>Uses content value of FSR</td> <td>s of FSR1 to a 1 offset by W</td> <td>address data m</td> <td>nemory – valu</td> <td>e of FSR1 pre-</td> <td>-incremented (</td> <td>not a physical r</td> <td>egister) –</td> <td>N/A</td> <td>55, 74</td>	PLUSW1	Uses content value of FSR	s of FSR1 to a 1 offset by W	address data m	nemory – valu	e of FSR1 pre-	-incremented (not a physical r	egister) –	N/A	55, 74
FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 56, 74 BSR — — Bank Select Register 0000 56, 65 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 56, 74 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 56, 74 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 56, 74 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 56, 74 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx	FSR1H	—	—	—	—	Indirect Data	Memory Addre	ess Pointer 1 H	igh Byte	0000	56, 74
BSR — — — Bank Select Register 0000 56, 65 INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 56, 74 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 56, 74 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 56, 74 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 56, 74 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 56, 74 0000 56, 74 STATUS — — N OV Z DC C xxxxx 56, 72	FSR1L	Indirect Data	Memory Addr	ess Pointer 1 I	Low Byte	1				XXXX XXXX	56, 74
INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 56, 74 POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 56, 74 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – N/A 56, 74 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 56, 74 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 56, 74 STATUS — — N OV Z DC C xxxxx 56, 72	BSR	—	—	—	—	Bank Select I	Register			0000	56, 65
POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 56, 74 POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 56, 74 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 56, 74 STATUS — — N OV Z DC C x xxxx 56, 72	INDF2	Uses content	s of FSR2 to a	address data m	nemory – valu	e of FSR2 not	changed (not a	a physical regis	ter)	N/A	56, 74
POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) N/A 56, 74 PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – value of FSR2 offset by W N/A 56, 74 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 56, 74 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 56, 74 STATUS — — N OV Z DC C x xxxx 56, 72	POSTINC2	Uses content	s of FSR2 to a	address data m	nemory – valu	e of FSR2 pos	t-incremented	(not a physical	register)	N/A	56, 74
PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 56, 74 PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – value of FSR2 offset by W N/A 56, 74 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 56, 74 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 56, 74 STATUS — — N OV Z DC C x xxxx 56, 72	POSTDEC2	Uses content	s of FSR2 to a	address data m	nemory – valu	e of FSR2 pos	t-decremented	l (not a physica	l register)	N/A	56, 74
PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) – N/A 56, 74 FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 56, 74 FSR2L Indirect Data Memory Address Pointer 2 Low Byte	PREINC2	Uses content	s of FSR2 to a	address data m	nemory – valu	e of FSR2 pre-	-incremented (not a physical r	egister)	N/A	56, 74
FSR2H — — — Indirect Data Memory Address Pointer 2 High Byte 0000 56, 74 FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 56, 74 STATUS — — N OV Z DC C	PLUSW2	Uses content value of FSR	s of FSR2 to a 2 offset by W	address data n	nemory – valu	e of FSR2 pre-	-incremented (not a physical r	egister) –	N/A	56, 74
FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 56, 74 STATUS	FSR2H	_	—	_	_	Indirect Data	Memory Addre	ess Pointer 2 H	igh Byte	0000	56, 74
STATUS — — N OV Z DC C	FSR2L	Indirect Data	Memory Addr	ess Pointer 2 I	Low Byte					XXXX XXXX	56, 74
	STATUS	—	—	—	Ν	OV	Z	DC	С	x xxxx	56, 72

TABLE 6-2: **REGISTER FILE SUMMARY (PIC18F2221/2321/4221/4321)**

Note

The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)". 1:

2: These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-'.

The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in 3: INTOSC Modes".

4: The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0); otherwise, RE3 reads as '0'. This bit is read-only.

RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. 5: When disabled, these bits read as '0'.

6: Bit 7 and bit 6 are cleared by user software or by a POR. The PLUSW register can be used to implement a form of indexed addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

6.4.3.3 Operations by FSRs on FSRs

Indirect addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to INDF2 or POSTDEC2 will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses indirect addressing.

Similarly, operations by indirect addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

6.5 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different. This is due to the introduction of a new addressing mode for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect addressing with FSR0 and FSR1 also remain unchanged.

6.5.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of indirect addressing using the FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of indexed addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0); and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in direct addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

6.5.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 6-8.

Those who desire to use bit-oriented or byte-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 24.2.1** "Extended Instruction Syntax".

10.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Enable registers (PIE1 and PIE2). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 10-6: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE				
	bit 7							bit 0				
						14.5						
bit 7	PSPIE: Par	rallel Slave I	Port Read/W	/rite Interrup	ot Enable bit	₍ (1)						
	1 = Enables 0 = Disable	s the PSP re	ead/write internet in	errupt terrupt								
	Note 1:	This bit is u	unimplement	ed on 28-pi	n devices ar	nd will read a	as '0'.					
bit 6	ADIE: A/D	Converter Ir	nterrupt Ena	ble bit								
	1 = Enables 0 = Disable	s the A/D inf es the A/D ir	terrupt nterrupt									
bit 5	RCIE: EUS	ART Receiv	ve Interrupt	Enable bit								
	1 = Enables 0 = Disable	s the EUSA	RT receive i ART receive	nterrupt interrupt								
bit 4	TXIE: EUS	ART Transr	nit Interrupt	Enable bit								
	1 = Enables the EUSART transmit interrupt											
L:1 0	0 = Disable	s the EUSA	RT transmit	interrupt	t Enchlo I	- :1						
DIT 3	SSPIE: Master Synchronous Serial Port Interrupt Enable bit											
	0 = Disable	es the MSSF	² interrupt									
bit 2	CCP1IE: C	CP1 Interru	pt Enable bi	t								
	1 = Enables 0 = Disable	s the CCP1 is the CCP1	interrupt interrupt									
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inte	rrupt Enable	e bit							
	1 = Enables 0 = Disable	s the TMR2 as the TMR2	to PR2 mate to PR2 ma	ch interrupt tch interrupt	[
bit 0	TMR1IE: T	MR1 Overfle	ow Interrupt	Enable bit								
	1 = Enables 0 = Disable	s the TMR1 s the TMR1	overflow int I overflow in	errupt terrupt								
	Legend:											
	D - Deede'	h a b b	$\lambda \Lambda I = \lambda \Lambda I_{\pi}$			anlamantad	hit road on '	<u>^</u>				

· J · ·			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RE0/RD/AN5	RE0	0	0	DIG	LATE<0> data output; not affected by analog input.
		1	Ι	ST	PORTE<0> data input; disabled when analog input enabled.
	RD	1	Ι	TTL	PSP read enable input (PSP enabled).
	AN5	1	I	ANA	A/D Input Channel 5; default input configuration on POR.
RE1/WR/AN6	RE1	0	0	DIG	LATE<1> data output; not affected by analog input.
		1	I	ST	PORTE<1> data input; disabled when analog input enabled.
	WR	1	Ι	TTL	PSP write enable input (PSP enabled).
	AN6	1	I	ANA	A/D Input Channel 6; default input configuration on POR.
RE2/CS/AN7	RE2	0	0	DIG	LATE<2> data output; not affected by analog input.
		1	I	ST	PORTE<2> data input; disabled when analog input enabled.
	CS	1	Ι	TTL	PSP write enable input (PSP enabled).
	AN7	1	I	ANA	A/D Input Channel 7; default input configuration on POR.
MCLR/Vpp/RE3 ⁽¹⁾	MCLR	_	I	ST	External Master Clear input; enabled when MCLRE Configuration bit is set.
	Vpp	—	I	ANA	High-voltage detection; used for ICSP [™] mode entry detection. Always available, regardless of pin mode.
	RE3	(2)	I	ST	PORTE<3> data input; enabled when MCLRE Configuration bit is clear.

TABLE 11-9: PORTE I/O SUMMARY

Legend:DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: RE3 is available on both 28-pin and 40/44-pin devices. All other PORTE pins are only implemented on 40/44-pin devices.

2: RE3 does not have a corresponding TRIS bit to control data direction.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTE			_		RE3 ^(1,2)	RE2	RE1	RE0	58
LATE ⁽²⁾	—	—	—	-	—	PORTE Da (Read and	ta Latch Re Write to Dat	gister ta Latch)	58
TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	58
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	57

TABLE 11-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTE.

Note 1: Implemented only when Master Clear functionality is disabled (MCLRE Configuration bit = 0).

2: RE3 is the only PORTE bit implemented on both 28-pin and 40/44-pin devices. All other bits are implemented only when PORTE is implemented (i.e., 40/44-pin devices).

17.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the following equation.

EQUATION 17-2:

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation. When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or two bits of the TMR2 prescaler, the CCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the following equation.

EQUATION 17-3:

PWM Resolution (max) =
$$\frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

17.4.3 PWM OUTPUT CONFIGURATIONS

The P1M<1:0> bits in the CCP1CON register allow one of four configurations:

- Single Output
- Half-Bridge Output
- Full-Bridge Output, Forward mode
- Full-Bridge Output, Reverse mode

The Single Output mode is the standard PWM mode discussed in **Section 17.4 "Enhanced PWM Mode"**. The Half-Bridge and Full-Bridge Output modes are covered in detail in the sections that follow.

The general relationship of the outputs in all configurations is summarized in Figure 17-2.

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58

TABLE 17-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

18.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 18-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
ſ	SMP	CKE	D/Ā	Р	S	R/W	UA	BF
	bit 7							bit 0

bit 7 SMP: Sample bit

SPI Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time

SPI Slave mode:

SMP must be cleared when SPI is used in Slave mode.

bit 6 CKE: SPI Clock Select bit

- 1 = Transmit occurs on transition from active to Idle clock state
- $\ensuremath{\scriptscriptstyle 0}$ = Transmit occurs on transition from Idle to active clock state

Note: Polarity of clock state is set by the CKP bit (SSPCON1<4>).

- bit 5 **D/A:** Data/Address bit Used in I²C[™] mode only.
- bit 4 **P:** Stop bit Used in I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.
- bit 3 **S:** Start bit Used in I²C mode only.
- bit 2 **R/W:** Read/Write Information bit Used in I²C mode only.
- bit 1 **UA:** Update Address bit Used in I²C mode only.
- bit 0 BF: Buffer Full Status bit (Receive mode only)
 - 1 = Receive complete, SSPBUF is full
 - 0 = Receive not complete, SSPBUF is empty

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

18.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 18-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI operation is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 18-3, Figure 18-5 and Figure 18-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- · Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 18-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 18-3: SPI MODE WAVEFORM (MASTER MODE)

FIGURE 18-5:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	H CKE :	= 0)			
- SS Opäend	• • •										
940R (C242P = 0											
- CBASS # 30) - SACK	: 4		· · ·	· · ·		· ·		· : : ······			3 3
(ONA + 1 OKE + 0)	: : :										
Write to SSPSUF		•	2 2 2 2	: : : :	e Garana E E	•	2 2 2	· 	(*
9870		K 158 V	 X	X 58.6		×68.3	X 68.0			<u>(3</u> 3-6)	
809 (9849 = 0)	· · · · ·			dijijijijiji							* 1
inguja Samagoiae	- - - 		, , , , , , , , , , , , , , , , , , , ,	. 49.						<i>a</i> .	
- (68892 + 0) 6985299 100800894 70880	: : :		- 5 5 5 5	e • • • •	- 5 5 6 6	: :	· 5 5 5 5	, , ; ;			
SSPSR 5 SSPSLF	, , 6	• • •)) //////////////////////////////////	: : 	t t 5	• • •) ; ,	: : · · · · · · · · · · · · · · · · · ·		2002 (20 2020 (20 2020 (20	n yangalar Ta

FIGURE 18-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
PIR2	OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	58
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	58
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	58
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	58
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	58
SSPBUF	MSSP Rec	eive Buffer/	Fransmit Re	gister					56
SSPADD	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0	56
TMR2	Timer2 Reg	gister							56
PR2	Timer2 Per	riod Register	•						56
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	56
SSPCON2	GCEN	ACKSTAT	ACKDT/ ADMSK5	ACKEN/ ADMSK5	RCEN/ ADMSK5	PEN/ ADMSK5	RSEN/ ADMSK5	SEN	56
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	56

TABLE 18-4: REGISTERS ASSOCIATED WITH I²C[™] OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the MSSP module in I^2C mode.

		·		
BRG Value	XXXXh	0000h	<u> </u>	001Ch
RX pin		Start	- Edge #1 - Edge #2 - Edge #3 - Edge #4 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7	– Edge #5 Stop Bit
BRG Clock		huuuuuu		
ABDEN bit	Set by User —	, , ,		Auto-Cleared
RCIF bit (Interrupt)		1 1 1 1		
Read RCREG		, , , , ,		
SPBRG		ı	xxxxh X	1Ch
SPBRGH			XXXXh	00h

FIGURE 19-2: BRG OVERFLOW SEQUENCE

19.3 EUSART Synchronous Master Mode

The Master mode indicates that the processor transmits the master clock on the CK line. The Synchronous Master mode is entered by setting the CSRC bit (TXSTA<7>). In this mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition, enable bit SPEN (RCSTA<7>) is set in order to configure the TX and RX pins to CK (clock) and DT (data) lines, respectively.

The Master mode indicates that the processor transmits the master clock on the CK line.

Clock polarity (CK) is selected with the TXCKP bit (BAUDCON<4>). Setting TXCKP sets the Idle state on CK as high, while clearing the bit sets the Idle state as low.

19.3.1 EUSART SYNCHRONOUS MASTER TRANSMISSION

The EUSART transmitter block diagram is shown in Figure 19-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available).

Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG is empty and the TXIF flag bit (PIR1<4>) is set. The interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXIE (PIE1<4>). TXIF is set regardless of the state of enable bit TXIE; it cannot be cleared in software. It will reset only when new data is loaded into the TXREG register.

While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 3. If the signal from the CK pin is to be inverted, set the TXCKP bit.
- 4. If interrupts are desired, set enable bit, TXIE.
- 5. If 9-bit transmission is desired, set bit, TX9.
- 6. Enable the transmission by setting bit, TXEN.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 8. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 19-11: SYNCHRONOUS TRANSMISSION

20.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 20-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding) capa	acitor is disco	nne	ected from	the
	input p	in.				

To calculate the minimum acquisition time, Equation 20-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 20-3 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

Chold	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 2 k\Omega$
Temperature	=	85°C (system max.)

EQUATION 20-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 20-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{RSS} + \text{RS}))})$
or		
TC	=	-(CHOLD)(RIC + RSS + RS) $\ln(1/2048)$

EQUATION 20-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture c	oefficient is only required for temperatures $> 25^{\circ}$ C. Below 25° C, TCOFF = 0 ms.
ТС	=	-(CHOLD)(RIC + RSS + RS) $\ln(1/2047)$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) $\ln(0.0004883)$ 1.05 µs
TACQ	=	0.2 μs + 1 μs + 1.2 μs 2.4 μs

NOTES:

NOTES:

23.5 Applications

In many applications, the ability to detect a drop below or rise above a particular threshold is desirable. For example, the HLVD module could be periodically enabled to detect a Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 23-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage VA, the HLVD logic generates an interrupt at time TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and perform a controlled shutdown before the device voltage exits the valid operating range at TB. The HLVD, thus, would give the application a time window, represented by the difference between TA and TB, to safely exit.

FIGURE 23-4:

TYPICAL LOW-VOLTAGE DETECT APPLICATION

COMF	Complem	ent f		CPFSEQ	Compare	e f with W, SI	kip if f = W
Syntax:	COMF f	{,d {,a}}		Syntax:	CPFSEQ	f {,a}	
Operands:	$0 \le f \le 255$ $d \in [0.11]$			Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5	
Operation:	$a \in [0, 1]$ $\overline{(f)} \rightarrow dest$			Operation:	(f) – (W), skip if (f) = (unsianed	· (W) comparison)	
Status Affected:	N, Z			Status Affected	d: None		
Encoding:	0001	11da ff	ff ffff	Encodina:	0110	001a ff	ff ffff
Description:	The content complement stored in W stored back If 'a' is '0', ti GPR bank (If 'a' is '0' a set is enabl in Indexed I mode when Section 25 Bit-Oriente Literal Offs	ts of register ' tted. If 'd' is '0' . If 'd' is '1', th in register 'f' he Access Ba he BSR is use (default). nd the extend led, this instru Literal Offset <i>J</i> never $f \le 95$ (5 .2.3 "Byte-Or ed Instruction set Mode" for	f' are c', the result is e result is (default). nk is selected. d to select the ed instruction ction operates Addressing Fh). See iented and is in Indexed details.	Description:	Compares location 'f' performing If 'f' = W, t discarded instead, m instruction If 'a' is '0', If 'a' is '0', GPR bank If 'a' is '0' set is enal in Indexed mode whe	the contents o to the contents o to the contents o to the contents and a nop is e aking this a two the Access Ba the BSR is use (default). and the extend oled, this instru- Literal Offset / never f \leq 95 (5 5 2 3 "Buto. Or	f data memory f data memory s of W by subtraction. d instruction is xecuted o-cycle nk is selected. ed instruction ction operates Addressing Fh). See
Words:	1				Bit-Orient	ed Instruction	iented and
Cycles:	1				Literal Of	fset Mode" for	details.
Q Cycle Activity:				Words:	1		
Q1 Decode	Q2 Read register 'f'	Q3 Process Data	Q4 Write to destination	Cycles:	1(2) Note: 3 by	cycles if skip ar a 2-word instru	nd followed uction.
Fuenale	~~~~			Q Cycle Activ	ity:		
	COME	REG, U, U		Q1	Q2	Q3	Q4
Before Instru	ction = 13b			Decod	le Read	Process	NO
After Instructi	ion			lf skip:	register i	Data	operation
REG	= 13h			Q1	Q2	Q3	Q4
W	= ECh			No	No	No	No
				operati	on operation	operation	operation
				If skip and fol	lowed by 2-word i	nstruction:	
				Q1	Q2	Q3	Q4
				No	NO operation	No	No
				No	No	No	No
				operati	on operation	operation	operation
				Example:	HERE NEQUAL EQUAL	CPFSEQ REC : :	G, O
				Before In PC / W REC After Inst	struction Address = H = ? G = ? ruction	ERE	
				lf RE	$EG = V$ $PC = A$ $EG \neq V$ $PC = A$	/; ddress (EQUA /; ddress (NEQU	L) AL)

FIGURE 27-11: CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)

TABLE 27-12: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)

Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions	
50	50 TccL CCPx Input Low No prescale		er	0.5 TCY + 20		ns		
		Time	With	PIC18FXXXX	10	_	ns	
			prescaler	PIC18LFXXXX	20	_	ns	VDD = 2.0V
51	TccH	CCPx Input	No prescale	er	0.5 Tcy + 20	_	ns	
		High Time	With prescaler	PIC18FXXXX	10	_	ns	
				PIC18LFXXXX	20	_	ns	VDD = 2.0V
52	TccP	CCPx Input Period		<u>3 Tcy + 40</u> N		ns	N = prescale value (1, 4 or 16)	
53	TccR	CCPx Output Fa	ll Time	PIC18FXXXX	—	25	ns	
		PIC18LFXXXX		_	45	ns	VDD = 2.0V	
54	TccF	ccF CCPx Output Fall Time		PIC18FXXXX		25	ns	
				PIC18LFXXXX		45	ns	VDD = 2.0V

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	3	
Dimensi	on Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness		0.20 REF			
Overall Width	Е		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	K	0.20	_	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

RRNCF	
SETF	
SETF (Indexed Literal Offset Mode)	
SLEEP	
Standard Instructions	
SUBFWB	
SUBLW	
SUBWF	
SUBWFB	
SWAPF	
TBLRD	
TBLWT	
TSTFSZ	
XORLW	
XORWF	320
INTCON Registers	99–101
Inter-Integrated Circuit. See I ² C.	
Internal Oscillator Block	32
Adjustment	32
INTIO Modes	32
INTOSC Frequency Drift	33
INTOSC Output Frequency	32
OSCTUNE Register	32
PLL in INTOSC Modes	33
Internal RC Oscillator	
Use with WDT	
Internet Address	
Interrupt Sources	259
A/D Conversion Complete	237
Capture Complete (CCP)	147
Compare Complete (CCP)	148
Interrupt-on-Change (RB7:RB4)	114
INTx Pin	109
PORTB, Interrupt-on-Change	
TMR0	109
TMR0 Overflow	131
TMR1 Overflow	133
TMR2 to PR2 Match (PWM)	150, 155
TMR3 Overflow	141, 143
Interrupts	97
INTOSC, INTRC. See Internal Oscillator Block.	
IORLW	302
IORWF	
IPR Registers	

L

LFSR	3
Low-Voltage ICSP Programming. See Single-Supply ICSP	
Programming	

Μ

Master Clear (MCLR)	49
Master Synchronous Serial Port (MSSP). See MSSP.	
Memory Organization	59
Data Memory	65
Program Memory	59
Memory Programming Requirements	349
Microchip Internet Web Site	399
Migration from Baseline to Enhanced Devices	387
Migration from High-End to Enhanced Devices	388
Migration from Mid-Range to Enhanced Devices	388
MOVF	303
MOVFF	304
MOVLB	304
MOVLW	305
MOVSF	323

MOVSS	324
MOVWF	305
MPLAB ASM30 Assembler, Linker, Librarian	330
MPLAB ICD 2 In-Circuit Debugger	331
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator	331
MPLAB Integrated Development Environment	
Software	329
MPLAB PM3 Device Programmer	331
MPLAB REAL ICE In-Circuit Emulator System	331
MPLINK Object Linker/MPLIB Object Librarian	330
MSSP	
ACK Pulse 181,	183
Control Registers (general)	167
I ² C Mode. See I ² C Mode.	
Module Overview	167
SPI Master/Slave Connection	171
SPI Mode. See SPI Mode.	
SSPBUF Register	172
SSPSR Register	172
MULLW	306
MULWF	306

Ν

NEGF	307
NOP	307

0

Oscillator Configuration	29
EC	29
ECIO	29
HS	29
HSPLL	29
Internal Oscillator Block	32
INTIO1	29
INTIO2	29
LP	29
RC	29
RCIO	29
XT	29
Oscillator Selection	259
Oscillator Start-up Timer (OST)	38, 51
Oscillator Switching	35
Oscillator Transitions	36
Oscillator, Timer1	. 133, 143
Oscillator, Timer3	141

Ρ

Packaging Information	373
Marking	373
Parallel Slave Port (PSP)	120, 126
Associated Registers	127
CS (Chip Select)	126
PORTD	126
RD (Read Input)	126
Select (PSPMODE Bit)	120, 126
WR (Write Input)	126
PICSTART Plus Development Programmer	
PIE Registers	104
Pin Functions	
MCLR/VPP/RE3	14, 18
OSC1/CLKI/RA7	14, 18
OSC2/CLKO/RA6	14, 18
RA0/AN0	
RA1/AN1	