

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2221t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	ımber						
Pin Name	SPDIP, SOIC, SSOP	QFN	Pin Type	Buffer Type	Description			
					PORTA is a bidirectional I/O port.			
RA0/AN0 RA0 AN0	2	27	I/O I	TTL Analog	Digital I/O. Analog Input 0.			
RA1/AN1 RA1 AN1	3	28	I/O I	TTL Analog	Digital I/O. Analog Input 1.			
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	1	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input. Comparator reference voltage output.			
RA3/AN3/VREF+ RA3 AN3 VREF+	5	2	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.			
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	3	I/O I O	ST ST	Digital I/O. Open-collector output. Timer0 external clock input. Comparator 1 output.			
RA5/AN4/SS/HLVDIN/ C2OUT RA5 AN4 SS HLVDIN C2OUT	7	4	I/O I I I O	TTL Analog TTL Analog —	Digital I/O. Analog Input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output.			
RA6					See the OSC2/CLKO/RA6 pin.			
RA7					See the OSC1/CLKI/RA7 pin.			
Legend: TTL = TTL co ST = Schmi I^2C = ST with	KA/ See the OSC1/CLKI/RA/ pin. Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input P = Power I ² C = ST with I ² C TM or SMB levels O = Output							

TABLE 1-2: PIC18F2221/2321 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

NOTES:

6.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSb will always read '0' (see **Section 6.1.1 "Program Counter"**).

Figure 6-4 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 6-4 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 24.0 "Instruction Set Summary" provides further details of the instruction set.

						Word Address
				LSB = 1	LSB = 0	\downarrow
	Program N	1emory				000000h
	Byte Locat	ions \rightarrow				000002h
			-			000004h
						000006h
Instruction 1:	MOVLW	055h	-	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	-	EFh	03h	00000Ah
				F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 4	456h	C1h	23h	00000Eh
			-	F4h	56h	000010h
						000012h
			-			000014h

FIGURE 6-4: INSTRUCTIONS IN PROGRAM MEMORY

6.2.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 shows how this works.

Note:	See Section 6.6 "PIC18 Instruction
	Execution and the Extended Instruc-
	tion Set" for information on two-word
	instructions in the extended instruction set.

EXAMPLE 6-4:	TWO-WORD	INSTRUCTIONS

CASE 1:							
Object Code	Source Code						
0110 0110 0000 0000	TSTFSZ REG1 ; is RAM location 0?						
1100 0001 0010 0011	MOVFF REG1, REG2 ; No, skip this word						
1111 0100 0101 0110	; Execute this word as a NOP						
0010 0100 0000 0000	ADDWF REG3 ; continue code						
CASE 2:	CASE 2:						
Object Code	Source Code						
0110 0110 0000 0000	TSTFSZ REG1 ; is RAM location 0?						
1100 0001 0010 0011	MOVFF REG1, REG2 ; Yes, execute this word						
1111 0100 0101 0110	; 2nd word of instruction						
0010 0100 0000 0000	ADDWF REG3 ; continue code						

NOTES:

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	58
LATB	PORTB Data Latch Register (Read and Write to Data Latch)								58
TRISB	PORTB Data Direction Register								58
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	55
INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF	55
ADCON1			VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	57

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTB.

16.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

16.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

TABLE 16-1:CCP MODE – TIMER
RESOURCES

CCP/ECCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

The assignment of a particular timer to a module is determined by the Timer to CCP enable bits in the T3CON register (Register 15-1). Both modules may be active at any given time and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time. The interactions between the two modules are summarized in Figure 16-1 and Figure 16-2. In Timer1 in Asynchronous Counter mode, the capture operation will not work.

16.1.2 CCP2 PIN ASSIGNMENT

The pin assignment for CCP2 (Capture input, Compare and PWM output) can change, based on device configuration. The CCP2MX Configuration bit determines which pin CCP2 is multiplexed to. By default, it is assigned to RC1 (CCP2MX = 1). If the Configuration bit is cleared, CCP2 is multiplexed with RB3.

Changing the pin assignment of CCP2 does not automatically change any requirements for configuring the port pin. Users must always verify that the appropriate TRIS register is configured correctly for CCP2 operation, regardless of where it is located.

CCP1 Mode	CCP2 Mode	Interaction
Capture	Capture	Each module can use TMR1 or TMR3 as the time base. The time base can be different for each CCP.
Capture	Compare	CCP2 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Automatic A/D conversions on trigger event can also be done. Operation of CCP1 could be affected if it is using the same timer as a time base.
Compare	Capture	CCP1 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Operation of CCP2 could be affected if it is using the same timer as a time base.
Compare	Compare	Either module can be configured for the Special Event Trigger to reset the time base. Automatic A/D conversions on CCP2 trigger event can be done. Conflicts may occur if both modules are using the same time base.
Capture	PWM ⁽¹⁾	None
Compare	PWM ⁽¹⁾	None
PWM ⁽¹⁾	Capture	None
PWM ⁽¹⁾	Compare	None
PWM ⁽¹⁾	PWM	Both PWMs will have the same frequency and update rate (TMR2 interrupt).

TABLE 16-2: INTERACTIONS BETWEEN CCP1 AND CCP2 FOR TIMER RESOURCES

Note 1: Includes standard and Enhanced PWM operation.

17.4.4 HALF-BRIDGE MODE

In the Half-Bridge Output mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the P1A pin, while the complementary PWM output signal is output on the P1B pin (Figure 17-4). This mode can be used for half-bridge applications, as shown in Figure 17-5, or for full-bridge applications where four power switches are being modulated with two PWM signals.

In Half-Bridge Output mode, the programmable deadband delay can be used to prevent shoot-through current in half-bridge power devices. The value of bits, PDC<6:0>, sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 17.4.6 "Programmable Dead-Band Delay"** for more details of the dead-band delay operations.

Since the P1A and P1B outputs are multiplexed with the PORTC<2> and PORTD<5> data latches, the TRISC<2> and TRISD<5> bits must be cleared to configure P1A and P1B as outputs.

FIGURE 17-4: HALF-BRIDGE PWM

FIGURE 17-5: EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS

17.4.7.1 Auto-Shutdown and Automatic Restart

The auto-shutdown feature can be configured to allow automatic restarts of the module following a shutdown event. This is enabled by setting the PRSEN bit of the ECCP1DEL register (ECCP1DEL<7>).

In Shutdown mode with PRSEN = 1 (Figure 17-10), the ECCPASE bit will remain set for as long as the cause of the shutdown continues. When the shutdown condition clears, the ECCP1ASE bit is cleared. If PRSEN = 0 (Figure 17-11), once a shutdown condition occurs, the ECCPASE bit will remain set until it is cleared by firmware. Once ECCPASE is cleared, the Enhanced PWM will resume at the beginning of the next PWM period.

Note:	Writing to the ECCPASE bit is disabled
	while a shutdown condition is active.

Independent of the PRSEN bit setting, if the autoshutdown source is one of the comparators, the shutdown condition is a level. The ECCPASE bit cannot be cleared as long as the cause of the shutdown persists.

The Auto-Shutdown mode can be forced by writing a '1' to the ECCPASE bit.

17.4.8 START-UP CONSIDERATIONS

When the ECCP module is used in the PWM mode, the application hardware must use the proper external pullup and/or pull-down resistors on the PWM output pins. When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the OFF state until the microcontroller drives the I/O pins with the proper signal levels, or activates the PWM output(s).

The CCP1M<1:0> bits (CCP1CON<1:0>) allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pins are configured as outputs. Changing the polarity configuration while the PWM pins are configured as outputs is not recommended, since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pins for output at the same time as the ECCP module may cause damage to the application circuit. The ECCP module must be enabled in the proper output mode and complete a full PWM cycle before configuring the PWM pins as outputs. The completion of a full PWM cycle is indicated by the TMR2IF bit being set as the second PWM period begins.

FIGURE 17-10: PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)

FIGURE 17-11: PWM AUTO-SHUTDOWN (PRSEN = 0, AUTO-RESTART DISABLED)

FIGURE 18-29: BUS COLLISION DURING START CONDITION (SCL = 0)

FIGURE 18-30: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	57
TXREG	EUSART Transmit Register								57
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	57
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	57
SPBRGH	EUSART Baud Rate Generator Register High Byte								57
SPBRG	EUSART B	Baud Rate G	enerator Re	gister Low E	Byte				57

TABLE 19-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

Note 1: These bits are unimplemented on 28-pin devices and read as '0'.

19.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any power-managed mode.

19.4.1 EUSART SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes are identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG register.
- c) Flag bit, TXIF, will not be set.
- When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit, TXIF, will now be set.
- e) If enable bit, TXIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If the signal from the CK pin is to be inverted, set the TXCKP bit.
- 5. If 9-bit transmission is desired, set bit, TX9.
- 6. Enable the transmission by setting enable bit, TXEN.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 8. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	57
TXREG	EUSART T	ransmit Regi	ister						57
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	57
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	57
SPBRGH EUSART Baud Rate Generator Register High Byte									57
SPBRG	EUSART E	Baud Rate Ge	enerator Re	gister Low I	Byte				57

TABLE 19-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: These bits are unimplemented on 28-pin devices and read as '0'.

21.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 21-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 21-4: COMPARATOR ANALOG INPUT MODEL

TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	57
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	57
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	58
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	58
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	58
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	58
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	58
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	PORTA Data Latch Register (Read and Write to Data Latch)						
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA Da	ta Direction	Control Re	egister			58

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PORTA<7:6> and their direction and latch bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

REGISTER 24-14: WDTCON: WATCHDOG TIMER CONTROL REGISTER

bit 7-1 Unimplemented: Read as '0'

bit 0 **SWDTEN:** Software Controlled Watchdog Timer Enable bit⁽¹⁾

1 = Watchdog Timer is on

0 = Watchdog Timer is off

Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.

Legend:	
R = Readable bit	W = Writable bit
U = Unimplemented bit, read as '0'	-n = Value at POR

TABLE 24-2: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
RCON	IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR	BOR	56
WDTCON	_	_	_	_	_	_	_	SWDTEN	56

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

Note 1: The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L		_	—	—	_	_	CP1	CP0
300009h	CONFIG5H	CPD	CPB	—	—	—	—	—	—
30000Ah	CONFIG6L	_	—	—	—	—	—	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	—	—	—	—	—
30000Ch	CONFIG7L	_	—	—	—	—	—	EBTR1	EBTR0
30000Dh	CONFIG7H	_	EBTRB	—	—	—	—	—	_

TABLE 24-3: SUMMARY OF CODE PROTECTION REGISTERS

Legend: Shaded cells are unimplemented.

24.5.1 PROGRAM MEMORY CODE PROTECTION

The program memory may be read to or written from any location using the table read and table write instructions. The device ID may be read with table reads. The Configuration registers may be read and written with the table read and table write instructions.

In normal execution mode, the CPn bits have no direct effect. CPn bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTn Configuration bit is '0'. The EBTRn bits control table reads. For a block of user memory with the EBTRn bit set to '0', a table read instruction that executes from within that block is allowed to read. A table read instruction that executes from a location outside of that block is not allowed to read and will result in reading '0's. Figures 24-6 through 24-8 illustrate table write and table read protection.

Note: Code protection bits may only be written to a '0' from a '1' state. It is not possible to write a '1' to a bit in the '0' state. Code protection bits are only set to '1' by a full chip erase or block erase function. The full chip erase and block erase functions can only be initiated via ICSP operation or an external programmer.

FIGURE 24-6: TABLE WRITE (WRTn) DISALLOWED

ADDWFC	ADD W a	ADD W and Carry bit to f			DLW	AND Lite	AND Literal with W				
Syntax:	ADDWFC	f {,d {,a}}		Syn	tax:	ANDLW	k				
Operands:	$0 \leq f \leq 255$			Ope	erands:	$0 \le k \le 255$	5				
	$d \in [0, 1]$			Ope	eration:	(W) .AND.	$k \rightarrow W$				
.	a ∈ [0,1]			Stat	us Affected:	N, Z	N, Z				
Operation:	(VV) + (f) +	$(C) \rightarrow dest$		Enc	oding:	0000	1011	kkkk	kkkk		
Status Affected	d: N,OV, C, D			Des	cription:	The conter	nts of W are	e ANDe	d with the		
Encoding:	0010	0010 00da ffff ffff				8-bit literal	'k'. The res	sult is pl	aced in W.		
Description:	Add W, the	Carry flag and	data memory	Woi	ds:	1					
	placed in W	//.lf 'd' is '1', th	ne result is	Сус	les:	1					
	placed in d	ata memory lo	ocation 'f'.	Q	Cycle Activity:						
	lf 'a' is '0', t lf 'a' is '1' t	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).			Q1	Q2	Q3		Q4		
	GPR bank				Decode	Read literal	Proces	s V	/rite to W		
If 'a' is '0' and the extended instruction				'k'	Data						
	set is enabl	led, this instru	ction operates	E			0 1				
	mode wher	mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			<u>mpie:</u>	ANDLW 05FII					
	Section 25				Before Instru	Ction					
	Literal Offe				VV After Instruct	= A3n					
Words [.]	1				W	= 03h					
Cycles:	1										
O Cycle Activ	vitv.										
Q1	Q2	Q3	Q4								
Decod	le Read	Process	Write to								
	register 'f'	Data	destination								
Example:	ADDWFC	REG, 0,	1								
Before In	struction										
REG	G = 02h										
W	= 4Dh										
After Inst	ruction										
REG	G = 02h										
W	= 50h										

ΒZ		Branch if	Branch if Zero						
Synta	ax:	BZ n							
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$						
Oper	ation:	lf Zero bit is (PC) + 2 +	If Zero bit is '1', (PC) + 2 + 2n \rightarrow PC						
Statu	s Affected:	None							
Enco	ding:	1110	0000	nnn	n	nnnn			
Desc	ription:	If the Zero will branch. The 2's cor added to th have increr instruction, PC + 2 + 2t two-cycle ir	If the Zero bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction						
Word	ls:	1	1						
Cycle	es:	1(2)							
Q C If Ju	ycle Activity:								
	Q1	Q2	Q3	Q3		Q4			
	Decode	Read literal 'n'	Proce Data	ess a	V	/rite to PC			
	No operation	No operation	No operat	tion	ор	No eration			
lf No	o Jump:								
i	Q1	Q2	Q3			Q4			
	Decode	Read literal 'n'	Proce Data	ess a	ор	No eration			
<u>Exan</u>	nple:	HERE	BZ	Jump					
	PC PC After Instructio	tion = ad on	dress (I	HERE)					
	If Zero PC If Zero	= 1; = ad = 0;	dress (Jump)					
	PC	= ad	dress (1	HERE	+ 2)			

CALL	Subroutine Call						
Syntax:	CALL k {,s	5}					
Operands:	0 ≤ k ≤ 104 s ∈ [0,1]	8575					
Operation:	$\begin{array}{l} (PC) + 4 \rightarrow \\ k \rightarrow PC < 20 \\ \text{if s = 1,} \\ (W) \rightarrow WS, \\ (STATUS) \rightarrow \\ (BSR) \rightarrow B \end{array}$	$\begin{array}{l} (PC) + 4 \rightarrow TOS, \\ k \rightarrow PC < 20:1>; \\ \text{if } s = 1, \\ (W) \rightarrow WS, \\ (STATUS) \rightarrow STATUSS, \\ (PSD) \rightarrow PSDS \end{array}$					
Status Affected:	None						
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈			
	(PC + 4) is stack. If 's' BSR register respective s STATUSS a update occ 20-bit value CALL is a t	(PC + 4) is pushed onto the return stack. If 's' = 1, the W, STATUS and BSR registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs (default). Then, the 20-bit value 'k' is loaded into PC<20:1>. CALL is a two-cycle instruction.					
Words:	2	2					
Cycles:	2						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read literal 'k'<7:0>,	PUSH F stac	PCtoR k '	ead literal k'<19:8>, /rite to PC			
No operation	No operation	No opera	tion	No operation			
Example:	HERE	CALL	THERE,	1			
Before Instruct	tion						
PC After Instructio	= address	G (HERE)				
TOS TOS WS BSRS STATUSS	 address address W BSR STATUS 	G (THER G (HERE	些) + 4)				

MOVSS	Move Indexed to Indexed									
Syntax:	MOVSS	[z _s], [z _d]								
Operands:	$0 \le z_s \le 12$	27								
	$0 \le z_d \le 12$	27								
Operation:	((FSR2) +	$((FSR2) + z_s) \rightarrow ((FSR2) + z_d)$								
Status Affected:	None	None								
Encoding:										
1st word (source)	1110	1011	1 z z z	ZZZZs						
2nd word (dest.)	1111	XXXX	XZZZ	zzzzd						
Words	moved to a addresses registers a 7-bit literal respective registers of the 4096-b (000h to F The MOVS: PCL, TOS destination If the resul an indirect value retur resultant of an indirect	The contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets ' z_s ' or ' z_d ', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the value returned will be 00h. If the resultant destination address points to an indirect addressing register, the								
words:	2									
Cycles:	2									
Q Cycle Activity:										
Q1	Q2	Q3	3	Q4						

Q1	Q2	Q3	Q4		
Decode	Determine	Determine	Read		
	source addr	source addr	source reg		
Decode	Determine dest addr	Determine dest addr	Write to dest reg		

Example:	MOVSS	[05h],	[06h]
Before Instruction	n		
FSR2	=	80h	
of 85h Contents	=	33h	
of 86h	=	11h	
After Instruction			
FSR2	=	80h	
Contents of 85h Contents	=	33h	
of 86h	=	33h	

PUSHL	Store Literal at FSR2, Decrement FSR2						
Syntax:	PUSH	HL k					
Operands:	$0 \leq k$	≤ 255					
Operation:	$k \rightarrow (FSR2$	FSR2 2 – 1 –), → FS	R2			
Status Affected:	None	:					
Encoding:	11	.11	10	10	kkkk		kkkk
Description:	is dec This i	ory ad cremei instruc a softv	erai dress nted tion a vare	k is w s spec by 1 a allows stack.	ified by after the users to	the FS ope p pl	e data R2. FSR2 eration. Jsh values
Words:	1						
Cycles:	1						
Q Cycle Activity	/:						
Q1		Q2		(Q3		Q4
Decode	F	Read '	k'	Pro d	ocess ata	d	Write to estination
<u>Example:</u> Before Inst FSR2 Memo	₽ ruction H:FSR bry (011	2USHL 2L ECh)	08h	=	01ECh 00h	I	
After Instru	ction						

i motraotion		
FSR2H:FSR2L Memory (01ECh)	= =	01EBh 08h

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimensi	on Limits	MIN NOM MAX		MAX
Number of Pins	Ν	28		
Pitch	е	0.65 BSC		
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	Е	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width	b	0.23	0.30	0.35
Contact Length	L	0.50	0.55	0.70
Contact-to-Exposed Pad	K	0.20	_	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the Enhanced devices (i.e., PIC18FXXX) is provided in *AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442*". The changes discussed, while device specific, are generally applicable to all mid-range to Enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the Enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration*".

This Application Note is available as Literature Number DS00726.