

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2321-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: DEVICE FEAT	URES	1	1	
Features	PIC18F2221	PIC18F2321	PIC18F4221	PIC18F4321
Operating Frequency	DC – 40 MHz			
Program Memory (Bytes)	4096	8192	4096	8192
Program Memory (Instructions)	2048	4096	2048	4096
Data Memory (Bytes)	512	512	512	512
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/ PWM Modules	0	0	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Parallel Communications (PSP)	No	No	Yes	Yes
10-bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT			
Programmable Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled			
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP	40-pin PDIP 44-pin QFN 44-pin TQFP

TABLE 1-1: DEVICE FEATURES

TABLE 1-3: PIC1				1 1/01	JESCRI	
Pin Name	Pi	Pin Number		Pin		Description
	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTD is a bidirectional I/O port or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when the PSP module is enabled.
RD0/PSP0 RD0 PSP0	19	38	38	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD1/PSP1 RD1 PSP1	20	39	39	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD2/PSP2 RD2 PSP2	21	40	40	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD3/PSP3 RD3 PSP3	22	41	41	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD4/PSP4 RD4 PSP4	27	2	2	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD5/PSP5/P1B RD5 PSP5 P1B	28	3	3	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
RD6/PSP6/P1C RD6 PSP6 P1C	29	4	4	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
RD7/PSP7/P1D RD7 PSP7 P1D	30	5	5	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
Legend: TTL = TTL ST = Schr I^2C = ST w	nitt Trigg	er input	with CN	/IOS lev	/els	CMOS = CMOS compatible input or output I = Input P = Power O = Output

TABLE 1-3: PIC18F4221/4321 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

3.7.1 OSCILLATOR CONTROL REGISTER

The OSCCON register (Register 3-2) controls several aspects of the device clock's operation, both in full power operation and in power-managed modes.

The System Clock Select bits, SCS<1:0>, select the clock source. The available clock sources are the primary clock (defined by the FOSC<3:0> Configuration bits), the secondary clock (Timer1 oscillator) and the internal oscillator block. The clock source changes immediately after either of the SCS<1:0> bits are changed, following a brief clock transition interval. The SCS bits are reset on all forms of Reset.

The Internal Oscillator Frequency Select bits (IRCF<2:0>) select the frequency output of the internal oscillator block to drive the device clock. The choices are the INTRC source (31 kHz), the INTOSC source (8 MHz) or one of the frequencies derived from the INTOSC postscaler (31.25 kHz to 4 MHz). If the internal oscillator block is supplying the device clock, changing the states of these bits will have an immediate change on the internal oscillator's output. On device Resets, the default output frequency of the internal oscillator block is set at 1 MHz.

When a nominal output frequency of 31 kHz is selected (IRCF<2:0> = 000), users may choose which internal oscillator acts as the source. This is done with the INTSRC bit in the OSCTUNE register (OSCTUNE<7>). Setting this bit selects INTOSC as a 31.25 kHz clock source derived from the INTOSC postscaler. Clearing INTSRC selects INTRC (nominally 31 kHz) as the clock source and disables the INTOSC to reduce current consumption.

This option allows users to select the tunable and more precise INTOSC as a clock source, while maintaining power savings with a very low clock speed. Additionally, the INTOSC source will already be stable should a switch to a higher frequency be needed quickly. Regardless of the setting of INTSRC, INTRC always remains the clock source for features such as the Watchdog Timer and the Fail-Safe Clock Monitor.

The OSTS, IOFS and T1RUN bits indicate which clock source is currently providing the device clock. The OSTS bit indicates that the Oscillator Start-up Timer and PLL Start-up Timer (if enabled) have timed out and the primary clock is providing the device clock in primary clock modes. The IOFS bit indicates when the internal oscillator block has stabilized and is providing the device clock in RC Clock modes. The T1RUN bit (T1CON<6>) indicates when the Timer1 oscillator is providing the device clock in secondary clock modes. In power-managed modes, only one of these three bits will be set at any time. If none of these bits are set, the INTRC is providing the clock or the internal oscillator block has just started and is not yet stable.

The IDLEN bit controls whether the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed.

The use of the flag and control bits in the OSCCON register is discussed in more detail in **Section 4.0** "**Power-Managed Modes**".

Note 1:	The Timer1 oscillator must be enabled to								
	select the secondary clock source. The								
	Timer1 oscillator is enabled by setting the								
	T1OSCEN bit in the Timer1 Control regis-								
	ter (T1CON<3>). If the Timer1 oscillator								
	is not enabled, then any attempt to select								
	a secondary clock source will be ignored.								
2:	It is recommended that the Timer1								

2: It is recommended that the Timer1 oscillator be operating and stable before selecting the secondary clock source or a very long delay may occur while the Timer1 oscillator starts.

3.7.2 OSCILLATOR TRANSITIONS

The PIC18F2221/2321/4221/4321 family of devices contains circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 4.1.2 "Entering Power-Managed Modes"**.

6.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 Enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Flash program memory is provided in Section 7.0 "Flash Program Memory". Data EEPROM is discussed separately in Section 8.0 "Data EEPROM Memory".

6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The PIC18F2221 and PIC18F4221 each have 4 Kbytes of Flash memory and can store up to 2048 single-word instructions. The PIC18F2321 and PIC18F4321 each have 8 Kbytes of Flash memory and can store up to 4096 single-word instructions.

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory maps for PIC18F2221/4221 and PIC18F2321/4321 devices are shown in Figure 6-1.

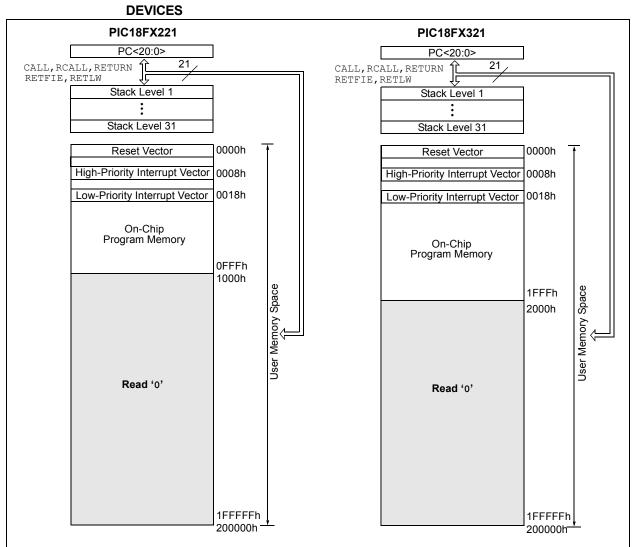


FIGURE 6-1: PROGRAM MEMORY MAP AND STACK FOR PIC18F2221/2321/4221/4321 FAMILY

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
RCON	IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR	BOR	54
PIR1	PSPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
PIR2	OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	58
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	58
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	58
TRISB	PORTB Data Direction Register								
TRISC	PORTC Data Direction Register								58
TMR1L	Timer1 Reg	gister Low By	/te						56
TMR1H	Timer1 Reg	gister High B	yte						56
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	56
TMR3H	Timer3 Reg	gister High B	yte						57
TMR3L	Timer3 Reg	gister Low B	/te						57
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	57
CCPR1L	Capture/Co	mpare/PWN	1 Register 1	Low Byte					57
CCPR1H	Capture/Co	mpare/PWN	1 Register 1	High Byte					57
CCP1CON	P1M1 ⁽²⁾	P1M0 ⁽²⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	57
CCPR2L	Capture/Compare/PWM Register 2 Low Byte								57
CCPR2H	Capture/Co	mpare/PWN	1 Register 2	High Byte					57
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	57

TABLE 16-3:	REGISTERS ASSOCIATED WITH CAPTURE	COMPARE, TIMER1 AND TIMER3

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Capture/Compare, Timer1 or Timer3.

Note 1: The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

2: These bits are unimplemented on 28-pin devices and read as '0'.

18.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

18.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
 - Slave mode (with address masking for both 10-bit and 7-bit addressing)

The $\mathrm{I}^2\mathrm{C}$ interface supports the following modes in hardware:

- · Master mode
- Multi-Master mode
- Slave mode

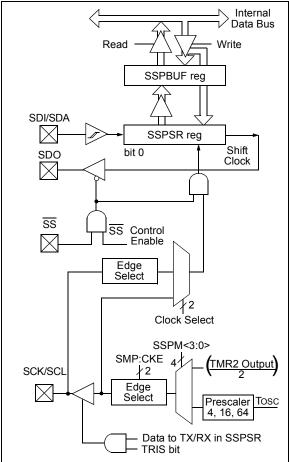
18.2 Control Registers

The MSSP module has three associated registers. These include a status register (SSPSTAT) and two control registers (SSPCON1 and SSPCON2). The use of these registers and their individual Configuration bits differ significantly depending on whether the MSSP module is operated in SPI or I²C mode.

Additional details are provided under the individual sections.

18.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four SPI modes are supported. To accomplish communication, typically three pins are used:


- Serial Data Out (SDO) SDO
- Serial Data In (SDI) SDI/SDA
- Serial Clock (SCK) SCK/SCL

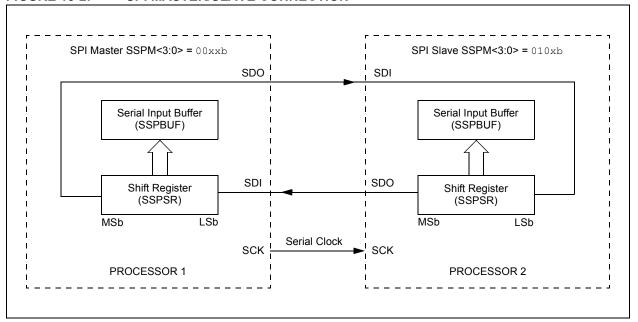
Additionally, a fourth pin may be used when in a Slave mode of operation:

• Slave Select (SS)

Figure 18-1 shows the block diagram of the MSSP module when operating in SPI mode.

18.3.3 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:


- SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISA<5> bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

18.3.4 TYPICAL CONNECTION

Figure 18-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- Master sends data Slave sends data
- · Master sends dummy data Slave sends data

FIGURE 18-2: SPI MASTER/SLAVE CONNECTION

18.4.2 OPERATION

The MSSP module functions are enabled by setting MSSP Enable bit, SSPEN (SSPCON1<5>).

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits (SSPCON1<3:0>) allow one of the following I^2C modes to be selected:

- I²C Master mode clock
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins.

18.4.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I²C Slave mode hardware will always generate an interrupt on an address match. Address masking will allow the hardware to generate an interrupt for more than one address (up to 31 in 7-Bit Addressing mode and up to 63 in 10-Bit Addressing mode). Through the mode select bits, the user can also choose to interrupt on Start and Stop bits

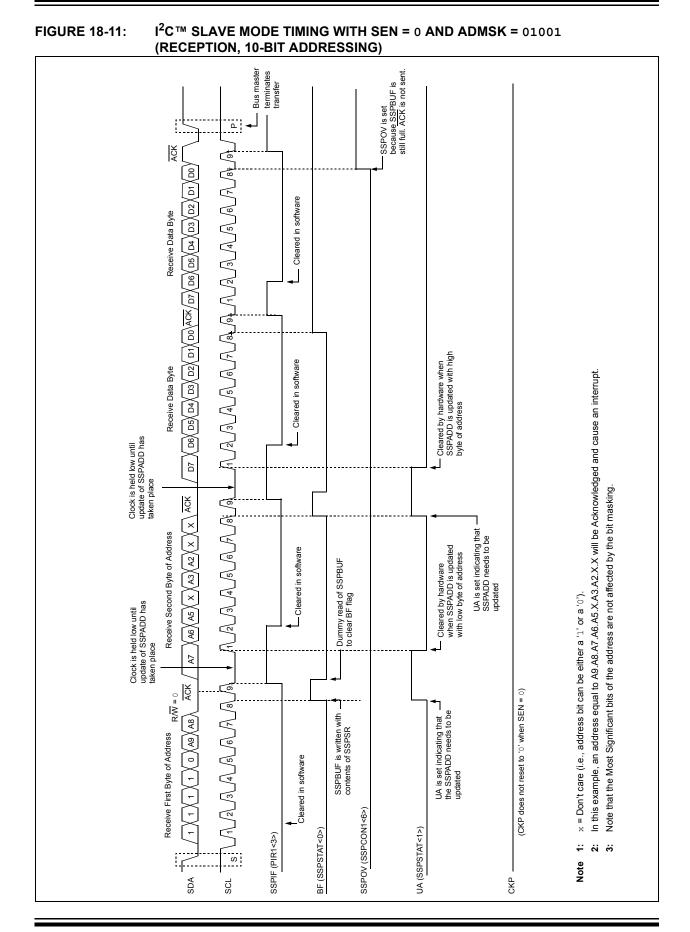
When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overrightarrow{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the MSSP module not to give this ACK pulse:

- The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- The overflow bit, SSPOV (SSPCON1<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter 100 and parameter 101.

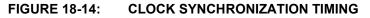

18.4.3.1 Addressing

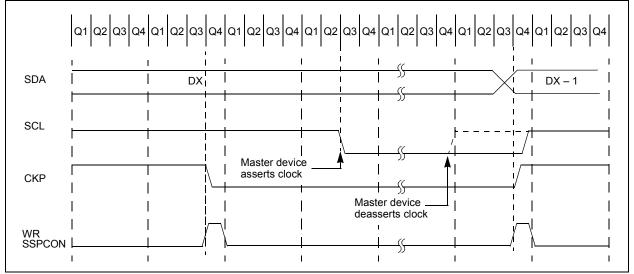
Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPSR register value is loaded into the SSPBUF register.
- 2. The Buffer Full bit, BF, is set.
- 3. An ACK pulse is generated.
- 4. MSSP Interrupt Flag bit, SSPIF (PIR1<3>), is set (interrupt is generated, if enabled) on the falling edge of the ninth SCL pulse.

In 10-Bit Addressing mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7 through 9 for the slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address. If match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit, SSPIF.




© 2009 Microchip Technology Inc.

18.4.4.5 Clock Synchronization and the CKP bit

When the CKP bit is cleared, the SCL output is forced to '0'. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has

already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2 C bus have deasserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 18-14).

REGISTER 19-2:	RCSTA: R		TATUS AN			TER				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x		
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D		
	bit 7							bit 0		
bit 7		ial Dart Enal	bla bit							
bit 7		ial Port Enal		DV/DT and	TV/CK pipe	an aprial pa	rt nina)			
		oort disabled			TX/CK pins	as senai po	it pins)			
bit 6	RX9: 9-bit	Receive Ena	able bit							
		1 = Selects 9-bit reception0 = Selects 8-bit reception								
bit 5	SREN: Sin	gle Receive	Enable bit							
	<u>Asynchron</u> Don't care.									
	Synchrono	us mode – N	/laster:							
		s single rece								
		es single rec								
		leared after	-	complete.						
	Don't care.	<u>us mode – S</u>	<u>blave:</u>							
bit 4		ntinuous Re	ceive Enable	e bit						
	Asynchron									
	1 = Enable									
	0 = Disable	es receiver								
	Synchrono		· · · ·		ODEN					
		s continuous es continuou		til enable bit	CREN is cle	eared (CREI	N overrides	SREN)		
bit 3		ddress Dete		t						
bit o		ous mode 9-								
					upt and load	s the receiv	e buffer whe	en RSR<8>		
	0 = Disabl	es address o	detection, all	bytes are r	eceived and	ninth bit car	n be used as	s parity bit		
		ous mode 9-	bit (RX9 = c) <u>):</u>						
	Don't care.									
bit 2		ming Error b								
	1 = Framin 0 = No fran		be updated	by reading	RCREG regi	ister and rec	eiving next	valid byte)		
bit 1	OERR: OV	errun Error b	pit							
		n error (can	be cleared b	by clearing b	oit CREN)					
	0 = No ove									
bit 0		bit of Receiv					C	_		
	I his can be	e address/da	ata bit or a p	arity bit and	must be cal	culated by u	ser tirmware	9.		
	Legend:									
	R = Reada	ble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	ʻ0'		
	-n = Value		'1' = B	it is set		s cleared	x = Bit is u			
			i – D							

BNC		Branch if	Not Carry		BNN	I	Branch if	Branch if Not Negative			
Synta	IX:	BNC n			Synta	ax:	BNN n	BNN n			
Opera	ands:	-128 ≤ n ≤ 1	127		Oper	ands:	-128 ≤ n ≤ ′	127			
Opera	ation:	If Carry bit i (PC) + 2 + 2			Oper	ation:	If Negative (PC) + 2 +				
Statu	s Affected:	None			Statu	s Affected:	None				
Enco	ding:	1110	0011 nnr	nn nnnn	Enco	ding:	1110	0111 nn	nn nnnn		
Desci	ription:	If the Carry bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.		Desc	ription:	program wi The 2's cor added to th incremente instruction,	nplement num e PC. Since th d to fetch the the new addr n. This instruc	nber '2n' is ne PC will have next ess will be			
Word	s:	1			Word	ls:	1				
Cycle	S:	1(2)			Cycle	es:	1(2)				
Q Cy If Ju	/cle Activity: mp:				Q C If Ju	ycle Activity: mp:					
-	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4		
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC		
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operation		
lf No	Jump:				lf No	o Jump:					
r	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4		
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation		
	Before Instruc PC After Instructio If Carry	= ade on = 0;	BNC Jump			Before Instruc PC After Instructi If Negati	= ad on ve = 0;	BNN Jump dress (HERE)		
	PC If Carry PC	= 1;	dress (Jump) dress (HERE			P If Negati P	ve = 1;	dress (Jump dress (HERE			

BNC	N	Branch if	Not Overflo	w			
Synta	ax:	BNOV n					
Oper	ands:	-128 ≤ n ≤ 1	27				
Oper	ation:	If Overflow (PC) + 2 + 2	,				
Statu	s Affected:	None					
Enco	oding:	1110	0101 nnr	in nnnn			
Desc	ription:	If the Overflow bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Word	ls:	1					
Cycle	es:	1(2)	1(2)				
Q Cycle Activity: If Jump:							
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No operation	No operation	No operation	No operation			
lf No	o Jump:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	No operation			
<u>Exan</u>	•	HERE	BNOV Jump				
	Before Instruc PC After Instructio	= ade	dress (HERE)				
	If Overflo P(If Overflo P(C = ade w = 1;	dress (Jump) dress (HERE				

BNZ		Branch if	Not Zero					
Synta	ax:	BNZ n	BNZ n					
Opera	ands:	$-128 \le n \le 1$	127					
Opera	ation:	If Zero bit is '0', (PC) + 2 + 2n \rightarrow PC						
Statu	s Affected:	None						
Enco	ding:	1110	0001 nn:	nn nnnn				
Desc	ription:	If the Zero bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.						
Word	s:	1						
Cycle	es:	1(2)						
Q Cy If Ju	ycle Activity: mp:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No operation	No operation	No operation	No operation				
lf No	Jump:		•					
-	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	No operation				
	Before Instruc PC	= ad	BNZ Jump dress (HERE)					
	After Instruction If Zero = 0; PC = address (Jump) If Zero = 1; PC = address (HERE + 2)							

SUBLW	5	Subtract W from Literal					
Syntax:	9	SUBLW	k				
Operands:	C	$0 \le k \le 25$	5				
Operation:	k	$i - (W) \rightarrow$	W				
Status Affected:	١	I, OV, C,	DC, Z				
Encoding:	Γ	0000	1000	kkk	k	kkkk	
Description			acted from				
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1		Q2	Q3			Q4	
Decode		Read eral 'k'	Proce Data		W	rite to W	
Example 1:	S	UBLW ()2h				
Before Instru W C After Instruc W C Z N	=	01h ? 01h 1 ;r 0	esult is p	ositive	9		
Example 2:	S	UBLW ()2h				
Before Instru W C After Instruc W	=	02h ? 00h					
C Z N	= = =	1;r 1 0	esult is z	ero			
Example 3:	S	SUBLW ()2h				
Before Instru W C After Instruc W C Z N	=		(2's comp result is r				

SUBWF		5	Subtra	ct	W from f	
Syntax:		S	SUBWF		f {,d {,a}}	
Operands:		d) ≤ f ≤ 2 l ∈ [0,1 l ∈ [0,1	L]		
Operation:		(1	f) – (W)	-	→ dest	
Status Affe	cted:	Ν	1, OV, C	C, I	DC, Z	
Encoding:			0101		11da fff	f ffff
Description	.:	Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Words:		1				
Cycles:		1				
Q Cycle A	ctivity:					
	Q1		Q2		Q3	Q4
De	code		Read gister 'f'	1	Process Data	Write to destination
Example 1	<u>:</u>	S	UBWF		REG, 1, 0	
F	e Instruc REG V C	tion = = =	3 2 ?			
F	2	n = = = =	1 2 1 0	;।	result is positiv	/e
Example 2	<u>.</u>	S	SUBWF		REG, 0, 0	
F V C	e Instruc REG V C	= = =	2 2 ?			
F	REG W Z	" = = = =	2 0 1 1 0	;।	result is zero	
Example 3	•	S	SUBWF		REG, 1, 0	
F	e Instruc REG V C	tion = = =	1 2 ?			
F	2	n = = = =	FFh 2 0 0 1		2's complemer result is negati	
ľ	•	-	1			

SUBFSR	Subtract Literal from FSR								
Syntax:	SUBFSR	SUBFSR f, k							
Operands:	$0 \le k \le 63$	$0 \le k \le 63$							
	f ∈ [0, 1,	2]							
Operation:	FSR(f – k	$) \rightarrow FSR($	f)						
Status Affected:	None								
Encoding:	1110	1001	ffkk	kkkk					
Description:	The 6-bit I the conter by 'f'.								
Words:	1	1							
Cycles:	1	1							
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Proce Data		Write to estination					
Example: SUBFSR 2, 23h									

Before Instruction FSR2 = 03FFh After Instruction FSR2 = 03DCh

Syntax:	SI	JBULNK	k				
Operands	: 0:	≤ k ≤ 63					
Operation	: FS	SR2 – k –	FSR2	2,			
	(T	$OS) \rightarrow PG$	С				
Status None Affected:							
Encoding:	:	1110	1001	L	11k)	5	kkkk
Words: Cycles:	Th ex se Th the	ne instruct ecute; a r cond cycl nis may be	tion tak NOP is e. thoug	perfo pht of ction	wo cycl ormed (as a sj , where	les t durir pecia e f =	
	Tr ex se Tr th 1 1 2	ne instruct ecute; a r econd cycl nis may be e SUBFSR	tion tak NOP is e. thoug	perfo pht of ction	wo cycl ormed (as a sj , where	les t durir pecia e f =	to ng the ial case of
Cycles:	Tr ex se Tr th 1 1 2	ne instruct ecute; a r econd cycl nis may be e SUBFSR	tion tak NOP is e. thoug	perfo pht of ction only c	wo cycl ormed (as a sj , where	les t durir pecia e f =	to ng the ial case of
Cycles: Q Cycle /	Th ex se Th tho '1 1 2 Activity:	ne instruct recute; a n recond cycl nis may be e SUBFSR 1'); it open	ion tak NOP is le. e thoug i instruct rates o	perfo pht of ction only c (Pro	wo cycl ormed o as a sj , where on FSR	es t durir pecia e f = 2.	to ng the ial case of = 3 (binary
Cycles: Q Cycle /	Th ex se Th th '1 1 2 Activity: Q1	e instruct accute; a 1 acond cycl his may be e SUBFSR 1'); it open Q2 Read	ion tak NOP is le. e thoug i instruct rates o	perfo ction only c Pro	wo cycl ormed o as a s , where on FSR Q3 ocess	es t durir pecia e f = 2.	to ng the ial case of = 3 (binary Q4 Write to

Before Instruction								
FSR2	=	03FFh						
PC	=	0100h						
After Instruct	After Instruction							
FSR2	=	03DCh						
PC	=	(TOS)						

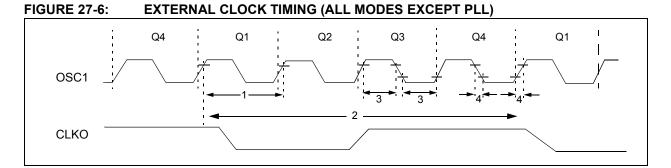
26.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

26.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:


- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

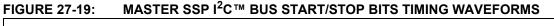
27.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 27-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	1	MHz	XT, RC Oscillator mode
			DC	25	MHz	HS Oscillator mode
			DC	40	MHz	EC Oscillator mode
			4	10	MHz	HS+PLL Oscillator mode
			DC	50	kHz	LP Oscillator mode
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC Oscillator mode
			0.1	4	MHz	XT Oscillator mode
			4	25	MHz	HS Oscillator mode
			5	200	kHz	LP Oscillator mode
1	Tosc	External CLKI Period ⁽¹⁾	1000	—	ns	XT, RC Oscillator mode
			40	—	ns	HS Oscillator mode
			25	—	ns	EC Oscillator mode
			100	250	ns	HS+PLL Oscillator mode
			32	—	μs	LP Oscillator mode
		Oscillator Period ⁽¹⁾	250	—	ns	RC Oscillator mode
			250	1	μs	XT Oscillator mode
			40	250	ns	HS Oscillator mode
			5	209	μs	LP Oscillator mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	100	—	ns	Tcy = 4/Fosc, Industrial
			160	—	ns	Tcy = 4/Fosc, Extended
3	TosL,	External Clock in (OSC1)	30	—	ns	XT Oscillator mode
	TosH	High or Low Time	2.5	—	μs	LP Oscillator mode
			10	—	ns	HS Oscillator mode
4	TosR,	External Clock in (OSC1)		20	ns	XT Oscillator mode
	TosF	Rise or Fall Time	—	50	ns	LP Oscillator mode
			_	7.5	ns	HS Oscillator mode

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	10	MHz	HS mode only
F11	Fsys	On-Chip VCO System Frequency	16	_	40	MHz	HS mode only
	t _{rc}	PLL Start-up Time (Lock Time)	_	—	2	ms	
F13	ΔCLK	CLKO Stability (Jitter)	-2		+2	%	


TABLE 27-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)

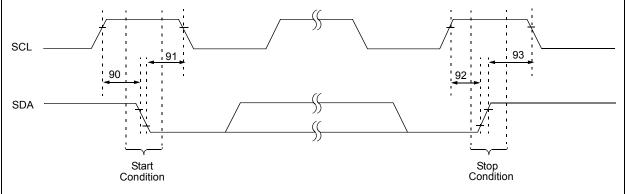

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 27-8: AC CHARACTERISTICS: INTERNAL RC ACCURACY

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended									
Param No.	n Device Min Typ Max Units Conditions								
	INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz, 31 kHz ⁽¹⁾								
	PIC18LF2221/2321/4221/4321	-2	+/-1	2	%	+25°C	VDD = 2.0-5.5V		
		-5	_	5	%	-10°C to +85°C	VDD = 2.0-5.5V		
		-10	+/-1	10	%	-40°C to +85°C	VDD = 2.0-5.5V		
	PIC18F2221/2321/4221/4321	-2	+/-1	2	%	+25°C	VDD = 4.2-5.5V		
		-5	_	5	%	-10°C to +85°C	VDD = 4.2-5.5V		
		-10	+/-1	10	%	-40°C to +85°C	VDD = 4.2-5.5V		
	INTRC Accuracy @ Freq = 31 kHz								
	PIC18LF2221/2321/4221/4321	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 2.0-5.5V		
	PIC18F2221/2321/4221/4321	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 4.2-5.5V		

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

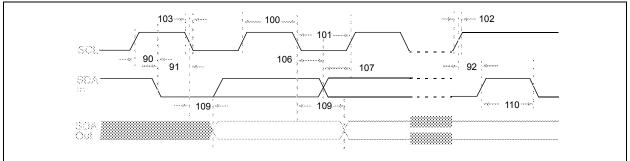


TABLE 27-20: MASTER SSP I²C[™] BUS START/STOP BITS REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for
	Setup Time		400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated Start
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)			generated
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	I		

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

FIGURE 27-20: MASTER SSP I²C[™] BUS DATA TIMING

