

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2321-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: DEVICE FEAT	URES	1	1		
Features	PIC18F2221	PIC18F2321	PIC18F4221	PIC18F4321	
Operating Frequency	DC – 40 MHz				
Program Memory (Bytes)	4096	8192	4096	8192	
Program Memory (Instructions)	2048	4096	2048	4096	
Data Memory (Bytes)	512	512	512	512	
Data EEPROM Memory (Bytes)	256	256	256	256	
Interrupt Sources	19	19	20	20	
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E	
Timers	4	4	4	4	
Capture/Compare/PWM Modules	2	2	1	1	
Enhanced Capture/Compare/ PWM Modules	0	0	1	1	
Serial Communications	MSSP, Enhanced USART	MSSP, MSSP, Enhanced USART Enhanced USART		MSSP, Enhanced USART	
Parallel Communications (PSP)	No	No	Yes	Yes	
10-bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels	
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT				
Programmable Low-Voltage Detect	Yes	Yes	Yes	Yes	
Programmable Brown-out Reset	Yes	Yes	Yes	Yes	
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled				
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP	40-pin PDIP 44-pin QFN 44-pin TQFP	

TABLE 1-1: DEVICE FEATURES

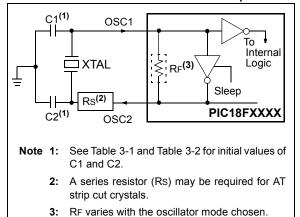
3.0 OSCILLATOR CONFIGURATIONS

3.1 Oscillator Types

The PIC18F2221/2321/4221/4321 family of devices can be operated in ten different oscillator modes. The user can program the Configuration bits, FOSC<3:0>, in Configuration Register 1H to select one of these ten modes:

- 1. LP Low-Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High-Speed Crystal/Resonator
- 4. HSPLL High-Speed Crystal/Resonator with PLL enabled
- 5. RC External Resistor/Capacitor with Fosc/4 output on RA6
- 6. RCIO External Resistor/Capacitor with I/O on RA6
- 7. INTIO1 Internal Oscillator with Fosc/4 output on RA6 and I/O on RA7
- 8. INTIO2 Internal Oscillator with I/O on RA6 and RA7
- 9. EC External Clock with Fosc/4 output
- 10. ECIO External Clock with I/O on RA6

3.2 Crystal Oscillator/Ceramic Resonators


In XT, LP, HS or HSPLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 3-1 shows the pin connections.

The oscillator design requires the use of a parallel cut crystal.

Note: Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications.

FIGURE 3-1:

CRYSTAL/CERAMIC RESONATOR OPERATION (XT, LP, HS OR HSPLL CONFIGURATION)

TABLE 3-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS

Typical Capacitor Values Used:						
Mode Freq OSC1 OSC2						
XT 3.58 MHz 22 pF 22 pF						
On a site such as any few designs mulder as such						

Capacitor values are for design guidance only.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application. Refer to the following application notes for oscillator specific information:

- AN588, "PIC[®] Microcontroller Oscillator Design Guide"
- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices"
- AN849, "Basic PIC[®] Oscillator Design"
- AN943, "Practical PIC[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

See the notes following Table 3-2 for additional information.

Note: When using resonators with frequencies above 3.5 MHz, the use of HS mode, rather than XT mode, is recommended. HS mode may be used at any VDD for which the controller is rated. If HS is selected, it is possible that the gain of the oscillator will overdrive the resonator. Therefore, a series resistor may be placed between the OSC2 pin and the resonator. good starting а point. the As recommended value of Rs is 330Ω.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details or page:
TOSU	— — Top-of-Stack Upper Byte (TOS<20:16>)									55, 60
TOSH	Top-of-Stack	High Byte (TC	S<15:8>)						0000 0000	55, 60
TOSL	Top-of-Stack	Low Byte (TO	S<7:0>)						0000 0000	55, 60
STKPTR	STKFUL ⁽⁶⁾	STKUNF ⁽⁶⁾	_	SP4	SP3	SP2	SP1	SP0	00-0 0000	55, 61
PCLATU	_	_	Holding Regi	ster for PC<2	1:16>				00 0000	55, 60
PCLATH	Holding Regis	ster for PC<15	5:8>						0000 0000	55, 60
PCL	PC Low Byte	(PC<7:0>)							0000 0000	55, 60
TBLPTRU	_	_	bit 21	Program Mei	mory Table Poi	inter Upper By	te (TBLPTR<20):16>)	00 0000	55, 82
TBLPTRH	Program Mer	nory Table Poi	inter High Byte	e (TBLPTR<1	5:8>)				0000 0000	55, 82
TBLPTRL	Program Men	nory Table Poi	inter Low Byte	(TBLPTR<7:0	0>)				0000 0000	55, 82
TABLAT	Program Men	nory Table Lat	ch						0000 0000	55, 82
PRODH	Product Regi	ster High Byte							XXXX XXXX	55, 95
PRODL	Product Regi	ster Low Byte							XXXX XXXX	55, 95
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	55, 99
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	55, 100
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	55, 101
INDF0		s of FSR0 to a	uddress data n			changed (not a	a physical regis		N/A	55, 74
POSTINCO				-			(not a physical	· · · · · · · · · · · · · · · · · · ·	N/A	55, 74
POSTDEC0				-			(not a physica		N/A	55, 74
PREINC0				-			not a physical r		N/A	55, 74
PLUSW0		s of FSR0 to a		-			not a physical r		N/A	55, 74
FSR0H	_	_	_	_	Indirect Data	Memory Addre	ess Pointer 0 H	igh Byte	0000	55, 74
FSR0L	Indirect Data	Memory Addr	ess Pointer 0	Low Byte					XXXX XXXX	55, 74
WREG	Working Regi	ster							XXXX XXXX	55
INDF1			ddress data n	nemory – valu	e of FSR1 not	changed (not	a physical regis	ter)	N/A	55, 74
POSTINC1	Uses content	s of FSR1 to a	ddress data n	nemory – valu	e of FSR1 pos	t-incremented	(not a physical	register)	N/A	55, 74
POSTDEC1							I (not a physica		N/A	55, 74
PREINC1				-			not a physical r		N/A	55, 74
PLUSW1		s of FSR1 to a		-			not a physical r		N/A	55, 74
FSR1H	_	_	_	_	Indirect Data	Memory Addre	ess Pointer 1 H	igh Byte	0000	56, 74
FSR1L	Indirect Data	Memory Addr	ess Pointer 1	Low Byte					XXXX XXXX	56, 74
BSR	_	_	_	_	Bank Select I	Register			0000	56, 65
INDF2	Uses content	s of FSR2 to a	ddress data n	nemory – valu	1	<u> </u>	a physical regis	ter)	N/A	56, 74
POSTINC2	Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)						N/A	56, 74		
POSTDEC2	Uses content	s of FSR2 to a	address data n	nemory – valu	e of FSR2 pos	t-decremented	I (not a physica	l register)	N/A	56, 74
PREINC2							not a physical r		N/A	56, 74
PLUSW2		s of FSR2 to a					not a physical r		N/A	56, 74
FSR2H	_	_	_	_	Indirect Data	Memory Addre	ess Pointer 2 H	igh Byte	0000	56, 74
FSR2L	Indirect Data	Memory Addr	ess Pointer 2	Low Byte		, .			XXXX XXXX	56, 74
				-						,

TABLE 6-2: **REGISTER FILE SUMMARY (PIC18F2221/2321/4221/4321)**

Note

The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)". 1:

2: These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-'.

The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in 3: INTOSC Modes".

4: The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0); otherwise, RE3 reads as '0'. This bit is read-only.

RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. 5: When disabled, these bits read as '0'.

6: Bit 7 and bit 6 are cleared by user software or by a POR.

10.6 INTx Pin Interrupts

External interrupts on the RB0/INT0, RB1/INT1 and RB2/INT2 pins are edge-triggered. If the corresponding INTEDGx bit in the INTCON2 register is set (= 1), the interrupt is triggered by a rising edge; if the bit is clear, the trigger is on the falling edge. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit, INTxF, is set. This interrupt can be disabled by clearing the corresponding enable bit, INTxE. Flag bit, INTxF, must be cleared in software in the Interrupt.

All external interrupts (INT0, INT1 and INT2) can wakeup the processor from Idle or Sleep modes if bit INTxE was set prior to going into those modes. If the Global Interrupt Enable bit, GIE, is set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>). There is no priority bit associated with INT0. It is always a high-priority interrupt source.

10.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh \rightarrow 00h) will set flag bit, TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L register pair (FFFFh \rightarrow 0000h) will set TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit, TMR0IE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit, TMR0IP (INTCON2<2>). See Section 12.0 "Timer0 Module" for further details on the Timer0 module.

10.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit, RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

10.9 Context Saving During Interrupts

During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see **Section 6.3 "Data Memory Organization"**), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine. Depending on the user's application, other registers may also need to be saved. Example 10-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

EXAMPLE 10-1:	SAVING STATUS, WREG AND BSR REGISTERS IN RAM	
		1

		·
MOVWF	W_TEMP	; W_TEMP is in virtual bank
MOVFF	STATUS, STATUS_TEMP	; STATUS_TEMP located anywhere
MOVFF	BSR, BSR_TEMP	; BSR_TMEP located anywhere
;		
; USER :	ISR CODE	
;		
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	; Restore STATUS

11.4 PORTD, TRISD and LATD Registers

Note:	PORTD	is	only	available	on	40/44-pin
	devices.					

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Three of the PORTD pins are multiplexed with outputs P1B, P1C and P1D of the Enhanced CCP module. The operation of these additional PWM output pins is covered in greater detail in Section 17.0 "Enhanced Capture/Compare/PWM (ECCP) Module".

Note: On a Power-on Reset, these pins are configured as digital inputs. PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See **Section 11.6 "Parallel Slave Port"** for additional information on the Parallel Slave Port (PSP).

Note:	When the Enhanced PWM mode is used								
	with either dual or quad outputs, the PSP								
	functions of PORTD are automatically								
	disabled.								

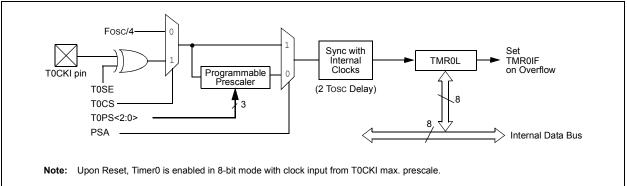
EXAMPLE 11-4: INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by ; clearing output : data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs

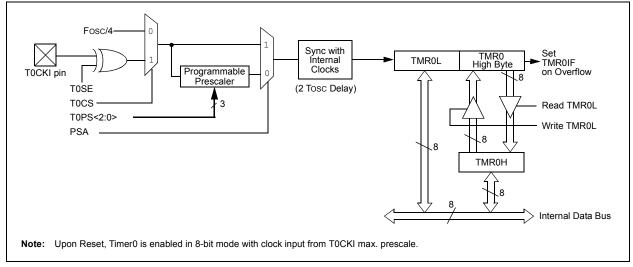
12.1 Timer0 Operation

Timer0 can operate as either a timer or a counter; the mode is selected with the TOCS bit (TOCON<5>). In Timer mode (TOCS = 0), the module increments on every clock by default unless a different prescaler value is selected (see **Section 12.3 "Prescaler"**). If the TMR0 register is written to, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

The Counter mode is selected by setting the T0CS bit (= 1). In this mode, Timer0 increments either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (T0CON<4>); clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.


An external clock source can be used to drive Timer0; however, it must meet certain requirements to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

12.2 Timer0 Reads and Writes in 16-Bit Mode


TMR0H is not the actual high byte of Timer0 in 16-bit mode; it is actually a buffered version of the real high byte of Timer0 which is not directly readable nor writable (refer to Figure 12-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 12-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

FIGURE 12-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)

16.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

16.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

TABLE 16-1:CCP MODE – TIMER
RESOURCES

CCP/ECCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

The assignment of a particular timer to a module is determined by the Timer to CCP enable bits in the T3CON register (Register 15-1). Both modules may be active at any given time and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time. The interactions between the two modules are summarized in Figure 16-1 and Figure 16-2. In Timer1 in Asynchronous Counter mode, the capture operation will not work.

16.1.2 CCP2 PIN ASSIGNMENT

The pin assignment for CCP2 (Capture input, Compare and PWM output) can change, based on device configuration. The CCP2MX Configuration bit determines which pin CCP2 is multiplexed to. By default, it is assigned to RC1 (CCP2MX = 1). If the Configuration bit is cleared, CCP2 is multiplexed with RB3.

Changing the pin assignment of CCP2 does not automatically change any requirements for configuring the port pin. Users must always verify that the appropriate TRIS register is configured correctly for CCP2 operation, regardless of where it is located.

CCP1 Mode	CCP2 Mode	Interaction
Capture	Capture	Each module can use TMR1 or TMR3 as the time base. The time base can be different for each CCP.
Capture	Compare	CCP2 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Automatic A/D conversions on trigger event can also be done. Operation of CCP1 could be affected if it is using the same timer as a time base.
Compare	Capture	CCP1 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Operation of CCP2 could be affected if it is using the same timer as a time base.
Compare	Compare	Either module can be configured for the Special Event Trigger to reset the time base. Automatic A/D conversions on CCP2 trigger event can be done. Conflicts may occur if both modules are using the same time base.
Capture	PWM ⁽¹⁾	None
Compare	PWM ⁽¹⁾	None
PWM ⁽¹⁾	Capture	None
PWM ⁽¹⁾	Compare	None
PWM ⁽¹⁾	PWM	Both PWMs will have the same frequency and update rate (TMR2 interrupt).

TABLE 16-2: INTERACTIONS BETWEEN CCP1 AND CCP2 FOR TIMER RESOURCES

Note 1: Includes standard and Enhanced PWM operation.

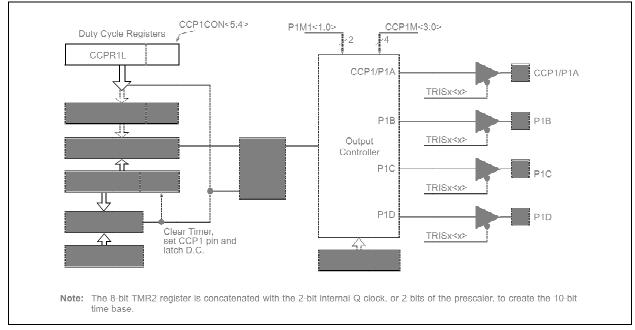
17.4 Enhanced PWM Mode

The Enhanced PWM mode provides additional PWM output options for a broader range of control applications. The module is a backward compatible version of the standard CCP module and offers up to four outputs, designated P1A through P1D. Users are also able to select the polarity of the signal (either active-high or active-low). The module's output mode and polarity are configured by setting the P1M<1:0> and CCP1M<3:0> bits of the CCP1CON register.

Figure 17-1 shows a simplified block diagram of PWM operation. All control registers are double-buffered and are loaded at the beginning of a new PWM cycle (the period boundary when Timer2 resets) in order to prevent glitches on any of the outputs. The exception is the PWM Dead-Band Delay register, ECCP1DEL, which is loaded at either the duty cycle boundary or the period boundary (whichever comes first). Because of the buffering, the module waits until the assigned timer resets, instead of starting immediately. This means that Enhanced PWM waveforms do not exactly match the standard PWM waveforms, but are instead offset by one full instruction cycle (4 Tosc).

As before, the user must manually configure the appropriate TRIS bits for output.

17.4.1 PWM PERIOD


The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following equation.

EQUATION 17-1:

$$PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$$

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is copied from CCPR1L into CCPR1H
 - Note: The Timer2 postscaler (see Section 14.0 "Timer2 Module") is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

FIGURE 17-1: SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE

REGISTER 17-3:	ECCP1AS			JRE/COMP	PARE/PW	M AUTO-	SHUTDOW	N	
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽¹⁾	PSSBD0 ⁽¹⁾	
	bit 7							bit 0	
bit 7	ECCPASE:	ECCP Auto	-Shutdown	Event Status	bit				
	1 = A shuto 0 = ECCP			d; ECCP out	puts are in	shutdown	state		
bit 6-4	ECCPAS<2	:0>: ECCP	Auto-Shutdo	own Source	Select bits				
	110 = FLT0 101 = FLT0 100 = FLT0 011 = Eithe 010 = Com 001 = Com	<pre>111 = FLT0 or Comparator 1 or Comparator 2 110 = FLT0 or Comparator 2 101 = FLT0 or Comparator 1 100 = FLT0 011 = Either Comparator 1 or 2 010 = Comparator 2 output 001 = Comparator 1 output 000 = Auto-shutdown is disabled</pre>							
bit 3-2	1x = Pins A	and C are t output is tri- Pins A and C	ri-state (40/4 state (28-pin C to '1'	own State Co 44-pin device devices)					
bit 1-0	PSSBD<1: 1x = Pins B 01 = Drive I 00 = Drive I	D>: Pins B a and D tri-st Pins B and D tri-st Pins B and D tri-st Pins B and D	nd D Shutdo ate D to '1' D to '0'	own State Co bin devices; I					

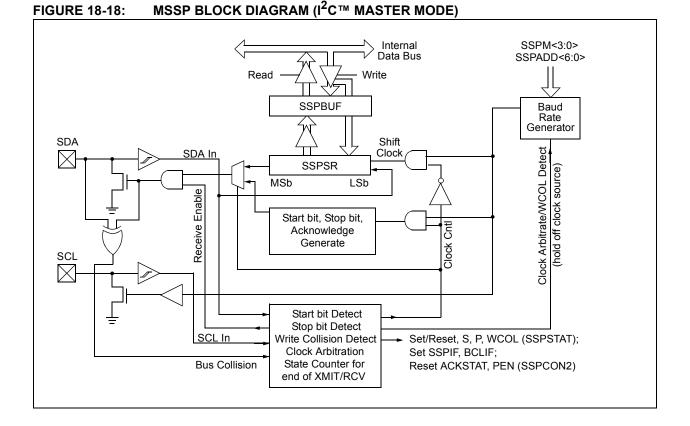
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

18.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.


Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPIF, to be set (MSSP interrupt, if enabled):

- · Start condition
- Stop condition
- · Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

19.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of the two serial I/O modules. (Generically, the USART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a halfduplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

The EUSART can be configured in the following modes:

- Asynchronous (full duplex) with:
 - Auto-wake-up on Break signal
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half duplex) with selectable clock polarity
- Synchronous Slave (half duplex) with selectable clock polarity

The pins of the Enhanced USART are multiplexed with PORTC. In order to configure RC6/TX/CK and RC7/RX/DT as an EUSART:

- bit SPEN (RCSTA<7>) must be set (= 1)
- bit TRISC<7> must be set (= 1)
- bit TRISC<6> must be set (= 1)

Note:	The EUSART control will automatically
	reconfigure the pin from input to output as needed.

The operation of the Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These are detailed on the following pages in Register 19-1, Register 19-2 and Register 19-3, respectively.

		SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD RATE	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665		
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415		
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207		
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51		
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25		
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8		
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_		

TABLE 19-3:	BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)	

		SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD RATE	Fose	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)				
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207				
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51				
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25				
9.6	9.615	0.16	25	9.615	-0.16	12	—	_	_				
19.2	19.231	0.16	12	—	_	_	—	_	_				
57.6	62.500	8.51	3	—	_	_	—	_	_				
115.2	125.000	8.51	1	—	_	—	—	_	_				

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD RATE	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665		
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665		
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832		
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207		
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103		
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34		
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16		

		SYN	IC = 0, BR(GH = 1, BF	RG16 = 1	or SYNC =	: 1, BRG1	6 = 1		
BAUD	Foso	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832	
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207	
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103	
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25	
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12	
57.6	58.824	2.12	16	55.555	3.55	8	—	_	—	
115.2	111.111	-3.55	8	—	_	_	_	_	—	

NOTES:

REGISTER 24-10: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch) U-0 U-0 U-0 U-0 U-0 U-0 R/C-1 R/C-1 EBTR1 EBTR0 bit 7 bit 0 bit 7-2 Unimplemented: Read as '0' bit 1 EBTR1: Table Read Protection bit 1 = Block 1 not protected from table reads executed in other blocks⁽¹⁾ 0 = Block 1 protected from table reads executed in other blocks⁽¹⁾ EBTR0: Table Read Protection bit bit 0 1 = Block 0 not protected from table reads executed in other blocks⁽¹⁾ 0 = Block 0 protected from table reads executed in other blocks⁽¹⁾ Note 1: See Figure 24-5 for variable block boundaries.

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device	is unprogrammed	u = Unchanged from programmed state

REGISTER 24-11: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)

	U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
	—	EBTRB	—	—	—	—	_	—
ł	oit 7							bit 0

- bit 7 Unimplemented: Read as '0'
- bit 6 **EBTRB:** Boot Block Table Read Protection bit
 - 1 = Boot block not protected from table reads executed in other blocks⁽¹⁾
 - 0 = Boot block protected from table reads executed in other blocks⁽¹⁾
- bit 5-0 Unimplemented: Read as '0'

Note 1: See Figure 24-5 for variable block boundaries.

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device	ce is unprogrammed	u = Unchanged from programmed state

GOT	ю	Uncondit	ional Brar	ch		INCF		Incremer	nt f		
Synta	ax:	GOTO k				Synta	x:	INCF f{,	d {,a}}		
Oper	ands:	$0 \le k \le 104$	8575			Opera	inds:	$0 \le f \le 255$			
Oper	ation:	$k \rightarrow PC<20$):1>					$d \in [0, 1]$			
Statu	s Affected:	None				Opera	tion:	a ∈ [0 , 1] (f) + 1 → dest			
1st w	icoding: k t word (k<7:0>) 1110 1111 k ₇ kkk kkkk ₀		Status	Affected:	()	() + 1 - dest C, DC, N, OV, Z					
2nd ۱	word(k<19:8>)	1111	k ₁₉ kkk k	kkk	kkkk ₈	Encod	ling:	0010	10da	ffff	ffff
Desc	ription:	anywhere v 2-Mbyte m value 'k' is	vs an uncon within entire emory range loaded into ways a two-r	. The PC<20	20-bit	Descr	iption:	incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th			esult is esult is fault). s selected.
Words: 2					GPR bank If 'a' is '0' a	· ,		nstruction			
Cycle	es:	2						set is enab	oled, this i	nstructio	n operates
QC	ycle Activity:							in Indexed mode whe			
	Q1	Q2	Q3		Q4			Section 2		· · ·	
	Decode	Read literal 'k'<7:0>,	No operation	ʻk	ead literal c'<19:8>, rite to PC			Bit-Orient Literal Off			
	No	No	No	vv	No	Words	8:	1			
	operation	operation	operation	0	peration	Cycle	s:	1			
						Q Cy	cle Activity:				
<u>Exan</u>	nple:	GOTO THE	RE			-	Q1	Q2	Q3		Q4
	After Instructio PC =	n Address (T	HERE)				Decode	Read register 'f'	Proce Data		Write to estination
						<u>Exam</u> E	<u>ple:</u> Before Instruc CNT Z C	INCF etion = FFh = 0 = ?	CNT,	1, 0	
							DC After Instructi	= ?			

After Instruction

=

= = = 1 1 1

00h

CNT Z C DC

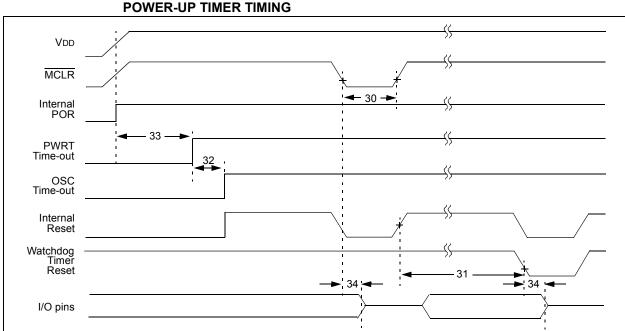
RET	URN	Return fro	om Sub	routine						
Synta	ax:	RETURN	{s}							
Oper	ands:	S ∈ [0,1]								
Oper	ation:	$(TOS) \rightarrow PC;$ if s = 1, $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged								
Statu	s Affected:	None								
Enco	ding:	0000	0000	0001	001s					
Desc	ription:	popped and is loaded in 's'= 1, the c registers, W are loaded i registers, W	Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the program counter. If 's'= 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, STATUS and BSR. If 's' = 0, no update of these registers occurs (default)							
Word	ls:	1								
Cycle	es:	2								
QC	ycle Activity:									
	Q1	Q2	Q	3	Q4					
	Decode	No	Proce		POP PC					
		operation	Dat	a fro	om stack					
	No	No	No		No					
	operation	operation operation operation								
Exan	nple:	RETURN								

Examp	ole:

After Instruction: PC = TOS

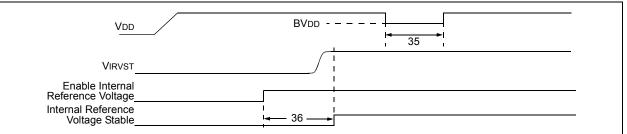
RLCF	Rotate Lo	eft f throu	gh Carry
Syntax:	RLCF f	{,d {,a}}	
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]		
Operation:	$(f < n >) \rightarrow d$ $(f < 7 >) \rightarrow d$ $(C) \rightarrow des$		
Status Affected:	C, N, Z		
Encoding:	0011	01da f	fff ffff
	flag. If 'd' is W. If 'd' is in register If 'a' is '0', selected. It select the If 'a' is '0' a set is enab operates in Addressing $f \le 95$ (5Fh "Byte-Orie	s '0', the resu '1', the resu 'f' (default). the Access ' 'a' is '1', the GPR bank (BSR is used to default). nded instruction truction teral Offset never ion 25.2.3
	Mode" for		d Literal Offset
		details.	
Words:	Mode" for	details.	d Literal Offset
Words:	Mode" for	details.	d Literal Offset
Cycles:	Mode" for	details.	d Literal Offset
Cycles: Q Cycle Activity:	Mode" for C 1 1	details. <mark>→ regi</mark>	ed Literal Offset
Cycles:	Mode" for	details.	d Literal Offset
Cycles: Q Cycle Activity: Q1	Mode" for C 1 1 Q2 Read	details. - regination reginatio regination regination regination regination regination	Q4 Q4 Write to destination
Cycles: Q Cycle Activity: Q1 Decode	Mode" for C 1 1 1 Q2 Read register 'f' RLCF tion = 1110 (= 0	Q3 Process Data REG, (0110	Q4 Q4 Write to destination

25.2.2 EXTENDED INSTRUCTION SET


ADD	FSR	ral to FS	SR			
Synta	x:	ADDFSR	ADDFSR f, k			
Opera	ands:	$0 \le k \le 63$	$0 \le k \le 63$			
		f ∈ [0, 1, 2	f ∈ [0, 1, 2]			
Opera	ation:	FSR(f) + k	\rightarrow FSR(f	⁻)		
Status	Affected:	None				
Enco	ding:	1110	1000	ffkk	kkkk	
Descr	iption:	The 6-bit I contents o				
Words	S:	1				
Cycle	s:	1				
Q Cy	cle Activity:					
	Q1	Q2	Q3		Q4	
Γ	Decode	Read	Proces	ss V	Vrite to	
		literal 'k'	Data		FSR	
Exam	<u>ple:</u>	ADDFSR 2,	, 23h			
E	Before Instruc FSR2	tion = 03FFh				
ŀ	After Instructio FSR2	on = 0422h				

ADDULNK	Add Literal to	FSR2 and	Return	
Syntax:	ADDULNK k			
Operands:	$0 \le k \le 63$			
Operation:	$FSR2 + k \rightarrow FSR2$, (TOS) \rightarrow PC			
Status Affected:	None			
Encoding:	1110 1000	11kk	kkkk	
Worder	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.			
Words:	1			
Cycles:	2			
Q Cycle Activity:	02	02	04	
Q1	Q2	Q3	Q4	
Decode	Read literal 'k'	Process Data	Write to FSR	
No	No	No	No	
Operation	Operation	Operation	Operation	

Example:	ADDULNK	23h
	ADDODINI	2 3 11


Before Instruction					
FSR2	=	03FFh			
PC	=	0100h			
After Instructio	n				
FSR2	=	0422h			
PC	=	(TOS)			

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

FIGURE 27-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

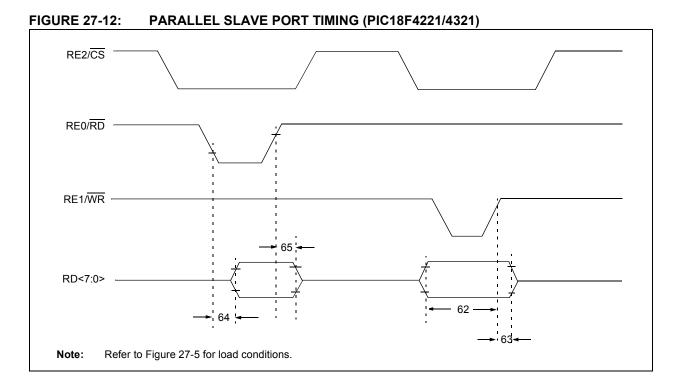

FIGURE 27-9: BROWN-OUT RESET TIMING

TABLE 27-10:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2			μS	
31	Twdt	Watchdog Timer Time-out Period (no postscaler)	3.56	4.19	4.82	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	_	1024 Tosc	_	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	57	67	77	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200		_	μS	$VDD \le BVDD$ (see D005)
36	TIRVST	Time for Internal Reference Voltage to become Stable	—	20	50	μS	
37	Tlvd	High/Low-Voltage Detect Pulse Width	200		_	μS	$VDD \leq VLVD$
38	TCSD	CPU Start-up Time	_	10	—	μS	
39	TIOBST	Time for INTOSC to Stabilize	_	1	—	μS	

© 2009 Microchip Technology Inc.

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
62	TdtV2wrH	Data In Valid before $\overline{WR} \uparrow$ or $\overline{CS} \uparrow$ (setup time)		20	_	ns	
63		\overline{WR} \uparrow or \overline{CS} \uparrow to Data–In	PIC18FXXXX	20	_	ns	
	Invalid (hold time)	PIC18 LF XXXX	35	_	ns	VDD = 2.0V	
64	TrdL2dtV	$\overline{RD} \downarrow and \ \overline{CS} \downarrow to \ Data-Out \ Valid$			80	ns	
65	TrdH2dtl	\overline{RD} \uparrow or \overline{CS} \downarrow to Data–Out Invalid		10	30	ns	
66		Inhibit of the IBF Flag bit being Cleared from $\overline{\rm WR} \uparrow {\rm or} \ \overline{\rm CS} \uparrow$			3 Тсү		

I ² C Master Mode (7 or 10-Bit Transmission)
I ² C Master Mode (7-Bit Reception)
I^2C Slave Mode (10-Bit Reception, SEN = 0,
ADMSK = 01001)
I^2 C Slave Mode (10-Bit Reception, SEN = 0)
I^2 C Slave Mode (10-Bit Reception, SEN = 1)
I ² C Slave Mode (10-Bit Transmission) 189
I ² C Slave Mode (7-Bit Reception, SEN = 0,
ADMSK = 01011)
I ² C Slave Mode (7-Bit Reception, SEN = 0)
I^2 C Slave Mode (7-Bit Reception, SEN = 1)
I ² C Slave Mode (7-Bit Transmission)
I ² C Slave Mode General Call Address
Sequence (7 or 10-Bit Addressing Mode) 194
I ² C Stop Condition Receive or Transmit Mode204 Low-Voltage Detect Operation (VDIRMAG = 0)255
Master SSP I ² C Bus Data
Master SSP I ⁻ C Bus Data
Parallel Slave Port (PIC18F4221/4321)
Parallel Slave Poil (PIC 10F422 1/432 1)
Parallel Slave Port (PSP) Read
PWM Auto-Shutdown (PRSEN = 0,
Auto-Restart Disabled)
PWM Auto-Shutdown (PRSEN = 1,
Auto-Restart Enabled)
PWM Direction Change
PWM Direction Change at Near
100% Duty Cycle
PWM Output
Repeated Start Condition
Reset, Watchdog Timer (WDT), Oscillator Start-up
Timer (OST), Power-up Timer (PWRT)
Timer (OST), Power-up Timer (PWRT)
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173
Timer (OST), Power-up Timer (PWRT) 357 Send Break Character Sequence 227 Slave Synchronization 173 Slow Rise Time (MCLR Tied to VDD,
Timer (OST), Power-up Timer (PWRT) 357 Send Break Character Sequence 227 Slave Synchronization 173 Slow Rise Time (MCLR Tied to VDD, 175 VDD Rise > TPWRT) 53
Timer (OST), Power-up Timer (PWRT) 357 Send Break Character Sequence 227 Slave Synchronization 173 Slow Rise Time (MCLR Tied to VDD, 170 VDD Rise > TPWRT) 53 SPI Mode (Master Mode) 172
Timer (OST), Power-up Timer (PWRT) 357 Send Break Character Sequence 227 Slave Synchronization 173 Slow Rise Time (MCLR Tied to VDD, 175 VDD Rise > TPWRT) 53 SPI Mode (Master Mode) 172 SPI Mode (Slave Mode, CKE = 0) 174
Timer (OST), Power-up Timer (PWRT) 357 Send Break Character Sequence 227 Slave Synchronization 173 Slow Rise Time (MCLR Tied to VDD, 173 VDD Rise > TPWRT) 53 SPI Mode (Master Mode) 172 SPI Mode (Slave Mode, CKE = 0) 174 SPI Mode (Slave Mode, CKE = 1) 174
Timer (OST), Power-up Timer (PWRT) 357 Send Break Character Sequence 227 Slave Synchronization 173 Slow Rise Time (MCLR Tied to VDD, 175 VDD Rise > TPWRT) 53 SPI Mode (Master Mode) 172 SPI Mode (Slave Mode, CKE = 0) 174
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Through TXEN)229
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up53
Timer (OST), Power-up Timer (PWRT) 357 Send Break Character Sequence 227 Slave Synchronization 173 Slow Rise Time (MCLR Tied to VDD, 173 VDD Rise > TPWRT) 53 SPI Mode (Master Mode) 172 SPI Mode (Slave Mode, CKE = 0) 174 SPI Mode (Slave Mode, CKE = 1) 174 Synchronous Reception (Master Mode, SREN) 230 Synchronous Transmission 228 Synchronous Transmission (Through TXEN) 229 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Tied to VDD) 53
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up53
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2)52Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2)52
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2)52
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2)52Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2)52
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52Time-out Sequence on Power-up (MCLR Tied to VDD, Case 2)52Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission228Synchronous Transmission (Mreuse Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Master Mode, SREN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2)52Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Timer (OST), Power-up Timer (PWRT) 357 Send Break Character Sequence 227 Slave Synchronization 173 Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT) VDD Rise > TPWRT) 53 SPI Mode (Master Mode) 172 SPI Mode (Slave Mode, CKE = 0) 174 SPI Mode (Slave Mode, CKE = 1) 174 Synchronous Reception (Master Mode, SREN) 230 Synchronous Transmission 228 Synchronous Transmission (Through TXEN) 229 Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) (MCLR Not Tied to VDD, Case 1) 53 Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1) (MCLR Not Tied to VDD, Case 2) 52 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2)52Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2)52Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)
Timer (OST), Power-up Timer (PWRT)357Send Break Character Sequence227Slave Synchronization173Slow Rise Time (MCLR Tied to VDD, VDD Rise > TPWRT)53SPI Mode (Master Mode)172SPI Mode (Slave Mode, CKE = 0)174SPI Mode (Slave Mode, CKE = 1)174Synchronous Reception (Master Mode, SREN)230Synchronous Transmission228Synchronous Transmission (Through TXEN)229Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)53Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 1)52Time-out Sequence on Power-up (MCLR Not Tied to VDD, Case 2)52Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise < TPWRT)

Timing Diagrams and Specifications	354
Capture/Compare/PWM Requirements	
(All CCP Modules)	359
CLKO and I/O Requirements	356
EUSART Synchronous Receive Requirements	369
EUSART Synchronous Transmission Requirements	
369	
Example SPI Mode Requirements	
(Master Mode, CKE = 0)	361
Example SPI Mode Requirements	
(Master Mode, CKE = 1)	362
Example SPI Mode Requirements	
(Slave Mode, CKE = 0)	363
Example SPI Mode Requirements	
(Slave Mode, CKE = 1)	
External Clock Requirements	
I ² C Bus Data Requirements (Slave Mode)	
I ² C Bus Start/Stop Requirements (Slave Mode)	365
Master SSP I ² C Bus Data Requirements	368
Master SSP I ² C Bus Start/Stop Bits	
Requirements	367
Parallel Slave Port Requirements	
(PIC18F4221/4321)	360
PLL Clock	355
Reset, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer and	
Brown-out Reset Requirements	357
Timer0 and Timer1 External Clock	
Requirements	
Top-of-Stack Access	. 60
TRISE Register	
PSPMODE Bit	120
TSTFSZ	
Two-Speed Start-up 259, 2	271
Two-Word Instructions	
Example Cases	. 64
TXSTA Register	
BRGH Bit	215
V	
Voltage Reference Specifications	350
W	
Watchdog Timer (WDT)259, 2	269
Associated Registers	
Control Register	
During Oscillator Failure	
Programming Considerations	

 WCOL
 199, 200, 201, 204

 WCOL Status Flag
 199, 200, 201, 204

 WWW Address
 399

 WWW, On-Line Support
 8

Х