

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4221-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

5.4 Brown-out Reset (BOR)

PIC18F2221/2321/4221/4321 family devices implement a BOR circuit that provides the user with a number of configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits. There are a total of four BOR configurations which are summarized in Table 5-1.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below VBOR (parameter D005) for greater than TBOR (parameter 35) will reset the device. A Reset may or may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR.

If the Power-up Timer is enabled, it will be invoked after VDD rises above VBOR; it then will keep the chip in Reset for an additional time delay, TPWRT (parameter 33). If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay.

BOR and the Power-on Timer (PWRT) are independently configured. Enabling BOR Reset does not automatically enable the PWRT.

5.4.1 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<6>). Setting SBOREN enables the BOR to function as previously described. Clearing SBOREN disables the BOR entirely. The SBOREN bit operates only in this mode; otherwise it is read as '0'.

Placing the BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change BOR configuration. It also allows the user to tailor device power consumption in software by eliminating the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

Note:	Even when BOR is under software control,
	the Brown-out Reset voltage level is still
	set by the BORV<1:0> Configuration bits.
	It cannot be changed in software.

5.4.2 DETECTING BOR

When Brown-out Reset is enabled, the BOR bit always resets to '0' on any Brown-out Reset or Power-on Reset event. This makes it difficult to determine if a Brown-out Reset event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any Power-on Reset event. If BOR is '0' while POR is '1', it can be reliably assumed that a Brown-out Reset event has occurred.

5.4.3 DISABLING BOR IN SLEEP MODE

When BOREN<1:0> = 10, the BOR remains under hardware control and operates as previously described. Whenever the device enters Sleep mode, however, the BOR is automatically disabled. When the device returns to any other operating mode, BOR is automatically re-enabled.

This mode allows for applications to recover from brown-out situations, while actively executing code, when the device requires BOR protection the most. At the same time, it saves additional power in Sleep mode by eliminating the small incremental BOR current.

BOR Configuration		Status of						
BOREN1	BOREN0	(RCON<6>)	BOR Operation					
0	0	Unavailable	BOR disabled; must be enabled by reprogramming the Configuration bits.					
0	1	Available	BOR enabled in software; operation controlled by SBOREN.					
1	0	Unavailable	BOR enabled in hardware in Run and Idle modes, disabled during Sleep mode.					
1	1	Unavailable	BOR enabled in hardware; must be disabled by reprogramming the Configuration bits.					

TABLE 5-1: BOR CONFIGURATIONS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55	
EEADR	EEPROM Address Register									
EEDATA	EEPROM Data Register									
EECON2	EEPROM (Control Regis	ter 2 (not a	a physical r	register)				57	
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	57	
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	58	
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	58	
PIE2	OSCFIE	CMIE		EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	58	

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

11.0 I/O PORTS

Depending on the device selected and features enabled, there are up to five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (Data Latch register)

The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

11.1 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input and one of the comparator outputs to become the RA4/T0CKI/C1OUT pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins. They are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 24.1 "Configuration Bits"** for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs and the comparator voltage reference output. The operation of pins RA<3:0> and RA5 as A/D converter inputs is selected by clearing or setting the control bits in the ADCON1 register (A/D Control Register 1).

Pins RA0 through RA5 may also be used as comparator inputs or outputs by setting the appropriate bits in the CMCON register. To use RA<3:0> as digital inputs, it is also necessary to turn off the comparators.

Note:	On a Power-on Reset, RA5 and RA<3:0>
	are configured as analog inputs and read
	as '0'. RA4 is configured as a digital input.

The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input. All other PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 11-1: INITIALIZING PORTA

CLRF	PORTA	; Initialize PORTA by ; clearing output
		, data latabaa
		; data latches
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	OFh	; Configure all A/D
MOVWF	ADCON1	; for digital inputs
MOVWF	07h	; Configure comparators
MOVWF	CMCON	; for digital input
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<7:6,3:0> as inputs
		; RA<5:4> as outputs

13.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 13-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 13-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 13-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

IER 13-1.	TICON.			LEGISTER							
	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N			
	bit 7							bit 0			
bit 7	RD16: 16	-Bit Read/V	Vrite Mode E	nable bit	40.1.1						
	1 = Enab 0 = Enab	les register les register	read/write of read/write of	f Timer1 in or f Timer1 in tw	ie 16-bit opei o 8-bit opera	ration tions					
bit 6	T1RUN: T	ïmer1 Syst	em Clock Sta	atus bit							
	1 = Devic 0 = Devic	e clock is o clock is o	derived from derived	Timer1 oscilla another sourc	ator ce						
bit 5-4	5-4 T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits										
	11 = 1:8 F	Prescale va	lue								
	10 = 1:4 F 01 = 1:2 F	rescale va rescale va	lue								
	00 = 1:1 F	Prescale va	lue								
bit 3	T1OSCEN	I: Timer1 C	Dscillator Ena	ble bit							
	1 = Timer	1 oscillator	is enabled								
	0 = Timer	1 oscillator ator inverte	is shut off	ck resistor ar	e turned off to	o eliminate i	nower drain				
bit 2	T1SYNC:	Timer1 Ex	ternal Clock I	nput Synchro	nization Sele	ect bit					
	When TM	R1CS = 1:		[,							
	1 = Do no	1 = Do not synchronize external clock input									
	0 = Synch	0 = Synchronize external clock input									
	This bit is	This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.									
bit 1	TMR1CS:	TMR1CS: Timer1 Clock Source Select bit									
 1 = External clock from pin RC0/T1OSO/T13CKI (on the rising edge) 0 = Internal clock (Fosc/4) 											
bit 0	TMR10N	: Timer1 Or	n bit								
	1 = Enab 0 = Stops	1 = Enables Timer1 0 = Stops Timer1									
	Legend:										
	R = Read	able bit	VV = V	Vritable bit	U = Unim	plemented b	oit, read as '	D'			
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is	cleared	x = Bit is u	nknown			

REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER

13.1 Timer1 Operation

Timer1 can operate in one of these modes:

- Timer
- Synchronous Counter
- Asynchronous Counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>). When TMR1CS is cleared (= 0), Timer1 increments on every internal instruction

cycle (Fosc/4). When the bit is set, Timer1 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

When Timer1 is enabled, the RC1/T1OSI and RC0/T10SO/T13CKI pins become inputs. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 13-2: TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

FIGURE 13-1: TIMER1 BLOCK DIAGRAM

The CCPRxH register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPRxH and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCPx pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

EQUATION 16-3:

PWM Resolution (max) =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCPx pin will not be cleared.

TABLE 16-4:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58

16.4.3 PWM AUTO-SHUTDOWN (CCP1 ONLY)

The PWM auto-shutdown features of the Enhanced CCP module are also available to CCP1 in 28-pin devices. The operation of this feature is discussed in detail in **Section 17.4.7 "Enhanced PWM Auto-Shutdown"**.

Auto-shutdown features are not available for CCP2.

16.4.4 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPRxL register and CCPxCON<5:4> bits.
- 3. Make the CCPx pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCPx module for PWM operation.

17.4 Enhanced PWM Mode

The Enhanced PWM mode provides additional PWM output options for a broader range of control applications. The module is a backward compatible version of the standard CCP module and offers up to four outputs, designated P1A through P1D. Users are also able to select the polarity of the signal (either active-high or active-low). The module's output mode and polarity are configured by setting the P1M<1:0> and CCP1M<3:0> bits of the CCP1CON register.

Figure 17-1 shows a simplified block diagram of PWM operation. All control registers are double-buffered and are loaded at the beginning of a new PWM cycle (the period boundary when Timer2 resets) in order to prevent glitches on any of the outputs. The exception is the PWM Dead-Band Delay register, ECCP1DEL, which is loaded at either the duty cycle boundary or the period boundary (whichever comes first). Because of the buffering, the module waits until the assigned timer resets, instead of starting immediately. This means that Enhanced PWM waveforms do not exactly match the standard PWM waveforms, but are instead offset by one full instruction cycle (4 Tosc).

As before, the user must manually configure the appropriate TRIS bits for output.

17.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following equation.

EQUATION 17-1:

$$PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$$

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is copied from CCPR1L into CCPR1H
 - Note: The Timer2 postscaler (see Section 14.0 "Timer2 Module") is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

FIGURE 17-1: SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE

18.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

18.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 18-22: REPEATED START CONDITION WAVEFORM

REGISTER 19-2:	RCSTA: RECEIVE STATUS AND CONTROL REGISTER										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
	bit 7							bit 0			
bit 7	SPEN: Ser	rial Port Ena	ble bit								
	1 = Serial µ 0 = Serial µ	 Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) Serial port disabled (held in Reset) 									
bit 6	RX9: 9-bit	X9: 9-bit Receive Enable bit									
	1 = Selects 0 = Selects	s 9-bit recep s 8-bit recep	tion tion								
bit 5	SREN: Sin	gle Receive	Enable bit								
	<u>Asynchron</u> Don't care.	ous mode:									
	Synchrono 1 = Enable 0 = Disable	<u>us mode – N</u> s single rece es single rec	<u>/laster:</u> eive eive								
	This bit is o	This bit is cleared after reception is complete. <u>Synchronous mode – Slave:</u>									
bit 4	CDEN: Con	ntinuqua Da	aaiya Enabl	a hit							
DIL 4											
	1 = Enables receiver										
	Synchronous mode:										
	 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive 										
bit 3	ADDEN: A	ddress Dete	ct Enable bi	t							
	Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit										
	Asynchronous mode 9-bit (RX9 = 0): Don't care.										
bit 2	FERR: Fra	ming Error b	bit								
	1 = Framin 0 = No frar	ig error (can ning error	be updated	by reading	RCREG regi	ster and rec	eiving next	valid byte)			
bit 1	OERR: Ov	errun Error I	oit								
	1 = Overrun error (can be cleared by clearing bit CREN)										
bit 0	RX9D: 9th	bit of Receiv	ved Data								
	This can be	This can be address/data bit or a parity bit and must be calculated by user firmware.									
	Legend]			
	R = Reada	ble bit	M = M	/ritable bit	[] = [Inim	nlemented	bit read as	ʻ0'			
	-n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	Inknown			

	BLE 23-2. FICTOFAXAX INSTRUCTION SET (CONTINUED)								
Mnem	onic,	Description	Cyclos	16-Bit Instruction Word				Status	
Operands		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL (OPERA	TIONS							
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move Literal (12-bit) 2nd Word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st Word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	MORY ←	PROGRAM MEMORY OPERATION	NS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None	

TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

BNC	V	Branch if	Branch if Not Overflow					
Synta	ax:	BNOV n						
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$					
Oper	ation:	If Overflow (PC) + 2 + 2	If Overflow bit is '0', (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None						
Enco	ding:	1110	0101 nnr	nn nnnn				
Description:		If the Overfl program wil The 2's con added to the incrementer instruction, PC + 2 + 2r two-cycle in	If the Overflow bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction					
Words:		1	1					
Cycles:		1(2)	1(2)					
Q Cycle Activity: If Jump:		02	03	04				
	Decode	Read literal	Process	Write to PC				
	No operation	No operation	No operation	No operation				
If No	o Jump:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	No operation				
<u>Exan</u>	<u>nple:</u>	HERE	BNOV Jump					
Before Instruction PC = address (HERE) After Instruction If Overflow = 0:								
	If Overflo P(C = ad w = 1; C = ad	dress (Jump) dress (HERE	+ 2)				

BNZ	2	Branch if	Not Zero						
Synta	ax:	BNZ n							
Oper	ands:	-128 ≤ n ≤ 1	-128 ≤ n ≤ 127						
Oper	ation:	If Zero bit is (PC) + 2 + 2	s '0', 2n → PC						
Statu	s Affected:	None							
Enco	oding:	1110	0001 nn:	nn nnnn					
Desc	ription:	If the Zero I will branch. The 2's con added to the incremente instruction, PC + 2 + 2r two-cycle in	bit is '0', then the second se	the program ber '2n' is e PC will have next ess will be tion is then a					
Word	ls:	1							
Cycle	es:	1(2)							
Q C If Ju	ycle Activity: ımp:								
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'n'	Process Data	Write to PC					
	No operation	No operation	No operation	No operation					
lf No	o Jump:		•						
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'n'	Process Data	No operation					
<u>Exan</u>	nple:	HERE	BNZ Jump						
	Before Instruct PC After Instruction If Zero PC If Zero PC	tion = ad on = 0; = ad = 1; = ad	dress (HERE) dress (Jump) dress (HERE	+ 2)					

1; address (HERE + 2)

CAL	.LW	Subroutir	Subroutine Call Using WREG					
Synta	ax:	CALLW	CALLW					
Oper	ands:	None						
Oper	ation:	$(PC + 2) \rightarrow$ $(W) \rightarrow PCL$ (PCLATH) - (PCLATU) -	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$					
Statu	s Affected:	None						
Enco	ding:	0000	0000 000	0100				
Description		First, the re pushed onto contents of existing vali contents of latched into respectively executed as new next in Unlike CALI update W, S	turn address (o the return sta W are written ue is discarded PCLATH and PCH and PCI A. The second s a NOP instruct struction is fet L, there is no c STATUS or BS	PC + 2) IS ack. Next, the to PCL; the d. Then, the PCLATU are J, cycle is tion while the ched. option to R.				
Word	ls:	1	1					
Cvcle	es:	2						
QC	vcle Activity:	·						
	Q1	Q2	Q3	Q4				
	Decode	Read	PUSH PC to	No				
		WREG	stack	operation				
	No	No	No	No				
<u>Exan</u>	nple: Before Instruc PC PCLATH PCLATU	HERE tion = address = 10h = 00h	CALLW (HERE)					

MO	MOVSF Move Indexed to f							
Synta	ax:	MOVSF [z	<u>z_s],</u> f _d					
Oper	ands:	$0 \le z_s \le 12$ $0 \le f_d \le 409$	7 95					
Oper	ration:	((FSR2) + z	$(z_s) \rightarrow f_d$					
Statu	is Affected:	None						
Encoding: 1st word (source) 2nd word (destin.)		1110 1111	1110 1011 Ozzz zzzz 1111 ffff ffff ffff					
Word	ription: ds:	The content moved to d actual addr determined offset ' z_s ' in FSR2. The register is s ' f_d ' in the set can be any space (000 The MOVSF PCL, TOSL destination If the result an indirect value return 2	The contents of the source register are moved to destination register ' f_d '. The actual address of the source register is determined by adding the 7-bit literal offset ' z_s ' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal ' f_d ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh). The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the value returned will be 00h. 2					
Cycle	es:	2						
QC		02	02		04			
	Decode	Determine source addr	Determine source add	e Ir so	Read urce req			
	Decode	No operation No dummy read	No operation	re	Write gister 'f' (dest)			
Exan	nple:	MOVSF	[05h], RE	G2				
	Before Instruct FSR2 Contents of 85h REG2 After Instructio	tion = 80 = 33 = 11 n	h h h					

FSR2 Contents

of 85h REG2

=

= = 80h

33h 33h

HLVDIF⁽¹⁾_____ Note 1: VDIRMAG = 0.

TABLE 27-4: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Standa ı Operatii	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Symbol	Characteris	stic	Min	Тур	Max	Units	Conditions
D420		HLVD Voltage on VDD	LVV = 0000	2.06	2.17	2.28	V	
		Transition High-to-Low	LVV = 0001	2.12	2.23	2.34	V	
			LVV = 0010	2.24	2.36	2.48	V	
			LVV = 0011	2.32	2.44	2.56	V	
			LVV = 0100	2.47	2.60	2.73	V	
			LVV = 0101	2.65	2.79	2.93	V	
			LVV = 0110	2.74	2.89	3.04	V	
			LVV = 0111	2.96	3.12	3.28	V	
			LVV = 1000	3.22	3.39	3.56	V	
			LVV = 1001	3.37	3.55	3.73	V	
			LVV = 1010	3.52	3.71	3.90	V	
			LVV = 1011	3.70	3.90	4.10	V	
			LVV = 1100	3.90	4.11	4.32	V	
			LVV = 1101	4.11	4.33	4.55	V	
			LVV = 1110	4.36	4.59	4.82	V	
			LVV = 1111	1.10	1.20	1.30	V	HLVDIN Input/Internal Reference Voltage

TABLE 27-9: 0	CLKO AND I/O TIMING	REQUIREMENTS
---------------	---------------------	--------------

Param No.	Symbol	Characteri	stic	Min	Тур	Мах	Units	Conditions
10	TosH2ckL	OSC1 ↑ to CLKO \downarrow		_	75	200	ns	(Note 1)
11	TosH2ckH	OSC1 ↑ to CLKO ↑		—	75	200	ns	(Note 1)
12	TckR	CLKO Rise Time		—	35	100	ns	(Note 1)
13	TckF	CLKO Fall Time		—	35	100	ns	(Note 1)
14	TckL2ioV	CLKO \downarrow to Port Out Valid		—		0.5 Tcy + 20	ns	(Note 1)
15	TioV2ckH	Port In Valid before CLKO ↑		0.25 Tcy + 25		—	ns	(Note 1)
16	TckH2iol	Port In Hold after CLKO ↑		0	_	—	ns	(Note 1)
17	TosH2ioV	OSC1 ↑ (Q1 cycle) to Port Out Valid		—	50	150	ns	
18	TosH2iol	OSC1 ↑ (Q2 cycle) to	PIC18FXXXX	100		—	ns	
18A		Port Input Invalid (I/O in hold time)	PIC18 LF XXXX	200	—	—	ns	VDD = 2.0V
19	TioV2osH	Port Input Valid to OSC1 \uparrow	(I/O in setup time)	0	—	—	ns	
20	TioR	Port Output Rise Time	PIC18 F XXXX	—	10	25	ns	
20A			PIC18 LF XXXX	—	_	60	ns	VDD = 2.0V
21	TioF	Port Output Fall Time	PIC18 F XXXX	—	10	25	ns	
21A			PIC18 LF XXXX	—	_	60	ns	VDD = 2.0V
22†	Tinp	INTx Pin High or Low Tim	ne	Тсү		_	ns	
23†	Trbp	RB<7:4> Change INTx H	igh or Low Time	Тсү	_	—	ns	

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		3 Тсү	—	ns	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30	—	ns	
71A			Single Byte	40	—	ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30	—	ns	
72A			Single Byte	40	—	ns	(Note 1)
73A	Tb2b	Last Clock Edge of Byte 1 to the First	Clock Edge of Byte 2	1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK	40	—	ns		
75	TdoR	SDO Data Output Rise Time	PIC18FXXXX	—	25	ns	
				45	ns	VDD = 2.0V	
76	TdoF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedan	ce	10	50	ns	
80	TscH2doV,	SDO Data Output Valid after SCK	PIC18FXXXX	—	50	ns	
	TscL2doV	scL2doV Edge	PIC18LFXXXX	—	100	ns	VDD = 2.0V
82	TssL2doV	SDO Data Output Valid after $\overline{ ext{SS}}\downarrow$	PIC18FXXXX		50	ns	
		Edge	PIC18LFXXXX		100	ns	VDD = 2.0V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 Tcy + 40	—	ns	

TABLE 27-17: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

The PIC18F2221/2321/4221/4321 family of devices is functionally the same as the PIC18F4320 family. Code written for a PIC18F4320 will generally work on a PIC18F4321 with few or no changes.

The following is a list of changes the user should be aware of when migrating an application from the PIC18F4320 to the PIC18F4321. Code written for the PIC18F4321 may not run as expected due to these differences.

- Entry to power-managed modes has changed. Modifying the SCS1:SCS0 bits (OSCCON<1:0>) immediately changes the current clock source. It is not necessary to execute a SLEEP instruction to change clock sources. Refer to Section 4.1.2 "Entering Power-Managed Modes" for details.
- Exit from power-managed modes has changed. A WDT wake or interrupt does not cause an automatic return to PRI_RUN mode. The controller will execute code while continuing to use the current clock source. If the controller was operating in RC_IDLE or RC_RUN mode, an interrupt will cause entry to RC_RUN mode until code selects another power-managed mode. Refer to Section 4.4 "Idle Modes" for details.
- The extended instruction set can be configured as enabled using the XINST bit (CONFIG4L<6>). The access memory map is also modified when the extended instruction set is enabled. Refer to Section 6.5 "Data Memory and the Extended Instruction Set" and Section 24.2 "Extended Instruction Set" for details.
- 4. There may also be changes to the electrical specifications. Refer to **Section 27.0** "**Electrical Characteristics**" for details.

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

High/Low-Voltage Detect	
Applications	
Associated Registers	
Characteristics	351
Current Consumption	
Effects of a Reset	
Operation	
During Sleep	
Setup	
Start-up Time	
Typical Application	
HLVD. See High/Low-Voltage Detect	
Effects of a Reset Operation During Sleep Start-up Time Typical Application HLVD. See High/Low-Voltage Detect	257 254 257 255 255 255 256 256 253

I

I/O Ports	111
I ² C Mode (MSSP)	
Acknowledge Sequence Timing	
Associated Registers	210
Baud Rate Generator	197
Bus Collision	
During a Repeated Start Condition	
During a Start Condition	
During a Stop Condition	
Clock Arbitration	198
Clock Stretching	190
10-Bit Slave Receive Mode (SEN = 1)	190
10-Bit Slave Transmit Mode	190
7-Bit Slave Receive Mode (SEN = 1)	190
7-Bit Slave Transmit Mode	190
Clock Synchronization and the CKP Bit	191
Effects of a Reset	
General Call Address Support	194
I ² C Clock Rate w/BRG	
Master Mode	
Operation	196
Reception	
Repeated Start Condition Timing	
Start Condition Timing	199
Transmission	
Multi-Master Communication, Bus Collision	
and Arbitration	
Multi-Master Mode	
Operation	
Read/Write Bit Information (R/W Bit)	
Read/Write Bit Information (R/W Bit)	183
Registers	176
Serial Clock (RC3/SCK/SCL)	
Slave Mode	
Address Masking	
Addressing	
Reception	
Transmission	183
Sleep Operation	
Stop Condition Timing	
ID Locations	259, 277
INCF	
INCFSZ	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	259, 277
Single-Supply	
Indexed Literal Offset Addressing	
and Standard PIC18 Instructions	
Indexed Literal Offset Mode	
Indirect Addressing	74
INFSNZ	
Initialization Conditions for all Registers	55–58

Instruction Cycle	63
Clocking Scheme	63
Instruction Flow/Pipelining	63
Instruction Set	279
ADDLW	285
ADDWF	285
ADDWF (Indexed Literal Offset Mode)	327
ADDWFC	286
ANDLW	286
ANDWF	287
BC	287
BCF	288
BN	288
BNC	289
BNN	289
BNOV	290
BNZ	290
BOV	293
BRA	291
BSF	291
BSF (Indexed Literal Offset Mode)	327
BTFSC	292
BTFSS	292
BTG	293
BZ	294
CALL	294
CLRF	295
CLRWDT	295
COMF	296
CPFSEQ	296
CPFSGT	297
CPFSLT	297
DAW	298
DCFSNZ	299
DECF	298
DECFSZ	299
Extended Instruction Set	321
General Format	281
GOTO	300
INCF	300
INCFSZ	301
INFSNZ	301
IORLW	302
IORWF	302
LFSR	303
MOVF	303
MOVFF	304
MOVLB	304
MOVLW	305
MOVWF	305
MULLW	306
MULWF	306
NEGF	307
NOP	307
Opcode Field Descriptions	280
POP	308
PUSH	308
RCALL	309
RESET	309
	310
RETLW	310
RETURN	311
RLCF	311
RLNCF	312
RRCF	312