

in min

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4221-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	ımber				
Pin Name	SPDIP, SOIC, SSOP	QFN	Pin Type	Buffer Type	Description	
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.	
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	21	18	I/O I I	TTL ST ST Analog	Digital I/O. External Interrupt 0. PWM Fault input for CCP1. Analog Input 12.	
RB1/INT1/AN10 RB1 INT1 AN10	22	19	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 1. Analog Input 10.	
RB2/INT2/AN8 RB2 INT2 AN8	23	20	I/O I I	TTL ST Analog	Digital I/O. External Interrupt 2. Analog Input 8.	
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽²⁾	24	21	I/O I I/O	TTL Analog ST	Digital I/O. Analog Input 9. Capture 2 input/Compare 2 output/PWM2 output.	
RB4/KBI0/AN11 RB4 KBI0 AN11	25	22	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog Input 11.	
RB5/KBI1/PGM RB5 KBI1 PGM	26	23	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ programming enable pin.	
RB6/KBI2/PGC RB6 KBI2 PGC	27	24	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-circuit debugger and ICSP programming clock pin.	
RB7/KBI3/PGD RB7 KBI3 PGD	28	25	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-circuit debugger and ICSP programming data pin.	
Legend:TTL = TTL compatible inputCMOS = CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsI= InputP = Power I^2C = ST with I^2C^{TM} or SMB levelsO= Output						

TABLE 1-2: PIC18F2221/2321 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

3.6.4 PLL IN INTOSC MODES

The 4x Phase Locked Loop (PLL) can be used with the internal oscillator block to produce faster device clock speeds than are normally possible with the internal oscillator sources. When enabled, the PLL produces a clock speed of 16 MHz or 32 MHz.

Unlike HSPLL mode, the PLL is controlled through software. The control bit, PLLEN (OSCTUNE<6>), is used to enable or disable its operation. If PLL is enabled and a Two-Speed Start-up from wake is performed, execution is delayed until the PLL starts.

The PLL is available when the device is configured to use the internal oscillator block as its primary clock source (FOSC<3:0> = 1001 or 1000). Additionally, the PLL will only function when the selected output frequency is either 4 MHz or 8 MHz (OSCCON<6:4> = 111or 110). If both of these conditions are not met, the PLL is disabled and the PLLEN bit remains clear (writes are ignored).

3.6.5 INTOSC FREQUENCY DRIFT

The factory calibrates the internal oscillator block output (INTOSC) for 8 MHz. However, this frequency may drift as VDD or temperature changes and can affect the controller operation in a variety of ways. It is possible to adjust the INTOSC frequency by modifying the value in the OSCTUNE register. This has no effect on the INTRC clock source frequency.

Tuning the INTOSC source requires knowing when to make the adjustment, in which direction it should be made and in some cases, how large a change is needed. Three compensation techniques are discussed in Section 3.6.5.1 "Compensating with the EUSART", Section 3.6.5.2 "Compensating with the Timers" and Section 3.6.5.3 "Compensating with the CCP Module in Capture Mode" but other techniques may be used.

REGISTER 3-1:	OSCIUNE: OSCILLATOR TUNING REGISTER

	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	INTSRC	PLLEN ⁽¹⁾	—	TUN4	TUN3	TUN2	TUN1	TUN0
	bit 7							bit 0
bit 7	INTSRC: Ir	nternal Oscill	ator Low-Fr	equency So	urce Select	bit		
	1 = 31.25 0 = 31 kHz	kHz device c z device cloc	lock derived k derived di	d from 8 MH rectly from I	z INTOSC s NTRC interr	ource (divid nal oscillator	e-by-256 en	abled)
bit 6	PLLEN: Fr	equency Mu	Itiplier PLL f	or INTOSC	Enable bit ⁽¹⁾)		
	1 = PLL er	habled for IN	TOSC (4 M	Hz and 8 Mł	Hz only)			
	0 = PLL di	sabled			,,			
	Note 1:	Available or	nly in certair	n oscillator c	onfiguration	s; otherwise	e, this bit is	unavailable
		and reads a	is '0'. See S	ection 3.6.4	Full in IN	ITOSC Mod	es" for deta	ils.
bit 5	Unimplem	ented: Read	l as '0'					
bit 4-0	TUN<4:0>:	Frequency	Tuning bits					
	01111 = M	laximum frec	luency					
	•	•						
	•	•						
	00001							
	00000 = C	enter freque	ncy. Oscillat	or module is	s running at	the calibrate	ed frequency	/.
	11111							
	•	•						
	10000 = M	inimum frequ	uency					
	10000 - 10	in in neq	ucificy					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x	: = Bit is unknown

3.6.5.1 Compensating with the EUSART

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high. To adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low. To compensate, increment OSCTUNE to increase the clock frequency.

3.6.5.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is much greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

3.6.5.3 Compensating with the CCP Module in Capture Mode

A CCP module can use free running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast. To compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow. To compensate, increment the OSCTUNE register.

REGISTER 3-2:	OSCCON:	OSCILLA	TOR CON	TROL REC	SISTER			
	R/W-0	R/W-1	R/W-0	R/W-0	R ⁽¹⁾	R-0	R/W-0	R/W-0
	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0
	bit 7							bit 0
bit 7	IDLEN: Idle	e Enable bit						
	1 = Device 0 = Device	enters an lo enters Slee	dle mode wl	nen a SLEEB en a SLEEP	e instruction instruction is	is executed s executed		
bit 6-4	IRCF<2:0>	: Internal Os	cillator Free	quency Sele	ct bits			
	111 = 8 MHz (INTOSC drives clock directly) 110 = 4 MHz 101 = 2 MHz 100 = 1 MHz ⁽³⁾ 011 = 500 kHz 010 = 250 kHz 001 = 125 kHz 000 = 31 kHz (from either INTOSC/256 or INTEC directly) ⁽²⁾							
bit 3	OSTS: Osc	illator Start-	up Time-out	: Status bit ⁽¹⁾				
	 1 = Oscillator Start-up Timer (OST) time-out has expired; primary oscillator is running 0 = Oscillator Start-up Timer (OST) time-out is running; primary oscillator is not ready 					ing Idy		
bit 2	IOFS: INTOSC Frequency Stable bit 1 = INTOSC frequency is stable 0 = INTOSC frequency is not stable							
bit 1-0	SCS<1:0>: System Clock Select bits							
	1x = Internal oscillator block 01 = Secondary (Timer1) oscillator 00 = Primary oscillator							
	Note 1:	Reset state	depends or	n state of the	e IESO Conf	iguration bit	t.	
	2:	Source sele	ected by the	INTSRC bit	(OSCTUNE	E<7>), see t	ext.	
	3: Default output frequency of INTOSC on Reset.							
	Legend:							
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented	bit, read as '	0'
	-n = Value a	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown

Example 9-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 9-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES3:RES0).

EQUATION 9-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		$(ARG1L \bullet ARG2L)$

EXAMPLE 9-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1L, W	
MULWF	ARG2L	; ARG1L * ARG2L->
		; PRODH:PRODL
MOVFF	PRODH, RES1	;
MOVFF	PRODL, RESO	;
;		
MOVF	ARG1H, W	
MULWF	ARG2H	; ARG1H * ARG2H->
		; PRODH:PRODL
MOVFF	PRODH, RES3	;
MOVFF	PRODL, RES2	;
;		
MOVF	ARG1L, W	
MULWF	ARG2H	; ARG1L * ARG2H->
		; PRODH:PRODL
MOVF	PRODL, W	;
ADDWF	RES1, F	; Add cross
MOVF	PRODH, W	; products
ADDWFC	RES2, F	;
CLRF	WREG	;
ADDWFC	RES3, F	;
;		
MOVE'	ARGIH, W	;
MOTMF.	ARGZL	; ARGIH * ARG2L->
		; PRODH:PRODL
MOVE'	PRODL, W	;
ADDWF'	KESI, F	; Add cross
MOVE'	PRODH, W	; products
ADDWFC	RESZ, F	;
CLRF.	WKEG	;
ADDWF'C	RESJ, F	;

Example 9-4 shows the sequence to do a 16 x 16 signed multiply. Equation 9-2 shows the algorithm used. The 32-bit result is stored in four registers (RES3:RES0). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 9-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0	= ARG1H:ARG1L • ARG2H:ARG2L
	$= (ARG1H \bullet ARG2H \bullet 2^{16}) +$
	$(ARG1H \bullet ARG2L \bullet 2^8) +$
	$(ARG1L \bullet ARG2H \bullet 2^8) +$
	$(ARG1L \bullet ARG2L) +$
	$(-1 \bullet ARG2H < 7 > \bullet ARG1H:ARG1L \bullet 2^{16}) +$
	$(-1 \bullet ARG1H \le 7 \ge \bullet ARG2H: ARG2L \bullet 2^{16})$

EXAMPLE 9-4: 16 x 16 SIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
			;	PRODH:PRODL
	MOVFF	PRODH, RES1	;	
	MOVFF	PRODL, RESO	;	
;				
	MOVF	ARG1H, W		
	MULWF	ARG2H	;	ARG1H * ARG2H ->
	MOUTER		;	PRODH:PRODL
	MOVEE	PRODH, RES3	;	
	MOVEE	FRODI, RESZ	'	
'	MOVE	ARG1L, W		
	MULWF	ARG2H	;	ARG1L * ARG2H ->
			;	PRODH: PRODL
	MOVF	PRODL, W	;	
	ADDWF	RES1, F	;	Add cross
	MOVF	PRODH, W	;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	MOVF	ARG1H, W	;	
	MULWF	ARG2L	;	ARGIH * ARG2L ->
	MOVE	DRODI W	;	PRODH:PRODL
		RESI F	΄.	Add gross
	MOVE	PRODH. W	;	products
	ADDWFC	RES2, F	;	<u></u>
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	BTFSS	ARG2H, 7	;	ARG2H:ARG2L neg?
	BRA	SIGN_ARG1	;	no, check ARG1
	MOVF	ARG1L, W	;	
	SUBWF	RES2	;	
	MOVE	ARGIH, W	;	
	SUBWEB	KE22		
STG	N ARG1			
0101	BTFSS	ARG1H, 7	;	ARG1H:ARG1L neg?
	BRA	CONT CODE	;	no, done
	MOVF	ARG2L, W	;	
	SUBWF	RES2	;	
	MOVF	ARG2H, W	;	
	SUBWFB	RES3		
;				
CON	I_CODE			
	:			

11.0 I/O PORTS

Depending on the device selected and features enabled, there are up to five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (Data Latch register)

The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

11.1 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input and one of the comparator outputs to become the RA4/T0CKI/C1OUT pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins. They are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 24.1 "Configuration Bits"** for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs and the comparator voltage reference output. The operation of pins RA<3:0> and RA5 as A/D converter inputs is selected by clearing or setting the control bits in the ADCON1 register (A/D Control Register 1).

Pins RA0 through RA5 may also be used as comparator inputs or outputs by setting the appropriate bits in the CMCON register. To use RA<3:0> as digital inputs, it is also necessary to turn off the comparators.

Note:	On a Power-on Reset, RA5 and RA<3:0>
	are configured as analog inputs and read
	as '0'. RA4 is configured as a digital input.

The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input. All other PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 11-1: INITIALIZING PORTA

CLRF	PORTA	; Initialize PORTA by ; clearing output
		, data latabaa
		; data latches
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	OFh	; Configure all A/D
MOVWF	ADCON1	; for digital inputs
MOVWF	07h	; Configure comparators
MOVWF	CMCON	; for digital input
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<7:6,3:0> as inputs
		; RA<5:4> as outputs

The CCPRxH register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPRxH and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCPx pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

EQUATION 16-3:

PWM Resolution (max) =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCPx pin will not be cleared.

TABLE 16-4:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58

16.4.3 PWM AUTO-SHUTDOWN (CCP1 ONLY)

The PWM auto-shutdown features of the Enhanced CCP module are also available to CCP1 in 28-pin devices. The operation of this feature is discussed in detail in **Section 17.4.7 "Enhanced PWM Auto-Shutdown"**.

Auto-shutdown features are not available for CCP2.

16.4.4 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPRxL register and CCPxCON<5:4> bits.
- 3. Make the CCPx pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCPx module for PWM operation.

17.4.6 PROGRAMMABLE DEAD-BAND DELAY

Note:	Programmable	de	ad-band	delay	is	not
	implemented	in	28-pin	devices	3	with
	standard CCP	mod	dules.			

In half-bridge applications, where all power switches are modulated at the PWM frequency at all times, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shootthrough current*) may flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In the Half-Bridge Output mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the nonactive state to the active state (see Figure 17-4 for illustration). Bits PDC<6:0> of the ECCP1DEL register (Register 17-2) set the delay period in terms of micro-controller instruction cycles (TCY or 4 Tosc). These bits are not available on 28-pin devices as the standard CCP module does not support half-bridge operation.

17.4.7 ENHANCED PWM AUTO-SHUTDOWN

When the ECCP1 is programmed for any of the Enhanced PWM modes, the active output pins may be configured for auto-shutdown. Auto-shutdown immediately places the Enhanced PWM output pins into a defined shutdown state when a shutdown event occurs.

A shutdown event can be caused by either of the comparator modules, a low level on the Fault input pin (FLT0) or any combination of these three sources. The comparators may be used to monitor a voltage input proportional to a current being monitored in the bridge circuit. If the voltage exceeds a threshold, the comparator switches state and triggers a shutdown. Alternatively, a low digital signal on FLT0 can also trigger a shutdown. The auto-shutdown feature can be disabled by not selecting any auto-shutdown sources. The auto-shutdown sources to be used are selected using the ECCPAS<2:0> bits (ECCP1AS<6:4>).

When a shutdown occurs, the output pins are asynchronously placed in their shutdown states, specified by the PSSAC<1:0> and PSSBD<1:0> bits (ECCP1AS<3:0>). Each pin pair (P1A/P1C and P1B/ P1D) may be set to drive high, drive low or be tri-stated (not driving). The ECCPASE bit (ECCP1AS<7>) is also set to hold the Enhanced PWM outputs in their shutdown states.

The ECCPASE bit is set by hardware when a shutdown event occurs. If automatic restarts are not enabled, the ECCPASE bit is cleared by firmware when the cause of the shutdown clears. If automatic restarts are enabled, the ECCPASE bit is automatically cleared when the cause of the auto-shutdown has cleared.

If the ECCPASE bit is set when a PWM period begins, the PWM outputs remain in their shutdown state for that entire PWM period. When the ECCPASE bit is cleared, the PWM outputs will return to normal operation at the beginning of the next PWM period.

Note: Writing to the ECCPASE bit is disabled while a shutdown condition is active.

REGISTER 17-2: ECCP1DEL: PWM DEAD-BAND DELAY REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PRSEN	PDC6 ⁽¹⁾	PDC5 ⁽¹⁾	PDC4 ⁽¹⁾	PDC3 ⁽¹⁾	PDC2 ⁽¹⁾	PDC1 ⁽¹⁾	PDC0 ⁽¹⁾
bit 7							bit 0

bit 7 PRSEN: PWM Restart Enable bit

- 1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically
- 0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM

bit 6-0 PDC<6:0>: PWM Delay Count bits⁽¹⁾

Delay time, in number of FOSC/4 (4 * TOSC) cycles, between the scheduled and actual time for a PWM signal to transition to active.

Note 1: Unimplemented on 28-pin devices; bits read '0'.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

18.4.4.5 Clock Synchronization and the CKP bit

When the CKP bit is cleared, the SCL output is forced to '0'. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has

already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2 C bus have deasserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 18-14).

18.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 18-19). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 18-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

FIGURE 18-19: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 18-3: I²C[™] CLOCK RATE W/BRG

Fosc	Fcy	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
40 MHz	10 MHz	20 MHz	18h	400 kHz
40 MHz	10 MHz	20 MHz	1Fh	312.5 kHz
40 MHz	10 MHz	20 MHz	63h	100 kHz
16 MHz	4 MHz	8 MHz	09h	400 kHz
16 MHz	4 MHz	8 MHz	0Ch	308 kHz
16 MHz	4 MHz	8 MHz	27h	100 kHz
4 MHz	1 MHz	2 MHz	02h	333 kHz
4 MHz	1 MHz	2 MHz	09h	100 kHz
4 MHz	1 MHz	2 MHz	00h	1 MHz

18.4.14 SLEEP OPERATION

While in Sleep mode, the I^2C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

18.4.15 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

18.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

18.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I^2C port to its Idle state (Figure 18-27).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 18-27: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

REGISTER 19-2:	RCSTA: RECEIVE STATUS AND CONTROL REGISTER										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
	bit 7							bit 0			
bit 7	SPEN: Ser	rial Port Ena	ble bit								
	1 = Serial µ 0 = Serial µ	 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) 									
bit 6	RX9: 9-bit Receive Enable bit										
	1 = Selects 0 = Selects	s 9-bit recep s 8-bit recep	tion tion								
bit 5	SREN: Sin	gle Receive	Enable bit								
	<u>Asynchron</u> Don't care.	ous mode:									
	Synchrono 1 = Enable 0 = Disable	<u>us mode – N</u> s single rece es single rec	<u>/laster:</u> eive eive								
	This bit is o	This bit is cleared after reception is complete. <u>Synchronous mode – Slave:</u>									
bit 4	Don't care.										
DIL 4											
	1 = Enables receiver										
	Svnchronous mode:										
	 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive 										
bit 3	ADDEN: Address Detect Enable bit										
	Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit										
	Asynchronous mode 9-bit (RX9 = 0): Don't care.										
bit 2	FERR: Fra	FERR: Framing Error bit									
	1 = Framin 0 = No frar	ig error (can ning error	be updated	by reading	RCREG regi	ster and rec	eiving next	valid byte)			
bit 1	OERR: Ov	OERR: Overrun Error bit									
	1 = Overrun error (can be cleared by clearing bit CREN) 0 = No overrun error										
bit 0	RX9D: 9th bit of Received Data										
	This can be	This can be address/data bit or a parity bit and must be calculated by user firmware.									
	Legend]			
	R = Reada	ble bit	M = M	/ritable bit	[] = [Inim	nlemented	bit read as	ʻ0'			
	-n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	Inknown			

BCF	Bit Clear f	BN	Branch if	Branch if Negative			
Syntax:	BCF f, b {,a}	Syntax:	BN n	BN n			
Operands:	$0 \leq f \leq 255$	Operands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$			
	$\begin{array}{l} 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	Operation:	If Negative bit is '1', (PC) + 2 + 2n \rightarrow PC				
Operation:	$0 \rightarrow f \le b >$	Status Affected:	None				
Status Affected:	None	Encodina:	1110	0110 nnr	n nnnn		
Encoding:	1001 bbba ffff ffff	Description:	If the Negat	ive bit is '1' th	en the		
Description:	Bit 'b' in register 'f' is cleared. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25 2.3 "Byte-Oriented and	Words:	program wil The 2's con added to the incrementer instruction, PC + 2 + 2r two-cycle in	I branch. nplement num e PC. Since the d to fetch the r the new addre n. This instruct struction.	ber '2n' is e PC will have next ess will be ion is then a		
	Bit-Oriented Instructions in Indexed	Cycles:	1(2)				
Words [.]	Literal Offset Mode" for details.	Q Cycle Activity: If Jump:					
Cycles:	1	Q1	Q2	Q3	Q4		
Q Cycle Activity:	'	Decode	Read literal 'n'	Process Data	Write to PC		
Q1	Q2 Q3 Q4	No	No	No	No		
Decode	Read Process Write	operation	operation	operation	operation		
		If No Jump:					
Evample:		Q1	Q2	Q3	Q4		
Defere Instrue	tion	Decode	read literal	Process Data	N0 operation		
FLAG R	EG = C7h			Bala	oporation		
After Instructio	EG = 47b	Example:	HERE	BN Jump			
1 LAG_K	20 - 4/11	Before Instruct PC After Instructio If Negatio PI If Negatio	tion = ade on = 1; C = ade ve = 0; C = o;	dress (HERE)			

BNC	V	Branch if Not Overflow								
Synta	ax:	BNOV n								
Oper	ands:	$-128 \le n \le 127$								
Oper	ation:	If Overflow (PC) + 2 + 2	bit is '0', 2n \rightarrow PC							
Statu	s Affected:	None								
Enco	ding:	1110	0101 nnr	nn nnnn						
Desc	ription:	If the Overfl program will The 2's con added to the incrementer instruction, PC + 2 + 2r two-cycle in	low bit is '0', tr Il branch. nplement numi e PC. Since the d to fetch the r the new addre n. This instruct astruction.	hen the ber '2n' is e PC will have hext ess will be ion is then a						
Word	s:	1	1							
Cycle	es:	1(2)	1(2)							
Q C If Ju	ycle Activity: mp:	02	03	04						
	Decode	Read literal	Process	Write to PC						
	No operation	No operation	No operation	No operation						
If No	o Jump:									
	Q1	Q2	Q3	Q4						
	Decode	Read literal 'n'	Process Data	No operation						
<u>Exan</u>	<u>nple:</u>	HERE	BNOV Jump							
	Before Instruc PC After Instructio	tion = ade on	dress (HERE)	1						
	If Overflo P(If Overflo P(w = 0; C = ade w = 1; C = ade	dress (Jump) dress (HERE	+ 2)						

BNZ	2	Branch if Not Zero					
Synta	ax:	BNZ n					
Oper	ands:	-128 ≤ n ≤ 1	127				
Oper	ation:	If Zero bit is (PC) + 2 + 2	s '0', 2n → PC				
Statu	s Affected:	None					
Enco	oding:	1110	0001 nn:	nn nnnn			
Desc	ription:	If the Zero I will branch. The 2's con added to the incremente instruction, PC + 2 + 2r two-cycle in	If the Zero bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.				
Word	ls:	1					
Cycle	es:	1(2)	1(2)				
Q C If Ju	ycle Activity: imp:			_			
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No operation	No operation	No operation	No operation			
lf No	o Jump:			•			
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	No operation			
<u>Exan</u>	nple:	HERE	BNZ Jump				
	Before Instruct PC After Instruction If Zero PC If Zero PC	tion = ad on = 0; = ad = 1; = ad	dress (HERE) dress (Jump) dress (HERE	+ 2)			

1; address (HERE + 2)

SUB	LW	Subtract W from Literal						
Synta	ax:		SUBLW	k	(
Oper	ands:		$0 \le k \le 2$	255	5			
Oper	ation:		k – (W)	\rightarrow	W			
Statu	s Affected:		N, OV, 0	C, I	DC, Z			
Enco	ding:		0000		1000	kkk	ĸk	kkkk
Desc	ription		W is sub literal 'k'	otra '. T	acted from	m the is pla	eigl aceo	nt-bit 1 in W.
Word	ls:		1					
Cycle	es:		1					
QC	ycle Activity:							
	Q1		Q2		Q3			Q4
	Decode	I	Read iteral 'k'		Proce Data	SS a	W	rite to W
<u>Exan</u>	nple 1:		SUBLW	C	2h			
	Before Instruc W C	tion = =	01h ?					
	After Instructic W C Z N	on = = =	01h 1 0 0	; r	esult is p	ositive	e	
Exan	nple 2:		SUBLW	C	2h			
	Before Instruc W C	tion = =	02h ?					
	After Instructio W C Z N	on = = =	00h 1 1 0	; r	esult is z	ero		
Exan	nple 3:		SUBLW	C	2h			
	Before Instruc W C	tion = =	03h ?					
	After Instructio W C Z N	on = = =	FFh 0 0 1	; (; r	2's comp esult is r	oleme iegati	nt) ve	

SUBWF	S	Subtract W from f				
Syntax:	S	UBWF	f {,d {,a]	}}		
Operands:	0 d a	≤f≤2 ∈[0,1 ∈[0,1	55 .] .]			
Operation:	(f	(W) – (W)	\rightarrow dest			
Status Affected:	N	I, OV, C	, DC, Z	_		
Encoding:		0101	11da	ffi	f fff	
Description: Subtract W from register complement method). If result is stored in W. If ' result is stored back in r (default). If 'a' is '0', the Access B selected. If 'a' is '1', the to select the GPR bank If 'a' is '0' and the extend set is enabled, this instr operates in Indexed Lite Addressing mode when $f \le 95$ (5Fh). See Sectio "Byte-Oriented and Bit Instructions in Indexed Mode" for details.					'f' (2's d' is '0', the ' is '1', the egister 'f' ank is 3SR is used default). ed instruction iction ral Offset over 1 25.2.3 Oriented Literal Offset	
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1		Q2	Q	3	Q4	
Decode	F reg	Read jister 'f'	Proc Da	ess ta	Write to destination	
Example 1: Before Instruc	S tion	UBWF	REG, Í	1, 0		
REG W C	= = =	3 2 ?				
After Instructio REG W C Z N	on = = = = =	1 2 1 0 0	; result is	positiv	re	
Example 2:	S	UBWF	REG, (Ο, Ο		
Before Instruc REG W C	tion = = =	2 2 ?				
After Instructio REG W C Z	on = = = =	2 0 1	; result is	zero		
N =		0				
Example 3: Before Instruc	S tion	UBWF	REG, .	L, U		
REG W C	= = =	1 2 ?				
After Instructio	on =	FFh	;(2's com	plemei	nt)	
W C Z N	= = = =	2 0 0 1	; result is	negati	ve	

26.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

26.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

26.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

26.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

DC Characteristics: Power-Down and Supply Current PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial) (Continued)

PIC18LF2221/2321/4221/4321 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC18F2221/2321/4221/4321 (Industrial, Extended)		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Device	Тур	Мах	Units	Conditions			
	Supply Current (IDD) ⁽²⁾			_				
	PIC18LF2X21/4X21	160	230	μA	-40°C	Vdd = 2.0V		
		170	230	μA	+25°C			
		170	230	μA	+85°C			
	PIC18LF2X21/4X21	220	330	μA	-40°C			
		240	330	μA	+25°C	VDD = 3.0V	Fosc = 1 MHz	
		250	330	μA	+85°C		(RC_IDLE mode, INTOSC source)	
	All Devices	410	500	μA	-40°C			
		420	500	μA	+25°C			
		430	500	μA	+85°C	VDD = 5.0V		
	Extended Devices Only	450	500	μA	+125°C			
	PIC18LF2X21/4X21	310	440	μA	-40°C			
		330	440	μA	+25°C	VDD = 2.0V		
		340	440	μA	+85°C			
	PIC18LF2X21/4X21	480	750	μA	-40°C			
		500	750	μA	+25°C	VDD = 3.0V	Fosc = 4 MHz	
		520	750	μA	+85°C		INTOSC source)	
	All Devices	0.91	1.3	mA	-40°C		-)	
		0.93	1.3	mA	+25°C	Vdd = 5.0V		
		0.96	1.3	mA	+85°C			
	Extended Devices Only	0.98	1.3	mA	+125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

- 3: Low-power, Timer1 oscillator is selected unless otherwise indicated, where LPT1OSC (CONFIG3H<2>) = 1.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.
- 5: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0.

27.2

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
A01	NR	Resolution	—	_	10	bit	$\Delta VREF \ge 3.0V$
A03	EIL	Integral Linearity Error	—	_	<±1	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A04	Edl	Differential Linearity Error	—	_	<±1	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A06	EOFF	Offset Error	—	—	<±2	LSb	$\Delta VREF \ge 3.0V$
A07	Egn	Gain Error	—	_	<±1	LSb	$\Delta VREF \ge 3.0V$
A10	—	Monotonicity	Guaranteed ⁽¹⁾			-	$VSS \leq VAIN \leq VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	1.8 3	_		V V	$\begin{array}{l} VDDD<3.0V\\ VDD\geq3.0V \end{array}$
A21	Vrefh	Reference Voltage High	_	_	VDD + 3.0V	V	
A22	Vrefl	Reference Voltage Low	Vss – 0.3V			V	
A25	VAIN	Analog Input Voltage	VREFL		VREFH	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	2.5	kΩ	
A50	IREF	VREF Input Current ⁽²⁾	—		5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

TABLE 27-24: A/D CONVERTER CHARACTERISTICS

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from RA2/AN2/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

Example Frequencies/Resolutions	151
Operation Setup	151
Period	150
TMR2 to PR2 Match	150, 155
PWM (ECCP Module)	155
CCPR1H:CCPR1L Registers	155
Duty Cycle	156
Effects of a Reset	
Enhanced PWM Auto-Shutdown	
Example Frequencies/Resolutions	156
Full-Bridge Application Example	
Full-Bridge Mode	
Direction Change	
Half-Bridge Mode	
Half-Bridge Output Mode Applications	
Example	
Operation in Power-Managed Modes	
Operation with Fail-Safe Clock Monitor	
Output Configurations	156
Output Relationships (Active-High)	
Output Relationships (Active-Low)	
Period	155
Programmable Dead-Band Delay	
Setup for PWM Operation	
Start-up Considerations	164
Q	
O Clock	151 156

R

ĸ	
RAM. See Data Memory.	
RC Oscillator	
RCIO Oscillator Mode	31
RC_IDLE Mode	45
RC_RUN Mode	41
RCALL	309
RCON Register	
Bit Status During Initialization	54
Reader Response	400
Register File	67
Register File Summary	69–71
Registers	
ADCON0 (A/D Control 0)	233
ADCON1 (A/D Control 1)	234
ADCON2 (A/D Control 2)	235
BAUDCON (Baud Rate Control)	214
CCP1CON (Enhanced Capture/Compare/PWM	
Control 1)	153
CCPxCON (CCPx Control)	145
CMCON (Comparator Control)	243
CONFIG1H (Configuration 1 High)	260
CONFIG2H (Configuration 2 High)	262
CONFIG2L (Configuration 2 Low)	261
CONFIG3H (Configuration 3 High)	263
CONFIG4L (Configuration 4 Low)	264
CONFIG5H (Configuration 5 High)	265
CONFIG5L (Configuration 5 Low)	265
CONFIG6H (Configuration 6 High)	266
CONFIG6L (Configuration 6 Low)	266
CONFIG7H (Configuration 7 High)	267
CONFIG7L (Configuration 7 Low)	267
CVRCON (Comparator Voltage	
Reference Control)	249
DEVID1 (Device ID 1)	268
DEVID2 (Device ID 2)	268
ECCP1AS (ECCP Auto-Shutdown Control)	163
. ,	

ECCP1DEL (PWM Dead-Band Delay) 162	2
EECON1 (Data EEPROM Control 1) 81, 9	0
HLVDCON (High/Low-Voltage Detect Control) 253	3
INTCON (Interrupt Control)	9
INTCON2 (Interrupt Control 2) 10	0
INTCON3 (Interrupt Control 3)	1
IPR1 (Peripheral Interrupt Priority 1)	6
IPR2 (Perinheral Interrupt Priority 2) 10	7
OSCCON (Oscillator Control)	7
OSCIUNE (Oscillator Tuning)	ו כ
DIE1 (Derich and Latermunt Enchla 1)	3 4
PIE1 (Peripheral Interrupt Enable 1)	4
PIE2 (Peripheral Interrupt Enable 2) 10	5
PIR1 (Peripheral Interrupt Request (Flag) 1) 102	2
PIR2 (Peripheral Interrupt Request (Flag) 2) 103	3
RCON (Reset Control) 48, 108	8
RCSTA (Receive Status and Control) 213	3
SSPADD(MSSP Address) 18	0
SSPCON1 (MSSP Control 1, I ² C Mode)	8
SSPCON1 (MSSP Control 1 SPI Mode) 16	9
SSPCON2 (MSSP Control 2, I ² C Mode)	ģ
SSPSTAT (MSSP Status 12C Mode)	7
SSESTAT (MSSE Status, FC Mode)	/ 0
	0
	2
STKPTR (Stack Pointer)	1
T0CON (Timer0 Control) 129	9
T1CON (Timer1 Control)133	3
T2CON (Timer2 Control) 13	9
T3CON (Timer3 Control) 14	1
TRISE (PORTE/PSP Control) 124	4
TXSTA (Transmit Status and Control)	2
WDTCON (Watchdog Timer Control)	0
RESET 300	ģ
Reset State of Peristers 5	1
Resets 17 25	ч 0
Prown out Poost (POP)	0
Diowil-out Reset (DOR)	9
Oscillator Start-up Timer (OST)	9
Power-on Reset (POR)	9
Power-up Timer (PWRT)	9
RETFIE	0
RETLW	0
RETURN	1
Return Address Stack 60	0
Associated Registers 60	0
Return Stack Pointer (STKPTR)	1
Revision History	5
RICE 31	1
RINCE 31	2
RRCF 31	2
RRNCF 241	<u>ר</u>
	0
S	
SCK 16	7
10 10	7
SD0 40	7
	1
	4
SEC_RUN Mode 4	υ

 Slave Select (SS)
 167

 SLEEP
 314

OSC1 and OSC2 Pin States 38

Serial Peripheral Interface. See SPI Mode.

Single-Supply ICSP Programming.

Sleep