

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4221-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: DEVICE FEAT	URES	1	1	
Features	PIC18F2221	PIC18F2321	PIC18F4221	PIC18F4321
Operating Frequency	DC – 40 MHz			
Program Memory (Bytes)	4096	8192	4096	8192
Program Memory (Instructions)	2048	4096	2048	4096
Data Memory (Bytes)	512	512	512	512
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/ PWM Modules	0	0	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Parallel Communications (PSP)	No	No	Yes	Yes
10-bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT			
Programmable Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled			
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP	40-pin PDIP 44-pin QFN 44-pin TQFP

TABLE 1-1: DEVICE FEATURES

NOTES:

REGISTER 3-2:	OSCCON: OSCILLATOR CONTROL REGISTER									
	R/W-0	R/W-1	R/W-0	R/W-0	R ⁽¹⁾	R-0	R/W-0	R/W-0		
	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0		
	bit 7						•	bit 0		
bit 7	IDLEN: Idle	e Enable bit								
		enters an lo								
		enters Slee	•			s executed				
bit 6-4		: Internal Os			ct bits					
	111 = 8 M 110 = 4 M	Hz (INTOSC Hz	anves cloc	k directiy)						
	101 = 2 M	Hz								
	100 = 1 M									
	011 = 500 010 = 250									
	001 = 125									
		Hz (from eit			• ·	(2)				
bit 3		cillator Start-								
							llator is runn tor is not rea			
bit 2		DSC Freque	-	-	0/1	,		,		
		C frequency	-							
	0 = INTOS	SC frequency	/ is not stabl	е						
bit 1-0		System Clo		ts						
		nal oscillator		-						
		ondary (Time ary oscillato		1						
	Note 1:	Reset state	depends or	n state of the	e IESO Conf	iguration bit				
	2: Source selected by the INTSRC bit (OSCTUNE<7>), see text.									
	3: Default output frequency of INTOSC on Reset.									
	Lowende									
	Legend: R = Reada	hla hit	۸۸ – ۱۸	/ritable bit	II – I Inin	nlomented	bit, read as	·0'		
	-n = Value			it is set		s cleared	x = Bit is u			
			D		0 - 51(1		л – Dit 13 u			

EXAMPLE 7-3: WRITING TO FLASH PROGRAM MEMORY

	MOVLW	D'64'	;	number of bytes in erase block
	MOVWF	COUNTER		
	MOVLW	BUFFER ADDR HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER ADDR LOW		
	MOVWF	FSROL		
	MOVLW	CODE ADDR UPPER	;	Load TBLPTR with the base
	MOVWF	TBLPTRU —		address of the memory block
	MOVLW	CODE ADDR HIGH		1
	MOVWF	TBLPTRH		
	MOVLW	CODE ADDR LOW	;	6 LSB = 0
	MOVWF	TBLPTRL	,	
READ BLOCK				
	TBLRD*+	-	;	read into TABLAT, and inc
	MOVF	TABLAT, W		get data
		POSTINCO		store data and increment FSR0
		COUNTER	-	done?
	BRA	READ BLOCK		repeat
MODIFY WORD	Didi	111112_220011	,	202040
110D111_0010D	MOVLW	DATA ADDR HIGH		point to buffer
	MOVWF	FSROH	,	00 201101
	MOVWF	DATA ADDR LOW		
	MOVLW MOVWF	FSROL		
				undate buffer word and increment EGDO
	MOVLW	NEW_DATA_LOW	;	update buffer word and increment FSR0
	MOVWF	POSTINCO		undate buffer word
	MOVLW	NEW_DATA_HIGH	;	update buffer word
	MOVWF	INDF0		
ERASE_BLOCK				
	MOVLW			load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the memory block
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW	;	6 LSB = 0
	MOVWF	TBLPTRL		
	BCF	EECON1, CFGS		point to PROG/EEPROM memory
	BSF	EECON1, EEPGD	;	point to Flash program memory
	BSF	EECON1, WREN	;	enable write to memory
	BSF	EECON1, FREE	;	enable Row Erase operation
	BCF	INTCON, GIE	;	disable interrupts
	MOVLW	55h	;	Required sequence
	MOVWF	EECON2	;	write 55h
	MOVLW	0AAh		
	MOVWF	EECON2	;	write AAh
	BSF	EECON1, WR	;	start erase (CPU stall)
	NOP			
	BSF	INTCON, GIE	;	re-enable interrupts
WRITE_BUFFER_	BACK			
	MOVLW	8	;	number of write buffer groups of 8 bytes
	MOVWF	COUNTER HI		
	MOVLW	BUFFER ADDR HIGH	;	point to buffer
	MOVWF	FSR0H	•	-
	MOVLW	BUFFER ADDR LOW		
	MOVWF	FSROL		
PROGRAM LOOP		-		
	MOVLW	8	:	number of bytes in holding register
	MOVWF	COUNTER	,	i i i i i i i i i i i i i i i i i i i
WRITE WORD TO				
	MOVF	POSTINCO, W		get low byte of buffer data and increment FSR0
	MOVF MOVWF	TABLAT		present data to table latch
	TBLWT+*			short write
	т п л т т			to internal TBLWT holding register, increment
				TBLPTR
	DFCFC7	COUNTER		loop until buffers are full
			;	TOOP WHETT DUITETS ALE TUIT
	GOTO	WRITE_WORD_TO_HREGS		

8.5 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 24.0 "Special Features of the CPU" for additional information.

8.6 Protection Against Spurious Write

To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33).

The write initiate sequence and the WREN bit together help prevent an accidental write during Brown-out Reset, power glitch or software malfunction.

8.7 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing data. Such data is typically updated at least one time within the number of writes defined by specification, D124. If any location storing data is not written at least this often, the data EEPROM array must be refreshed. For this reason, values that change infrequently, or not at all, should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 8-3.

Note: If data EEPROM is only used to store constants and/or data that changes often, an array refresh is likely not required. See specification, D124.

EXAMPLE 8-3:	DATA EEPROM REFRESH ROUTINE
--------------	-----------------------------

		DATA EEL KG	
	CLRF	EEADR	; Start at address 0
	BCF	EECON1, CFGS	; Set for memory
	BCF	EECON1, EEPGD	; Set for Data EEPROM
	BCF	INTCON, GIE	; Disable interrupts
	BSF	EECON1, WREN	; Enable writes
LOOP			; Loop to refresh array
	BSF	EECON1, RD	; Read current address
	MOVLW	55h	;
	MOVWF	EECON2	; Write 55h
	MOVLW	0AAh	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete
	BRA	\$-2	
	INCFSZ	EEADR, F	; Increment address
	BRA	LOOP	; Not zero, do it again
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts
1			

INTCON3:	INTERRU	PICONII	ROL REGI	SIER 3					
R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF		
bit 7							bit 0		
INT2IP: IN	T2 External	nterrupt Pri	ority bit						
1 = High priority 0 = Low priority									
INT1IP: IN	T1 External	nterrupt Pri	ority bit						
1 = High p 0 = Low pr									
Unimplem	ented: Read	l as '0'							
INT2IE: IN	T2 External	nterrupt En	able bit						
	es the INT2 e		•						
	es the INT2		•						
	T1 External	•							
	es the INT1 e es the INT1		•						
Unimplem	ented: Read	l as '0'							
INT2IF: IN	T2 External I	nterrupt Fla	ıg bit						
	IT2 external	•	•	t be cleared	in software))			
0 = The IN	IT2 external	interrupt dic	d not occur						
	T1 External I	•	•						
	IT1 external		· ·	t be cleared	in software))			
0 = 1 ne IN	IT1 external	interrupt aic	not occur						

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	OSCFIP	CMIP		EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP
	bit 7							bit 0
bit 7			il Interrupt P	riority bit				
	1 = High p 0 = Low pr							
bit 6	CMIP: Com	parator Inte	errupt Priorit	y bit				
	1 = High p 0 = Low pr	•						
bit 5	Unimpleme	ented: Rea	d as '0'					
bit 4	EEIP: Data	EEPROM/	Flash Write	Operation In	terrupt Prio	rity bit		
	1 = High p 0 = Low pr	•						
bit 3	BCLIP: Bus	s Collision I	nterrupt Prio	rity bit				
	1 = High p 0 = Low pr	•						
bit 2	HLVDIP: Hi	igh/Low-Vo	ltage Detect	Interrupt Pr	iority bit			
	1 = High p							
	0 = Low pr	iority						
bit 1			ow Interrupt	Priority bit				
	1 = High p 0 = Low pr	•						
bit 0	CCP2IP: C	CP2 Interru	pt Priority bi	t				
	1 = High p 0 = Low pr	•						
	Legend:							
	R = Readat	ole bit	W = Wr	itable bit	U = Unim	plemented I	oit, read as '(D'

'1' = Bit is set

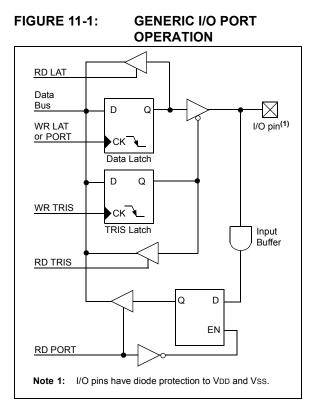
'0' = Bit is cleared

REGISTER 10-9: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

-n = Value at POR

x = Bit is unknown

11.0 I/O PORTS


Depending on the device selected and features enabled, there are up to five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (Data Latch register)

The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

11.1 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input and one of the comparator outputs to become the RA4/T0CKI/C1OUT pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins. They are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 24.1 "Configuration Bits**" for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs and the comparator voltage reference output. The operation of pins RA<3:0> and RA5 as A/D converter inputs is selected by clearing or setting the control bits in the ADCON1 register (A/D Control Register 1).

Pins RA0 through RA5 may also be used as comparator inputs or outputs by setting the appropriate bits in the CMCON register. To use RA<3:0> as digital inputs, it is also necessary to turn off the comparators.

Note:	On a Power-on Reset, RA5 and RA<3:0>
	are configured as analog inputs and read
	as '0'. RA4 is configured as a digital input.

The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input. All other PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 11-1: INITIALIZING PORTA

CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
CLRF	LATA	;	Alternate method
		;	to clear output
		;	data latches
MOVLW	OFh	;	Configure all A/D
MOVWF	ADCON1	;	for digital inputs
MOVWF	07h	;	Configure comparators
MOVWF	CMCON	;	for digital input
MOVLW	OCFh	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<7:6,3:0> as inputs
		;	RA<5:4> as outputs
1			

11.4 PORTD, TRISD and LATD Registers

Note:	PORTD	is	only	available	on	40/44-pin
	devices.					

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

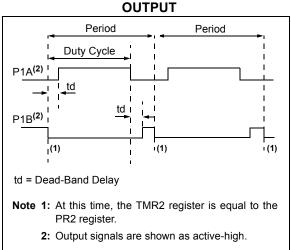
Three of the PORTD pins are multiplexed with outputs P1B, P1C and P1D of the Enhanced CCP module. The operation of these additional PWM output pins is covered in greater detail in Section 17.0 "Enhanced Capture/Compare/PWM (ECCP) Module".

Note: On a Power-on Reset, these pins are configured as digital inputs. PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See **Section 11.6 "Parallel Slave Port"** for additional information on the Parallel Slave Port (PSP).

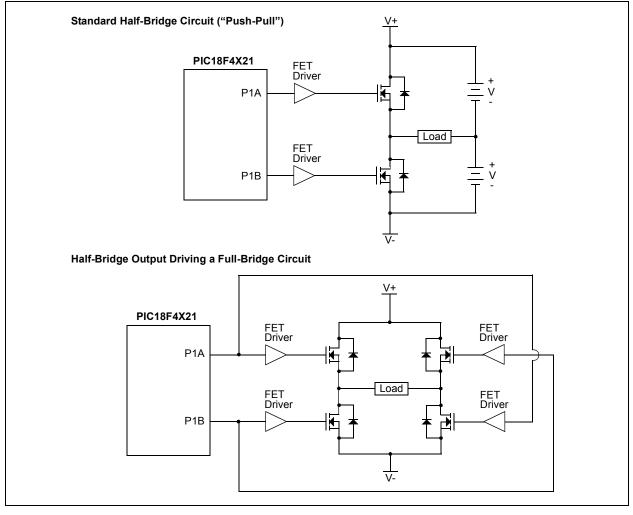
Note:	When the Enhanced PWM mode is used							
	with either dual or quad outputs, the PSP							
	functions of PORTD are automatically							
	disabled.							

EXAMPLE 11-4: INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by ; clearing output : data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs


17.4.4 HALF-BRIDGE MODE

In the Half-Bridge Output mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the P1A pin, while the complementary PWM output signal is output on the P1B pin (Figure 17-4). This mode can be used for half-bridge applications, as shown in Figure 17-5, or for full-bridge applications where four power switches are being modulated with two PWM signals.


In Half-Bridge Output mode, the programmable deadband delay can be used to prevent shoot-through current in half-bridge power devices. The value of bits, PDC<6:0>, sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 17.4.6 "Programmable Dead-Band Delay"** for more details of the dead-band delay operations.

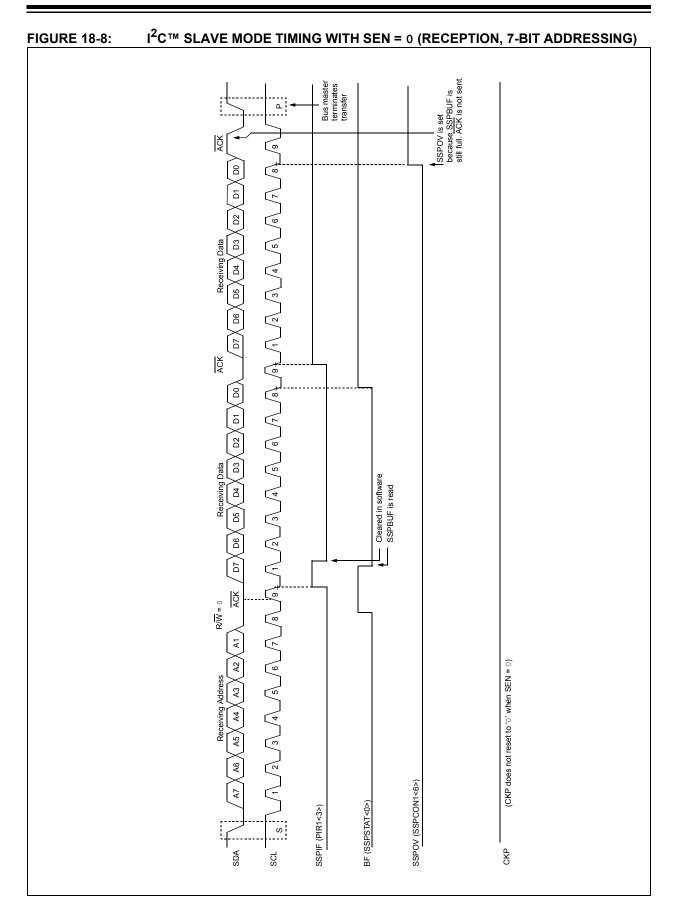

Since the P1A and P1B outputs are multiplexed with the PORTC<2> and PORTD<5> data latches, the TRISC<2> and TRISD<5> bits must be cleared to configure P1A and P1B as outputs.

FIGURE 17-4: HALF-BRIDGE PWM

FIGURE 17-5: EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS

18.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 18.4.7 "Baud Rate"** for more detail.

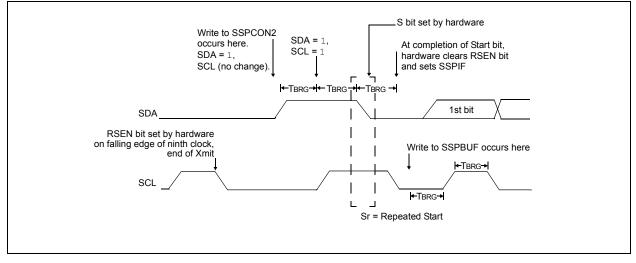
A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPCON2<0>).
- 2. SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register.
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- 9. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register.
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

18.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

18.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 18-22: REPEATED START CONDITION WAVEFORM

Mnemo	onic,	Description	Cycles	16-Bit Instruction Word				Status	N
Operands		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL (DPERA	TIONS							
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move Literal (12-bit) 2nd Word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st Word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	IORY ←	> PROGRAM MEMORY OPERATIO	NS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None	

TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

POP	•	Рор Тор	Pop Top of Return Stack							
Synta	ax:	POP	POP							
Oper	ands:	None	None							
Oper	ation:	$(TOS) \rightarrow bi$	$(TOS) \rightarrow bit bucket$							
Statu	s Affected:	None								
Enco	ding:	0000	0000	000	C	0110				
Description:		The TOS v stack and is then becom was pushed This instruct the user to stack to inc	s discard nes the p d onto th ction is p properly	led. The previous e return rovided manag	e T(s va n sta to je th	DS value lue that ack. enable ne return				
Word	ls:	1								
Cycle	es:	1								
QC	ycle Activity:									
	Q1	Q2	Q3			Q4				
	Decode	No operation	POP 1 valu		op	No peration				
<u>Exan</u>	<u>nple:</u>	POP GOTO	NEW							
Before Instructio TOS Stack (1 le		tion level down)	-)031A2)14332						
	After Instructic TOS PC	on	-)14332 NEW	h					

PUS	н	Push Top	Push Top of Return Stack						
Synta	ax:	PUSH	PUSH						
Operands:		None							
Oper	ation:	(PC + 2) \rightarrow	TOS						
Statu	s Affected:	None							
Enco	ding:	0000	0000	000	0	0101			
Description:		The PC + 2 the return s value is pus This instruc software sta then pushin	tack. shed c tion a ack by	The prev lown on t llows imp modifyir	ious the s blem ng T(TOS stack. enting a OS and			
Word	s:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2		Q3		Q4			
Decode		PUSH PC + 2 onto return stack	No operation		op	No peration			
Exan	<u>nple:</u>	PUSH							
	Before Instruc TOS PC	tion	= =	345Ah 0124h					
After Instruction PC TOS Stack (1 lev		on	=	0126h					

25.2.2 EXTENDED INSTRUCTION SET

ADD	FSR	Add Lite	ral to FS	SR				
Synta	x:	ADDFSR	ADDFSR f, k					
Operands:		$0 \le k \le 63$						
		f ∈ [0, 1, 2	2]					
Opera	ation:	FSR(f) + k	\rightarrow FSR(f	⁻)				
Status	Affected:	None						
Enco	ding:	1110	1000	ffkk	kkkk			
Descr	iption:		The 6-bit literal 'k' is added to the contents of the FSR specified by 'f'.					
Words:		1						
Cycle	s:	1						
Q Cy	cle Activity:							
	Q1	Q2	Q3		Q4			
Γ	Decode	Read	Proces	ss V	Vrite to			
		literal 'k'	Data		FSR			
Exam	<u>ple:</u>	ADDFSR 2,	, 23h					
E	Before Instruc FSR2	tion = 03FFh						
ŀ	After Instructio FSR2	on = 0422h						

ADDULNK	Add Literal to	FSR2 and	Return				
Syntax:	ADDULNK k						
Operands:	$0 \le k \le 63$						
Operation:	FSR2 + k \rightarrow FS (TOS) \rightarrow PC	R2,					
Status Affected:	None						
Encoding:	1110 1000	11kk	kkkk				
Worder	contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.						
Words:	1						
Cycles:	2						
Q Cycle Activity:	02	02	04				
Q1	Q2	Q3	Q4				
Decode	Read literal 'k'	Process Data	Write to FSR				
No	No	No	No				
Operation	Operation	Operation	Operation				

Example:	ADDULNK	23h
	ADDODINI	2011

Before Instruct	tion	
FSR2	=	03FFh
PC	=	0100h
After Instructio	n	
FSR2	=	0422h
PC	=	(TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

DC Characteristics: Power-Down and Supply Current PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial) (Continued)

(Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Тур	Max	Units		Conditio	ns		
	Supply Current (IDD) ⁽²⁾								
	PIC18LF2X21/4X21	13	19	μΑ	-40°C				
		13	19	μA	+25°C	VDD = 2.0V			
		13	17	μA	+85°C]			
	PIC18LF2X21/4X21	41	45	μA	-40°C	VDD = 3.0V	Fosc = 31 kHz (RC_RUN mode, INTRC source)		
		34	38	μA	+25°C				
		27	30	μA	+85°C				
	All Devices	104	115	μA	-40°C				
		86	95	μA	+25°C				
		67	75	μA	+85°C	VDD - 3.0V			
	Extended Devices Only	68	100	μA	+125°C				
	PIC18LF2X21/4X21	0.31	0.35	mA	-40°C				
		0.31	0.35	mA	+25°C	VDD = 2.0V			
		0.31	0.35	mA	+85°C				
	PIC18LF2X21/4X21	0.55	0.60	mA	-40°C				
		0.51	0.60	mA	+25°C	VDD = 3.0V	Fosc = 1 MHz (RC RUN mode,		
		0.47	0.60	mA	+85°C		INTOSC source)		
	All Devices	1.0	1.3	mA	-40°C				
		0.94	1.3	mA	+25°C	VDD = 5.0V			
		0.88	1.2	mA	+85°C	0.0V - 5.0V			
	Extended Devices Only	0.88	1.2	mA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;
- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Low-power, Timer1 oscillator is selected unless otherwise indicated, where LPT1OSC (CONFIG3H<2>) = 1.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.
- 5: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0.

27.2

27.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 27-5 apply to all timing specifications unless otherwise noted. Figure 27-5 specifies the load conditions for the timing specifications.

Note: Because of space limitations, the generic terms "PIC18FXXXX" and "PIC18LFXXXX" are used throughout this section to refer to the PIC18F2221/2321/4221/4321 and PIC18LF2221/2321/4221/4321 families of devices specifically and only those devices.

TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions (unless otherwise stated)							
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
	$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
	Operating voltage VDD range as described in DC spec Section 27.1 and							
	Section 27.3.							
	LF parts operate for industrial temperatures only.							

FIGURE 27-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com