

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4221-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6.4 PLL IN INTOSC MODES

The 4x Phase Locked Loop (PLL) can be used with the internal oscillator block to produce faster device clock speeds than are normally possible with the internal oscillator sources. When enabled, the PLL produces a clock speed of 16 MHz or 32 MHz.

Unlike HSPLL mode, the PLL is controlled through software. The control bit, PLLEN (OSCTUNE<6>), is used to enable or disable its operation. If PLL is enabled and a Two-Speed Start-up from wake is performed, execution is delayed until the PLL starts.

The PLL is available when the device is configured to use the internal oscillator block as its primary clock source (FOSC<3:0> = 1001 or 1000). Additionally, the PLL will only function when the selected output frequency is either 4 MHz or 8 MHz (OSCCON<6:4> = 111or 110). If both of these conditions are not met, the PLL is disabled and the PLLEN bit remains clear (writes are ignored).

3.6.5 INTOSC FREQUENCY DRIFT

The factory calibrates the internal oscillator block output (INTOSC) for 8 MHz. However, this frequency may drift as VDD or temperature changes and can affect the controller operation in a variety of ways. It is possible to adjust the INTOSC frequency by modifying the value in the OSCTUNE register. This has no effect on the INTRC clock source frequency.

Tuning the INTOSC source requires knowing when to make the adjustment, in which direction it should be made and in some cases, how large a change is needed. Three compensation techniques are discussed in Section 3.6.5.1 "Compensating with the EUSART", Section 3.6.5.2 "Compensating with the Timers" and Section 3.6.5.3 "Compensating with the CCP Module in Capture Mode" but other techniques may be used.

REGISTER 3-1:	OSCTUNE: OSCILLATOR TUNING REGISTER
KEGIJIEK J-I.	USCIONE. USCILLATOR TOMING REDISTER

	0001014							
	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	INTSRC	PLLEN ⁽¹⁾	_	TUN4	TUN3	TUN2	TUN1	TUN0
	bit 7							bit 0
bit 7	1 = 31.25	nternal Oscil kHz device o z device cloo	clock derive	d from 8 MH	z INTOSC s	ource (divid	•	abled)
bit 6		equency Mu nabled for IN sabled	-)		
	Note 1:	Available o and reads a	•		•		e, this bit is e s " for deta	
bit 5	Unimplem	ented: Read	d as '0'					
bit 4-0	TUN<4:0>:	: Frequency	Tuning bits					
	01111 = M	laximum free	quency					
	•	•						
	•	•						
	00001 00000 = C 11111 •	enter freque	ncy. Oscilla	tor module is	s running at	the calibrate	ed frequency	Į.
	10000 = M	linimum freq	uency					
	Logondy							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

6.1.2.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

6.1.3 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers, to provide a "fast return" option for interrupts. The stack for each register is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their associated registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the Stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

CALL	SUB1, FAST •	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1	• • RETURN, FAS:	F ;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

6.1.4 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.4.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVE	OFFSET,	W
	CALL	TABLE	
ORG	nn00h		
TABLE	ADDWF	PCL	
	RETLW	nnh	
	RETLW	nnh	
	RETLW	nnh	
	•		
	•		

6.1.4.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 7.1 "Table Reads and Table Writes".

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details or page:
TOSU	_	_	_	Top-of-Stack	Upper Byte (T	OS<20:16>)			0 0000	55, 60
TOSH	Top-of-Stack High Byte (TOS<15:8>)								0000 0000	55, 60
TOSL	Top-of-Stack	Low Byte (TO	S<7:0>)						0000 0000	55, 60
STKPTR	STKFUL ⁽⁶⁾	STKUNF ⁽⁶⁾	_	SP4	SP3	SP2	SP1	SP0	00-0 0000	55, 61
PCLATU	_	_	Holding Regi	ster for PC<2	1:16>				00 0000	55, 60
PCLATH	Holding Register for PC<15:8>								0000 0000	55, 60
PCL	PC Low Byte	(PC<7:0>)							0000 0000	55, 60
TBLPTRU	_	_	bit 21	Program Mei	mory Table Poi	inter Upper By	te (TBLPTR<20):16>)	00 0000	55, 82
TBLPTRH	Program Mer	nory Table Poi	inter High Byte	e (TBLPTR<1	5:8>)				0000 0000	55, 82
TBLPTRL	Program Men	nory Table Poi	inter Low Byte	(TBLPTR<7:0	0>)				0000 0000	55, 82
TABLAT	Program Men	nory Table Lat	ch						0000 0000	55, 82
PRODH	Product Regi	ster High Byte							XXXX XXXX	55, 95
PRODL	Product Regi	ster Low Byte							XXXX XXXX	55, 95
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	55, 99
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	55, 100
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	55, 101
INDF0		s of FSR0 to a	uddress data n			changed (not a	a physical regis		N/A	55, 74
POSTINCO				-				· · · · · · · · · · · · · · · · · · ·	N/A	55, 74
POSTDEC0									N/A	55, 74
PREINC0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)								N/A	55, 74
PLUSW0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 offset by W								N/A	55, 74
FSR0H	_	_	_	_	Indirect Data	Memory Addre	ess Pointer 0 H	igh Byte	0000	55, 74
FSR0L	Indirect Data	Memory Addr	ess Pointer 0	Low Byte					XXXX XXXX	55, 74
WREG	Working Regi	ster							XXXX XXXX	55
INDF1			ddress data n	nemory – valu	e of FSR1 not	changed (not	a physical regis	ter)	N/A	55, 74
POSTINC1	Uses content	s of FSR1 to a	ddress data n	nemory – valu	e of FSR1 pos	t-incremented	(not a physical	register)	N/A	55, 74
POSTDEC1							I (not a physica		N/A	55, 74
PREINC1				-			not a physical r		N/A	55, 74
PLUSW1		s of FSR1 to a		-			not a physical r		N/A	55, 74
FSR1H	_	_	_	_	Indirect Data	Memory Addre	ess Pointer 1 H	igh Byte	0000	56, 74
FSR1L	Indirect Data	Memory Addr	ess Pointer 1	Low Byte					XXXX XXXX	56, 74
BSR	_	_	_	_	Bank Select I	Register			0000	56, 65
INDF2	Uses content	s of FSR2 to a	ddress data n	nemory – valu	1	<u> </u>	a physical regis	ter)	N/A	56, 74
POSTINC2	Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)							,	N/A	56, 74
POSTDEC2	Uses content	s of FSR2 to a	address data n	nemory – valu	e of FSR2 pos	t-decremented	I (not a physica	l register)	N/A	56, 74
PREINC2							not a physical r		N/A	56, 74
PLUSW2		s of FSR2 to a					not a physical r		N/A	56, 74
FSR2H	_	_	_	_	Indirect Data	Memory Addre	ess Pointer 2 H	igh Byte	0000	56, 74
FSR2L	Indirect Data	Memory Addr	ess Pointer 2	Low Byte		, .			XXXX XXXX	56, 74
				-						,

TABLE 6-2: **REGISTER FILE SUMMARY (PIC18F2221/2321/4221/4321)**

Note

The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)". 1:

2: These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-'.

The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 3.6.4 "PLL in 3: INTOSC Modes".

4: The RE3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0); otherwise, RE3 reads as '0'. This bit is read-only.

RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. 5: When disabled, these bits read as '0'.

6: Bit 7 and bit 6 are cleared by user software or by a POR.

9.0 8 x 8 HARDWARE MULTIPLIER

9.1 Introduction

All PIC18 devices include an 8 x 8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 9-1.

9.2 Operation

Example 9-1 shows the instruction sequence for an 8 x 8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 9-2 shows the sequence to do an 8 x 8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 9-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1, W	;
MULWF	ARG2	; ARG1 * ARG2 ->
		; PRODH:PRODL

EXAMPLE 9-2: 8 x 8 SIGNED MULTIPLY

			111	JOINE
MOVF	ARG1,	W		
MULW	F ARG2		;	ARG1 * ARG2 ->
			;	PRODH:PRODL
BTFS	C ARG2,	SB	;	Test Sign Bit
SUBW	F PRODH	, F	;	PRODH = PRODH
			;	- ARG1
MOVF	ARG2,	W		
BTFS	C ARG1,	SB	;	Test Sign Bit
SUBW	F PRODH	, F	;	PRODH = PRODH
			;	- ARG2

		Program	Cycles	Time			
Routine	Multiply Method	Memory (Words)	(Max)	@ 40 MHz	@ 10 MHz	@ 4 MHz	
	Without hardware multiply	13	69	6.9 μs	27.6 μs	69 μs	
8 x 8 unsigned	Hardware multiply	1	1	100 ns	400 ns	1 μs	
8 x 8 signed	Without hardware multiply	33	91	9.1 μs	36.4 μs	91 μs	
	Hardware multiply	6	6	600 ns	2.4 μs	6 μs	
16 x 16 uppigned	Without hardware multiply	21	242	24.2 μs	96.8 μs	242 μs	
16 x 16 unsigned	Hardware multiply	28	28	2.8 μs	11.2 μs	28 μs	
16 v 16 signad	Without hardware multiply	52	254	25.4 μs	102.6 μs	254 μs	
16 x 16 signed	Hardware multiply	35	40	4.0 μs	16.0 μs	40 μs	

TABLE 9-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

INTCON3:	INTERRU	PICONII	ROL REGI	SIER 3			
R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF
bit 7							bit 0
INT2IP: IN	T2 External	nterrupt Pri	ority bit				
1 = High p 0 = Low pr	•						
INT1IP: IN	T1 External	nterrupt Pri	ority bit				
1 = High p 0 = Low pr							
Unimplem	ented: Read	l as '0'					
INT2IE: IN	T2 External	nterrupt En	able bit				
	es the INT2 e		•				
	es the INT2		•				
	T1 External	•					
	es the INT1 e es the INT1		•				
Unimplem	ented: Read	l as '0'					
INT2IF: IN	T2 External I	nterrupt Fla	ıg bit				
	IT2 external	•	•	t be cleared	in software))	
0 = The IN	IT2 external	interrupt dic	d not occur				
	T1 External I	•	•				
	IT1 external		· ·	t be cleared	in software))	
0 = 1 ne IN	IT1 external	interrupt aic	not occur				

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

15.2 Timer3 16-Bit Read/Write Mode

Timer3 can be configured for 16-bit reads and writes (see Figure 15-2). When the RD16 control bit (T3CON<7>) is set, the address for TMR3H is mapped to a buffer register for the high byte of Timer3. A read from TMR3L will load the contents of the high byte of Timer3 into the Timer3 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer3 must also take place through the TMR3H Buffer register. The Timer3 high byte is updated with the contents of TMR3H when a write occurs to TMR3L. This allows a user to write all 16 bits to both the high and low bytes of Timer3 at once.

The high byte of Timer3 is not directly readable or writable in this mode. All reads and writes must take place through the Timer3 High Byte Buffer register.

Writes to TMR3H do not clear the Timer3 prescaler. The prescaler is only cleared on writes to TMR3L.

15.3 Using the Timer1 Oscillator as the Timer3 Clock Source

The Timer1 internal oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN (T1CON<3>) bit. To use it as the Timer3 clock source, the TMR3CS bit must also be set. As previously noted, this also configures Timer3 to increment on every rising edge of the oscillator source.

The Timer1 oscillator is described in Section 13.0 "Timer1 Module".

15.4 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit, TMR3IE (PIE2<1>).

15.5 Resetting Timer3 Using the CCP Special Event Trigger

If either of the CCP modules is configured to use Timer3 and to generate a Special Event Trigger in Compare mode (CCP1M<3:0> or CCP2M<3:0> = 1011), this signal will reset Timer3. It will also start an A/D conversion if the A/D module is enabled (see **Section 16.3.4** "**Special Event Trigger**" for more information).

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPR2H:CCPR2L register pair effectively becomes a period register for Timer3.

If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timer3 coincides with a Special Event Trigger from a CCP module, the write will take precedence.

Note: The Special Event Triggers from the CCP2 module will not set the TMR3IF interrupt flag bit (PIR2<1>).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	58
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	58
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	58
TMR3L	Timer3 Reg	gister Low B	yte						57
TMR3H	Timer3 Reg	gister High B	yte						57
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	56
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	57

TABLE 15-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
RCON	IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR	BOR	54
PIR1	PSPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
PIR2	OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	58
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	58
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	58
TRISB	PORTB Data Direction Register								58
TRISC	PORTC Data Direction Register								58
TMR1L	Timer1 Reg	gister Low By	/te						56
TMR1H	Timer1 Reg	gister High B	yte						56
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	56
TMR3H	Timer3 Reg	gister High B	yte						57
TMR3L	Timer3 Reg	gister Low B	/te						57
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	57
CCPR1L	Capture/Co	mpare/PWN	1 Register 1	Low Byte					57
CCPR1H	Capture/Co	mpare/PWN	1 Register 1	High Byte					57
CCP1CON	P1M1 ⁽²⁾	P1M0 ⁽²⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	57
CCPR2L	Capture/Co	mpare/PWN	1 Register 2	Low Byte					57
CCPR2H	Capture/Co	mpare/PWN	1 Register 2	High Byte					57
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	57

TABLE 16-3:	REGISTERS ASSOCIATED WITH CAPTURE	COMPARE, TIMER1 AND TIMER3

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Capture/Compare, Timer1 or Timer3.

Note 1: The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

2: These bits are unimplemented on 28-pin devices and read as '0'.

17.4.7.1 Auto-Shutdown and Automatic Restart

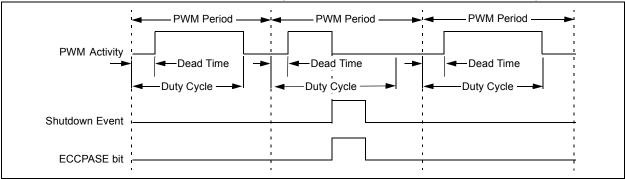
The auto-shutdown feature can be configured to allow automatic restarts of the module following a shutdown event. This is enabled by setting the PRSEN bit of the ECCP1DEL register (ECCP1DEL<7>).

In Shutdown mode with PRSEN = 1 (Figure 17-10), the ECCPASE bit will remain set for as long as the cause of the shutdown continues. When the shutdown condition clears, the ECCP1ASE bit is cleared. If PRSEN = 0 (Figure 17-11), once a shutdown condition occurs, the ECCPASE bit will remain set until it is cleared by firmware. Once ECCPASE is cleared, the Enhanced PWM will resume at the beginning of the next PWM period.

Note:	Writing to the ECCPASE bit is disabled
	while a shutdown condition is active.

Independent of the PRSEN bit setting, if the autoshutdown source is one of the comparators, the shutdown condition is a level. The ECCPASE bit cannot be cleared as long as the cause of the shutdown persists.

The Auto-Shutdown mode can be forced by writing a '1' to the ECCPASE bit.


17.4.8 START-UP CONSIDERATIONS

When the ECCP module is used in the PWM mode, the application hardware must use the proper external pullup and/or pull-down resistors on the PWM output pins. When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the OFF state until the microcontroller drives the I/O pins with the proper signal levels, or activates the PWM output(s).

The CCP1M<1:0> bits (CCP1CON<1:0>) allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pins are configured as outputs. Changing the polarity configuration while the PWM pins are configured as outputs is not recommended, since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pins for output at the same time as the ECCP module may cause damage to the application circuit. The ECCP module must be enabled in the proper output mode and complete a full PWM cycle before configuring the PWM pins as outputs. The completion of a full PWM cycle is indicated by the TMR2IF bit being set as the second PWM period begins.

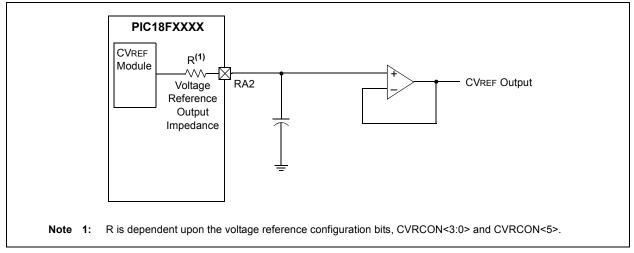

FIGURE 17-10: PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)

FIGURE 17-11: PWM AUTO-SHUTDOWN (PRSEN = 0, AUTO-RESTART DISABLED)

FIGURE 22-2: COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 22-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	57
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	57
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA D	ORTA Data Direction Control Register					58

Legend: Shaded cells are not used with the comparator voltage reference.

Note 1: PORTA pins are enabled based on oscillator configuration.

REGISTER 24-2:	CONFIG	2L: CONF	IGURATI	ON REGIS	TER 2 LOV	V (BYTE AD	DRESS 300	002h)
	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
	_	_	_	BORV1 ⁽¹⁾	BORV0 ⁽¹⁾	BOREN1 ⁽²⁾	BOREN0(2)	PWRTEN ⁽²⁾
	bit 7							bit 0
bit 7-5	Unimplem	nented: Re	ad as '0'					
bit 4-3	BORV<1:0	0>: Brown-	out Reset	Voltage bits ⁽	1)			
	11 = Minin	num setting	J					
	•							
	•							
	00 = Maxi i	mum settin	g					
bit 2-1	BOREN<1	I: 0>: Browr	n-out Rese	t Enable bits	;(2)			
					•	REN is disable	,	
				in hardware	only and dis	sabled in Slee	ep mode	
		OREN is dis /n-out Rese		and controlle	ed by softwa	are (SBOREN	is enabled)	
				in hardware	•	•	,	
bit 0	PWRTEN:	Power-up	Timer Ena	able bit ⁽²⁾				
	1 = PWRT							
	0 = PWRT							
	Note 1:	See Sect	ion 27.1 '	'DC Charac	teristics" fo	or the specific	ations.	
	 The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled. 							
	Legend:							
	R = Reada	able bit	P = Pr	ogrammable	ebit U=l	Jnimplemente	ed bit, read as	s 'O'

.	•
-n = Value when device is unprogrammed	u = Unchanged from programmed state

24.5 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 Flash devices differs significantly from other $\text{PIC}^{\texttt{R}}$ devices.

The user program memory is divided into three blocks. One of these is a boot block of variable size. The remainder of the memory is divided into two blocks on binary boundaries. Each of the three blocks has three code protection bits associated with them. They are:

- Code-Protect bit (CPn)
- Write-Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 24-5 shows the program memory organization for 4 and 8-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 24-3.

FIGURE 24-5: CODE-PROTECTED PROGRAM MEMORY FOR PIC18F2221/2321/4221/4321 FAMILY DEVICES

	MEMORY SIZE/DEVICE					Block Code Protection Controlled By:	
	8 Kbytes (PIC18FX321)			oytes FX221)			
		BBSIZ<1:0>			-		
11/10	01	00	11/10/01	00			
	Boot Block	Boot Block 256 words	Boot Block	Boot Block 256 words	000000h 0001FFh	CPB, WRTB, EBTRB	
Boot Block	512 words		512 words	512 words			
1K word		-	Block 0 0.5K words	Block 0 0.75K words	0003FFh 000400h		
					0007FFh	CP0, WRT0, EBTR0	
Block 0 1K word	Block 0 1.5K words	Block 0 1.75K words	Block 1 1K word	Block 1 1K word	000800h 000FFFh 001000h		
Block 1 2K words	Block 1 2K words	Block 1 2K words	Unimplemented Reads all '0's			CP1, WRT1, EBTR1	
	Unimplemented Reads all '0's				001FFFh 002000h 1FFFFFh	(Unimplemented Memory Space)	

GOT	ю	Uncondit	ional Brar	ch		INCF		Incremer	nt f		
Synta	ax:	GOTO k				Synta	x:	INCF f{,	d {,a}}		
Oper	ands:	$0 \le k \le 104$	8575			Opera	inds:	$0 \le f \le 255$			
Oper	ation:	$k \rightarrow PC<20$):1>					$d \in [0, 1]$			
Statu	s Affected:	None				Opera	tion:	$a \in [0, 1]$	(f) + 1 \rightarrow dest		
	ord (k<7:0>)	1110		,kkk	kkkk ₀	Status	Affected:	$(1) \downarrow \downarrow \downarrow \downarrow 0$ $C, DC, N,$			
2nd ۱	word(k<19:8>)	1111	k ₁₉ kkk k	kkk	kkkk ₈	Encod	ling:	0010	10da	ffff	ffff
Desc	ription:	anywhere v 2-Mbyte m value 'k' is	vs an uncon within entire emory range loaded into ways a two-r	. The PC<20	20-bit	Descr	iption:	The conter incremente placed in V placed bac If 'a' is '0', If 'a' is '1',	ed. If 'd' is V. If 'd' is k in regis the Acces the BSR i	6 '0', the r '1', the re ter 'f' (de ss Bank is s used to	esult is esult is fault). s selected.
Word	ls:	2						GPR bank If 'a' is '0' a	· ,		nstruction
Cycle	es:	2						set is enab	oled, this i	nstructio	n operates
QC	ycle Activity:							in Indexed mode whe			
	Q1	Q2	Q3		Q4			Section 2		· · ·	
	Decode	Read literal 'k'<7:0>,	No operation	ʻk	ead literal c'<19:8>, rite to PC			Bit-Orient Literal Off			
	No	No	No	vv	No	Words	8:	1			
	operation	operation	operation	0	peration	Cycle	s:	1			
						Q Cy	cle Activity:				
<u>Exan</u>	nple:	GOTO THE	RE			-	Q1	Q2	Q3		Q4
	After Instructio PC =	n Address (T	HERE)				Decode	Read register 'f'	Proce Data		Write to estination
						<u>Exam</u> E	<u>ple:</u> Before Instruc CNT Z C	INCF etion = FFh = 0 = ?	CNT,	1, 0	
							DC After Instructi	= ?			

After Instruction

=

= = = 1 1 1

00h

CNT Z C DC

MOVFF	Move f to	o f					
Syntax:	MOVFF f	s,f _d					
Operands:	$\begin{array}{l} 0 \leq f_s \leq 40 \\ 0 \leq f_d \leq 40 \end{array}$						
Operation:	$(f_s) \to f_d$						
Status Affected:	None						
Encoding: 1st word (source) 2nd word (destin.)	1100 ffff ffff ffff _s 1111 ffff ffff ffff _d						
Worde:	moved to destination register ' f_d '. Location of source ' f_s ' can be anywhere in the 4096-byte data space (000h to FFFh) and location of destination ' f_d ' can also be anywhere from 000h to FFFh. Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.						
Words:	2						
Cycles:	2 (3)						
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			

MOVLB	Move Literal to Low Nibble in BSR						
Syntax:	MOVLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \to BSR$						
Status Affected:	None						
Encoding:	0000	0001	kkkł	c	kkkk		
Description:	The eight-bi Bank Select BSR<7:4> a of the value	t Register Iways rei	(BSR).	The	value of		
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	G	13		Q4		
Decode	Read literal 'k'		cess ata		te literal to BSR		
Example:	MOVLB	5					
Before Instru BSR Re	gister = 0)2h					

After Instruction

BSR Register = 05h

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example: MOVFF REG1, REG2

Before Instruction REG1	=	33h
REG2	=	11h
After Instruction		
REG1	=	33h
REG2	=	33h

25.2.2 EXTENDED INSTRUCTION SET

ADD	FSR	Add Lite	ral to FS	SR			
Syntax:		ADDFSR	ADDFSR f, k				
Opera	ands:	$0 \le k \le 63$					
		f ∈ [0, 1, 2	2]				
Opera	ation:	FSR(f) + k	\rightarrow FSR(f	⁻)			
Status	Affected:	None					
Enco	ding:	1110	1000	ffkk	kkkk		
Descr	iption:	The 6-bit I contents o					
Words	S:	1					
Cycle	s:	1					
Q Cy	cle Activity:						
	Q1	Q2	Q3		Q4		
Γ	Decode	Read	Proces	ss V	Vrite to		
		literal 'k'	Data		FSR		
Exam	<u>ple:</u>	ADDFSR 2,	, 23h				
E	Before Instruc FSR2	tion = 03FFh					
ŀ	After Instructio FSR2	on = 0422h					

ADDULNK	Add Literal to	FSR2 and	Return
Syntax:	ADDULNK k		
Operands:	$0 \le k \le 63$		
Operation:	FSR2 + k \rightarrow FS (TOS) \rightarrow PC	R2,	
Status Affected:	None		
Encoding:	1110 1000	11kk	kkkk
Worder	contents of FSR executed by loa TOS. The instruction t execute; a NOP second cycle. This may be tho case of the ADD f = 3 (binary '11 FSR2.	ding the PC v akes two cyc is performed ught of as a s FSR instruction	vith the les to during the special on, where
Words:	•		
Cycles:	2		
Q Cycle Activity:	02	02	04
Q1	Q2	Q3	Q4
Decode	Read literal 'k'	Process Data	Write to FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example:	ADDULNK	23h
<u>Example.</u>	ADDODINI	2 3 11

Before Instruct	tion	
FSR2	=	03FFh
PC	=	0100h
After Instructio	n	
FSR2	=	0422h
PC	=	(TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

25.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18F2221/2321/4221/4321 family family of devices. This includes the MPLAB C18 C Compiler, MPASM Assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

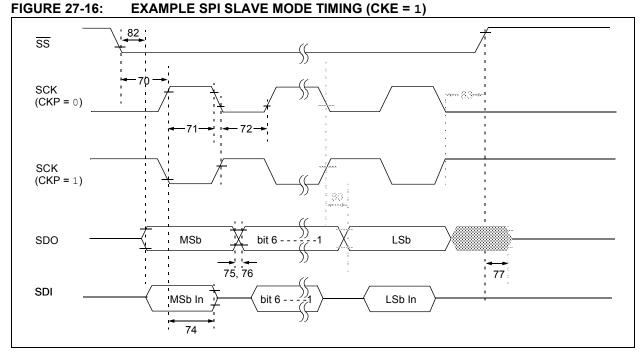
- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

27.2 DC Characteristics: Power-Down and Supply Current PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial) (Continued)

PIC18LF2 (Indust	221/2321/4221/4321 trial)		i rd Ope ing tem	•	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
	21/2321/4221/4321 trial, Extended)		ing tem			ss otherwise sta ≤ +85°C for indus ≤ +125°C for exte	strial	
Param No.	Device	Тур	Max	Units	Conditions			
	Module Differential Currer	nts (∆lw	от, ∆Івс	DR, ∆ILV	D, \triangle IOSCB, \triangle IAD)			
D022	Watchdog Timer	1.6	2.5	μA	-40°C			
(Δ IWDT)		1.6	2.5	μA	+25°C	VDD = 2.0V		
		1.5	2.5	μA	+85°C			
		2.3	3.5	μA	-40°C			
		2.2	3.5	μΑ	+25°C	VDD = 3.0V		
		2.1	3	μΑ	+85°C			
		3.4	7.4	μΑ	-40°C			
		3.9	7.4	μΑ	+25°C	VDD = 5.0V		
		4.4	7.4	μA	+85°C	VDD = 3.0V		
		4.5	7.4	μA	+125°C			
D022A	Brown-out Reset ⁽⁴⁾	34	45	μA	-40°C to +85°C	VDD = 3.0V		
(Δ IBOR)		40	62.6	μA	-40°C to +85°C	VDD = 5.0V		
		42	62.6	μA	-40°C to +125°C	VDD - 5.0V		
		0	2	μA	-40°C to +85°C	VDD = 3.0V	Sleep mode,	
		0	5	μA	-40°C to +125°C	VDD = 5.0V	BOREN<1:0> = 10	
D022B	High/Low-Voltage	23	35	μA	-40°C to +85°C	VDD = 2.0V		
(∆ILVD)	Detect ⁽⁴⁾	23	35	μΑ	-40°C to +85°C	VDD = 3.0V		
		28	35	μΑ	-40°C to +85°C	VDD = 5.0V		
		30	40	μΑ	-40°C to +125°C	v DD = 3.0 V		

Legend: Shading of rows is to assist in readability of the table.

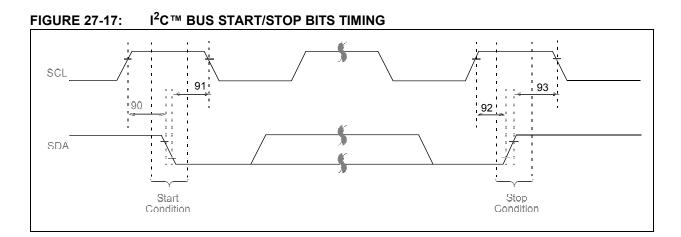

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Low-power, Timer1 oscillator is selected unless otherwise indicated, where LPT1OSC (CONFIG3H<2>) = 1.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.
- 5: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0.



Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		3 Тсү		ns	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A			Single Byte	40	_	ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A			Single Byte	40		ns	(Note 1)
73A	Tb2b	Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 Tcy + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		40		ns	
75	TdoR	SDO Data Output Rise Time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX		45	ns	VDD = 2.0V
76	TdoF	SDO Data Output Fall Time			25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedan	SS ↑ to SDO Output High-Impedance		50	ns	
80	TscH2doV,	SDO Data Output Valid after SCK	PIC18FXXXX		50	ns	
	TscL2doV	Edge	PIC18LFXXXX		100	ns	VDD = 2.0V
82	TssL2doV	SDO Data Output Valid after $\overline{\text{SS}}\downarrow$	PIC18FXXXX		50	ns	
		Edge	PIC18LFXXXX	_	100	ns	VDD = 2.0V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge	•	1.5 Tcy + 40	_	ns	

TABLE 27-17: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Note 1: Requires the use of Parameter #73A.

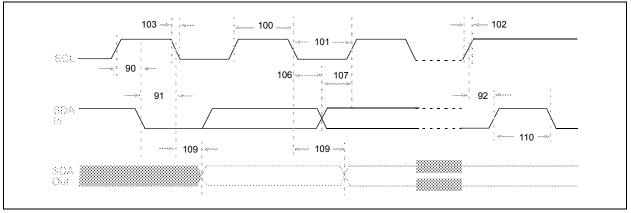

2: Only if Parameter #71A and #72A are used.

TABLE 27-18: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characte	Characteristic		Мах	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	4700	_	ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600	_		Start condition
91	THD:STA	Start Condition	100 kHz mode	4000	_	ns	After this period, the first
		Hold Time	400 kHz mode	600	_		clock pulse is generated
92	Tsu:sto	Stop Condition	100 kHz mode	4700	—	ns	
		Setup Time	400 kHz mode	600	_		
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	
		Hold Time	400 kHz mode	600			

FIGURE 27-18: I²C[™] BUS DATA TIMING

Applications256
Associated Registers257
Characteristics
Current Consumption255
Effects of a Reset257
Operation254
During Sleep257
Setup
Start-up Time255
Typical Application256
HLVD. See High/Low-Voltage Detect

I

I/O Ports	111
I ² C Mode (MSSP)	
Acknowledge Sequence Timing	
Associated Registers	
Baud Rate Generator	197
Bus Collision	
During a Repeated Start Condition	
During a Start Condition	206
During a Stop Condition	209
Clock Arbitration	
Clock Stretching	190
10-Bit Slave Receive Mode (SEN = 1)	190
10-Bit Slave Transmit Mode	
7-Bit Slave Receive Mode (SEN = 1)	
7-Bit Slave Transmit Mode	
Clock Synchronization and the CKP Bit	
Effects of a Reset	205
General Call Address Support	
I ² C Clock Rate w/BRG	107
Master Mode	
Operation	
Reception	
Repeated Start Condition Timing	
Start Condition Timing	
Transmission	
Multi-Master Communication, Bus Collision	~~-
and Arbitration	
Multi-Master Mode	
Operation	
Read/Write Bit Information (R/W Bit)	
Read/Write Bit Information (R/W Bit)	
Registers	
Serial Clock (RC3/SCK/SCL)	
Slave Mode	
Address Masking	182
Addressing	181
Reception	183
Transmission	
Sleep Operation	
Stop Condition Timing	
ID Locations	259, 277
INCF	300
INCFSZ	301
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	259, 277
Single-Supply	
Indexed Literal Offset Addressing	
and Standard PIC18 Instructions	
Indexed Literal Offset Mode	326
Indirect Addressing	74
INFSNZ	
Initialization Conditions for all Registers	
Initialization Conditions for all Registers	55–58

Instruction Cycle	
Clocking Scheme	
Instruction Flow/Pipelining	
Instruction Set	
ADDLW	
ADDWF	
ADDWF (Indexed Literal Offset Mode)	
ADDWFC	
ANDLW	
ANDWF	
BC	
BCF	
BN	
BNC	
BNN	
BNOV	
BNZ	
BOV	
BRA	
BSF	
BSF (Indexed Literal Offset Mode)	
BTFSC	
BTFSS	292
BTG	293
BZ	294
CALL	294
CLRF	295
CLRWDT	295
COMF	296
CPFSEQ	296
CPFSGT	297
CPFSLT	297
DAW	298
DCFSNZ	299
DECF	298
DECFSZ	299
Extended Instruction Set	321
General Format	281
GOTO	300
INCF	300
INCFSZ	301
INFSNZ	301
IORLW	302
IORWF	302
LFSR	303
MOVF	303
MOVFF	304
MOVLB	304
MOVLW	305
MOVWF	305
MULLW	306
MULWF	306
NEGF	307
NOP	307
Opcode Field Descriptions	280
POP	308
PUSH	308
RCALL	309
RESET	309
RETFIE	310
RETLW	310
RETURN	311
RLCF	311
RLNCF	
RRCF	312

I ² C Master Mode (7 or 10-Bit Transmission)
I ² C Master Mode (7-Bit Reception)
I^2C Slave Mode (10-Bit Reception, SEN = 0,
ADMSK = 01001)
I^2C Slave Mode (10-Bit Reception, SEN = 0)
I^2 C Slave Mode (10-Bit Reception, SEN = 1)
I ² C Slave Mode (10-Bit Transmission)
I^2C Slave Mode (7-Bit Reception, SEN = 0,
ADMSK = 01011)
I ² C Slave Mode (7-Bit Reception, SEN = 0)
I^2C Slave Mode (7-Bit Reception, SEN = 1)
I ² C Slave Mode (7-Bit Transmission)
Sequence (7 or 10-Bit Addressing Mode) 194
I ² C Stop Condition Receive or Transmit Mode
Low-Voltage Detect Operation (VDIRMAG = 0) 255
Master SSP I ² C Bus Data
Master SSP I ² C Bus Start/Stop Bits
Parallel Slave Port (PIC18F4221/4321)
Parallel Slave Port (PSP) Read
Parallel Slave Port (PSP) Write
PWM Auto-Shutdown (PRSEN = 0,
Auto-Restart Disabled)164
PWM Auto-Shutdown (PRSEN = 1,
Auto-Restart Enabled)164
PWM Direction Change161
PWM Direction Change at Near
100% Duty Cycle161
PWM Output 150
Repeated Start Condition
Reset, Watchdog Timer (WDT), Oscillator Start-up
Timer (OST), Power-up Timer (PWRT)
Send Break Character Sequence
Slave Synchronization
VDD Rise > TPWRT)
SPI Mode (Master Mode)
SPI Mode (Slave Mode, CKE = 0)
SPI Mode (Slave Mode, CKE = 1)
Synchronous Reception (Master Mode, SREN) 230
Synchronous Transmission
Synchronous Transmission (Through TXEN)
Time-out Sequence on POR w/PLL Enabled
(MCLR Tied to VDD)53
Time-out Sequence on Power-up
(MCLR Not Tied to VDD, Case 1)
Time-out Sequence on Power-up
(MCLR Not Tied to VDD, Case 2)
Time-out Sequence on Power-up
(MCLR Tied to VDD, VDD Rise < TPWRT)
Timer0 and Timer1 External Clock
Transition for Entry to Idle Mode
Transition for Entry to SEC_RUN Mode
Transition for Entry to Sleep Mode43 Transition for Two-Speed Start-up
(INTOSC to HSPLL)
Transition for Wake from Idle to Run Mode
Transition for Wake from Sleep (HSPLL)
Transition from RC_RUN Mode to PRI_RUN Mode42

Timing Diagrams and Specifications	354
Capture/Compare/PWM Requirements	
(All CCP Modules)	359
CLKO and I/O Requirements	356
EUSART Synchronous Receive Requirements	369
EUSART Synchronous Transmission Requirements	
369	
Example SPI Mode Requirements	
(Master Mode, CKE = 0)	361
Example SPI Mode Requirements	
(Master Mode, CKE = 1)	362
Example SPI Mode Requirements	
(Slave Mode, CKE = 0)	363
Example SPI Mode Requirements	
(Slave Mode, CKE = 1)	364
External Clock Requirements	
I ² C Bus Data Requirements (Slave Mode)	
I ² C Bus Start/Stop Requirements (Slave Mode)	365
Master SSP I ² C Bus Data Requirements	368
Master SSP I ² C Bus Start/Stop Bits	
Requirements	367
Parallel Slave Port Requirements	
(PIC18F4221/4321)	360
PLL Clock	355
Reset, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer and	
Brown-out Reset Requirements	357
Timer0 and Timer1 External Clock	
Requirements	
Top-of-Stack Access	. 60
TRISE Register	
PSPMODE Bit	120
TSTFSZ	
Two-Speed Start-up 259, 2	271
Two-Word Instructions	
Example Cases	. 64
TXSTA Register	
BRGH Bit	215
V	
Voltage Reference Specifications	350
W	
Watchdog Timer (WDT)259, 2	269
Associated Registers	
Control Register	
During Oscillator Failure	
Programming Considerations	

 WCOL
 199, 200, 201, 204

 WCOL Status Flag
 199, 200, 201, 204

 WWW Address
 399

 WWW, On-Line Support
 8

Х