

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2321t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6.4 PLL IN INTOSC MODES

The 4x Phase Locked Loop (PLL) can be used with the internal oscillator block to produce faster device clock speeds than are normally possible with the internal oscillator sources. When enabled, the PLL produces a clock speed of 16 MHz or 32 MHz.

Unlike HSPLL mode, the PLL is controlled through software. The control bit, PLLEN (OSCTUNE<6>), is used to enable or disable its operation. If PLL is enabled and a Two-Speed Start-up from wake is performed, execution is delayed until the PLL starts.

The PLL is available when the device is configured to use the internal oscillator block as its primary clock source (FOSC<3:0> = 1001 or 1000). Additionally, the PLL will only function when the selected output frequency is either 4 MHz or 8 MHz (OSCCON<6:4> = 111or 110). If both of these conditions are not met, the PLL is disabled and the PLLEN bit remains clear (writes are ignored).

3.6.5 INTOSC FREQUENCY DRIFT

The factory calibrates the internal oscillator block output (INTOSC) for 8 MHz. However, this frequency may drift as VDD or temperature changes and can affect the controller operation in a variety of ways. It is possible to adjust the INTOSC frequency by modifying the value in the OSCTUNE register. This has no effect on the INTRC clock source frequency.

Tuning the INTOSC source requires knowing when to make the adjustment, in which direction it should be made and in some cases, how large a change is needed. Three compensation techniques are discussed in Section 3.6.5.1 "Compensating with the EUSART", Section 3.6.5.2 "Compensating with the Timers" and Section 3.6.5.3 "Compensating with the CCP Module in Capture Mode" but other techniques may be used.

REGISTER 3-1:	OSCIUNE: OSCILLATOR TUNING REGISTER

	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	INTSRC	PLLEN ⁽¹⁾	—	TUN4	TUN3	TUN2	TUN1	TUN0
	bit 7							bit 0
bit 7	INTSRC: Ir	nternal Oscill	ator Low-Fr	equency So	urce Select	bit		
	1 = 31.25 0 = 31 kHz	kHz device c z device cloc	lock derived k derived di	d from 8 MH rectly from I	z INTOSC s NTRC interr	ource (divid nal oscillator	e-by-256 en	abled)
bit 6	PLLEN: Fr	equency Mu	Itiplier PLL f	or INTOSC	Enable bit ⁽¹⁾)		
	1 = PLL er	habled for IN	TOSC (4 M	Hz and 8 Mł	Hz only)			
	0 = PLL di	sabled			,,			
	Note 1:	Available or	nly in certair	n oscillator c	onfiguration	s; otherwise	e, this bit is	unavailable
		and reads a	is '0'. See S	ection 3.6.4	Full in IN	ITOSC Mod	es" for deta	ils.
bit 5	Unimplem	ented: Read	l as '0'					
bit 4-0	TUN<4:0>:	Frequency	Tuning bits					
	01111 = M	laximum frec	luency					
	•	•						
	•	•						
	00001							
	00000 = C	enter freque	ncy. Oscillat	or module is	s running at	the calibrate	ed frequency	/.
	11111							
	•	•						
	10000 = M	inimum frequ	uency					
	10000 - 10	in in neq	ucificy					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x	: = Bit is unknown

5.4 Brown-out Reset (BOR)

PIC18F2221/2321/4221/4321 family devices implement a BOR circuit that provides the user with a number of configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits. There are a total of four BOR configurations which are summarized in Table 5-1.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below VBOR (parameter D005) for greater than TBOR (parameter 35) will reset the device. A Reset may or may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR.

If the Power-up Timer is enabled, it will be invoked after VDD rises above VBOR; it then will keep the chip in Reset for an additional time delay, TPWRT (parameter 33). If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay.

BOR and the Power-on Timer (PWRT) are independently configured. Enabling BOR Reset does not automatically enable the PWRT.

5.4.1 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<6>). Setting SBOREN enables the BOR to function as previously described. Clearing SBOREN disables the BOR entirely. The SBOREN bit operates only in this mode; otherwise it is read as '0'.

Placing the BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change BOR configuration. It also allows the user to tailor device power consumption in software by eliminating the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

Note:	Even when BOR is under software control,
	the Brown-out Reset voltage level is still
	set by the BORV<1:0> Configuration bits.
	It cannot be changed in software.

5.4.2 DETECTING BOR

When Brown-out Reset is enabled, the BOR bit always resets to '0' on any Brown-out Reset or Power-on Reset event. This makes it difficult to determine if a Brown-out Reset event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any Power-on Reset event. If BOR is '0' while POR is '1', it can be reliably assumed that a Brown-out Reset event has occurred.

5.4.3 DISABLING BOR IN SLEEP MODE

When BOREN<1:0> = 10, the BOR remains under hardware control and operates as previously described. Whenever the device enters Sleep mode, however, the BOR is automatically disabled. When the device returns to any other operating mode, BOR is automatically re-enabled.

This mode allows for applications to recover from brown-out situations, while actively executing code, when the device requires BOR protection the most. At the same time, it saves additional power in Sleep mode by eliminating the small incremental BOR current.

BOR Configuration		Status of	BOD On continue
BOREN1	BOREN0	(RCON<6>)	BOR Operation
0	0	Unavailable	BOR disabled; must be enabled by reprogramming the Configuration bits.
0	1	Available	BOR enabled in software; operation controlled by SBOREN.
1	0	Unavailable	BOR enabled in hardware in Run and Idle modes, disabled during Sleep mode.
1	1	Unavailable	BOR enabled in hardware; must be disabled by reprogramming the Configuration bits.

TABLE 5-1: BOR CONFIGURATIONS

Register	Aŗ	oplicabl	e Devic	es	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt
TOSU	2221	2321	4221	4321	0 0000	0 0000	0 uuuu (3)
TOSH	2221	2321	4221	4321	0000 0000	0000 0000	uuuu uuuu ⁽³⁾
TOSL	2221	2321	4221	4321	0000 0000	0000 0000	uuuu uuuu (3)
STKPTR	2221	2321	4221	4321	00-0 0000	uu-0 0000	uu-u uuuu ⁽³⁾
PCLATU	2221	2321	4221	4321	00 0000	00 0000	uu uuuu
PCLATH	2221	2321	4221	4321	0000 0000	0000 0000	սսսս սսսս
PCL	2221	2321	4221	4321	0000 0000	0000 0000	PC + 2 ⁽²⁾
TBLPTRU	2221	2321	4221	4321	00 0000	00 0000	uu uuuu
TBLPTRH	2221	2321	4221	4321	0000 0000	0000 0000	սսսս սսսս
TBLPTRL	2221	2321	4221	4321	0000 0000	0000 0000	սսսս սսսս
TABLAT	2221	2321	4221	4321	0000 0000	0000 0000	սսսս սսսս
PRODH	2221	2321	4221	4321	XXXX XXXX	սսսս սսսս	սսսս սսսս
PRODL	2221	2321	4221	4321	XXXX XXXX	uuuu uuuu	սսսս սսսս
INTCON	2221	2321	4221	4321	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
INTCON2	2221	2321	4221	4321	1111 -1-1	1111 -1-1	uuuu -u-u (1)
INTCON3	2221	2321	4221	4321	11-0 0-00	11-0 0-00	uu-u u-uu (1)
INDF0	2221	2321	4221	4321	N/A	N/A	N/A
POSTINC0	2221	2321	4221	4321	N/A	N/A	N/A
POSTDEC0	2221	2321	4221	4321	N/A	N/A	N/A
PREINC0	2221	2321	4221	4321	N/A	N/A	N/A
PLUSW0	2221	2321	4221	4321	N/A	N/A	N/A
FSR0H	2221	2321	4221	4321	0000	0000	uuuu
FSR0L	2221	2321	4221	4321	XXXX XXXX	uuuu uuuu	սսսս սսսս
WREG	2221	2321	4221	4321	XXXX XXXX	uuuu uuuu	սսսս սսսս
INDF1	2221	2321	4221	4321	N/A	N/A	N/A
POSTINC1	2221	2321	4221	4321	N/A	N/A	N/A
POSTDEC1	2221	2321	4221	4321	N/A	N/A	N/A
PREINC1	2221	2321	4221	4321	N/A	N/A	N/A
PLUSW1	2221	2321	4221	4321	N/A	N/A	N/A

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6.1.2.4 Stack Full and Underflow Resets

Device Resets on stack overflow and stack underflow conditions are enabled by setting the STVREN bit in Configuration Register 4L. When STVREN is set, a full or underflow will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. When STVREN is cleared, a full or underflow condition will set the appropriate STKFUL or STKUNF bit but not cause a device Reset. The STKFUL or STKUNF bits are cleared by the user software or a Power-on Reset.

6.1.3 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS, WREG and BSR registers, to provide a "fast return" option for interrupts. The stack for each register is only one level deep and is neither readable nor writable. It is loaded with the current value of the corresponding register when the processor vectors for an interrupt. All interrupt sources will push values into the stack registers. The values in the registers are then loaded back into their associated registers if the RETFIE, FAST instruction is used to return from the interrupt.

If both low and high-priority interrupts are enabled, the stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the Stack register values stored by the low-priority interrupt will be overwritten. In these cases, users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt. If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 6-1: FAST REGISTER STACK CODE EXAMPLE

CALL	SUB1, FAST • •	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1	•	
	RETURN, FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

6.1.4 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

6.1.4.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 6-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVE	OFFSET,	W
ORG	nn00h	IADUE	
TABLE	ADDWF	PCL	
	RETLW	nnh	
	RETLW	nnh	
	RETLW	nnh	
	•		
	•		
	•		

6.1.4.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 7.1 "Table Reads and Table Writes".

R 11-1:	I RISE RE	GISTER (4	40/44-PIN	DEVICES O	NLY)			
	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
	IBF	OBF	IBOV	PSPMODE		TRISE2	TRISE1	TRISE0
	bit 7							bit 0
bit 7	IBF: Input	Buffer Full S	Status bit					
	1 = A word 0 = No wor	l has been r rd has been	eceived and received	d waiting to be	e read by the	e CPU		
bit 6	OBF: Outp	out Buffer Fu	ull Status bit					
	1 = The ou 0 = The ou	itput buffer s itput buffer h	still holds a nas been re	previously wri ad	tten word			
bit 5	IBOV: Inpu	ut Buffer Ove	erflow Dete	ct bit (in Micro	processor n	node)		
	1 = A write 0 = No ove	occurred wh erflow occurr	nen a previou red	usly input word	has not bee	en read (mus	t be cleared	in software)
bit 4	PSPMODE	: Parallel S	lave Port M	ode Select bit				
	1 = Paralle	el Slave Port	tmode					
	0 = Genera	al Purpose I	/O mode					
bit 3	Unimplem	ented: Rea	id as '0'					
bit 2	TRISE2: R	E2 Direction	n Control bi	t				
	1 = Input 0 = Output	:						
bit 1	TRISE1: R	E1 Direction	n Control bi	t				
	1 = Input							
	0 = Output							
bit 0	TRISE0: R	E0 Direction	n Control bi	t				
	1 = Input							
	0 = Output	:						
	Legend:							

REGISTER 11-1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 17-8: PWM DIRECTION CHANGE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
CSRC: Clo	ck Source S	elect bit					
<u>Asynchron</u> Don't care.	ous mode:						
<u>Synchronou</u> 1 = Master 0 = Slave n	<u>us mode:</u> mode (clock node (clock	c generated from extern	internally fro al source)	om BRG)			
TX9: 9-bit 7	Fransmit Ena	able bit					
1 = Selects 0 = Selects	9-bit transn 8-bit transn	nission nission					
TXEN: Tran	nsmit Enable	e bit					
1 = Transm 0 = Transm	nit enabled nit disabled						
Note:	SREN/CRE	N overrides	TXEN in S	ync mode.			
SYNC: EU	SART Mode	Select bit					
1 = Synchr 0 = Asynch	onous mode Ironous mod	e					
SENDB: Se	end Break C	haracter bit					
<u>Asynchrono</u> 1 = Send S 0 = Sync B	<u>ous mode:</u> sync Break o reak transm	n next trans ission comp	mission (cle	eared by hare	dware upon	completion)	
Synchrono Don't care.	us mode:						
BRGH: Hig	h Baud Rate	e Select bit					
Asynchrono 1 = High sp 0 = Low sp	<u>ous mode:</u> beed eed						
Synchronol Unused in f	us mode: this mode.						
TRMT: Trar	nsmit Shift R	egister Stat	us bit				
1 = TSR en 0 = TSR fu	npty II						
TX9D: 9th	bit of Transn	nit Data					
Can be add	dress/data bi	t or a parity	bit.				
l egend:							
R = Readal	hle hit	W = W	/ritable bit	U = Unim	nolemented	hit read as	'0'

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

REGISTER

x = Bit is unknown

BALID	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc	= 40.000) MHz	Fosc = 20.000 MHz			Fosc	= 10.000) MHz	Fosc = 8.000 MHz			
(К) 0.3	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665	
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415	
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207	
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_	

TABLE 19-3:	BAUD RATES FOR ASYNCHRON	OUS MODES	(CONTINUED)
			/

		SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Foso	= 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz							
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)					
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207					
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51					
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25					
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_					
19.2	19.231	0.16	12	_	_	_	_	_	_					
57.6	62.500	8.51	3	_	_	_	_	_	_					
115.2	125.000	8.51	1	—	_	_	—	_	_					

BAUD				SYNC = 0	, BRGH =	= 1, BRG16	= 1 or SY	NC = 1,	BRG16 = 1			
BAUD	Fosc	= 40.000) MHz	Fosc = 20.000 MHz			Fosc	= 10.000) MHz	Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz					
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832			
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207			
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103			
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25			
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12			
57.6	58.824	2.12	16	55.555	3.55	8	—	_	_			
115.2	111.111	-3.55	8	_	—	_	_	—	_			

FIGURE 19-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 19-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	57
TXREG	EUSART T	ransmit Reg	ister						57
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	57
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	57
SPBRGH	EUSART Baud Rate Generator Register High Byte								57
SPBRG	EUSART Baud Rate Generator Register Low Byte								

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: These bits are unimplemented on 28-pin devices and read as '0'.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D converter can be configured as an analog input, or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0 register) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 20-1.

FIGURE 20-1: A/D BLOCK DIAGRAM

21.0 COMPARATOR MODULE

The analog comparator module contains two comparators that can be configured in a variety of ways. The inputs can be selected from the analog inputs multiplexed with pins RA0 through RA5, as well as the on-chip voltage reference (see Section 22.0 "Comparator Voltage Reference Module"). The digital outputs (normal or inverted) are available at the pin level and can also be read through the control register. The CMCON register (Register 21-1) selects the comparator input and output configuration. Block diagrams of the various comparator configurations are shown in Figure 21-1.

REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0
bit 7							bit 0

bit 7 C2OUT: Comparator 2 Output bit When C2INV = 0: 1 = C2 VIN+ > C2 VIN-0 = C2 VIN + < C2 VIN -When C2INV = 1: 1 = C2 VIN + < C2 VIN -0 = C2 VIN+ > C2 VINbit 6 C1OUT: Comparator 1 Output bit When C1INV = 0: 1 = C1 VIN+ > C1 VIN-0 = C1 VIN + < C1 VIN -When C1INV = 1: 1 = C1 VIN + < C1 VIN -0 = C1 VIN + > C1 VIN bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 output inverted 0 = C2 output not inverted bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 output inverted 0 = C1 output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0> = 110: 1 = C1 VIN- connects to RA3/AN3/VREF+ C2 VIN- connects to RA2/AN2/VREF-/CVREF 0 = C1 VIN- connects to RA0/AN0 C2 VIN- connects to RA1/AN1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 21-1 shows the Comparator modes and the CM<2:0> bit settings. I agand.

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

NOTES:

22.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 16-tap resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently of them.

A block diagram of the module is shown in Figure 22-1. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference.

22.1 Configuring the Comparator Voltage Reference

The voltage reference module is controlled through the CVRCON register (Register 22-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be

used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF selection bits (CVR<3:0>), with one range offering finer resolution. The equations used to calculate the output of the comparator voltage reference are as follows:

<u>If CVRR = 1:</u> CVREF = ((CVR<3:0>)/24) x CVRSRC <u>If CVRR = 0:</u> CVREF = (CVRSRC x 1/4) + (((CVR<3:0>)/32) x CVRSRC)

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF- that are multiplexed with RA2 and RA3. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 27-3 in **Section 27.0 "Electrical Characteristics"**).

REGISTER 22-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CVREN	CVROE ⁽¹⁾	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0
	bit 7	· · ·						bit 0
bit 7	CVREN: C	comparator Vo	ltage Refe	rence Enab	le bit			
	1 = CVRE	circuit powe	red on					
	0 = CVREF	= circuit powe	red down		,			
bit 6	CVROE: C	Comparator VF	REF Output	Enable bit ⁽¹)			
	1 = CVREF	voltage leve	l is also ou	tput on the l	RA2/AN2/VF	REF-/CVREF	pin	
	0 = CVREF	= voltage is di	sconnected	a from the R	A2/AN2/VRI	EF-/CVREF p	in	
	Note 1:	CVROE ove	rrides the	TRISA<2> b	it setting.			
bit 5	CVRR: Co	mparator VRE	F Range S	election bit				
	1 = 0.00 C	CVRSRC to 0.6	67 CVRSR	C, with CVR	BRC/24 step	size (low ra	nge)	
	0 = 0.25 C	CVRSRC to 0.7	5 CVRSRC,	with CVRSF	RC/32 step s	ize (high rar	ıge)	
bit 4	CVRSS: C	omparator VR	REF Source	Selection b	it			
	1 = Comp 0 = Comp	arator referen arator referen	ice source, ice source,	CVRSRC = CVRSRC =	(Vref+) – (\ Vdd – Vss	/REF-)		
bit 3-0	CVR<3:0>	: Comparator	VREF Valu	e Selection	bits ($0 \le (C)$	/R<3:0>) ≤	15)	
	When CVF	$\frac{R}{R} = 1$,		
		CVR < 3.0 - 0.0	4) • (CVRS	RC)				
	$CV_{RFF} = (($	<u>KK = U.</u> CVRSRC/4) + ((CVR<3.0)	>)/32) • (CV	RSRC)			
			(0111-0.0-),02) * (01				
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unin	plemented	bit, read as	0'
	-n = Value	at POR	'1' = Bi	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown

23.5 Applications

In many applications, the ability to detect a drop below or rise above a particular threshold is desirable. For example, the HLVD module could be periodically enabled to detect a Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a high-voltage detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 23-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage VA, the HLVD logic generates an interrupt at time TA. The interrupt could cause the execution of an ISR, which would allow the application to perform "house-keeping tasks" and perform a controlled shutdown before the device voltage exits the valid operating range at TB. The HLVD, thus, would give the application a time window, represented by the difference between TA and TB, to safely exit.

FIGURE 23-4:

TYPICAL LOW-VOLTAGE DETECT APPLICATION

24.0 SPECIAL FEATURES OF THE CPU

PIC18F2221/2321/4221/4321 family devices include several features intended to maximize reliability and minimize cost through elimination of external components. These are:

- Oscillator Selection
- Resets:
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- · Fail-Safe Clock Monitor
- · Two-Speed Start-up
- Code Protection
- ID Locations
- · In-Circuit Serial Programming

The oscillator can be configured for the application depending on frequency, power, accuracy and cost. All of the options are discussed in detail in **Section 3.0 "Oscillator Configurations"**.

A complete discussion of device Resets and interrupts is available in previous sections of this data sheet.

In addition to their Power-up and Oscillator Start-up Timers provided for Resets, PIC18F2221/2321/4221/ 4321 family devices have a Watchdog Timer, which is either permanently enabled via the Configuration bits or software controlled (if configured as disabled). The inclusion of an internal RC oscillator also provides the additional benefits of a Fail-Safe Clock Monitor (FSCM) and Two-Speed Start-up. FSCM provides for background monitoring of the peripheral clock and automatic switchover in the event of its failure. Two-Speed Start-up enables code to be executed almost immediately on start-up, while the primary clock source completes its start-up delays.

All of these features are enabled and configured by setting the appropriate Configuration register bits.

24.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFFh), which can only be accessed using table reads and table writes.

Programming the Configuration registers is done in a manner similar to programming the Flash memory. The WR bit in the EECON1 register starts a self-timed write to the Configuration register. In normal operation mode, a TBLWT instruction with the TBLPTR pointing to the Configuration register sets up the address and the data for the Configuration register write. Setting the WR bit starts a long write to the Configuration registers are written a byte at a time. To write or erase a configuration cell, a TBLWT instruction can write a '1' or a '0' into the cell. For additional details on Flash programming, refer to Section 7.5 "Writing to Flash Program Memory".

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	IESO	FCMEN		—	FOSC3	FOSC2	FOSC1	FOSC0	00 0111
300002h	CONFIG2L	_	_	_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111
300003h	CONFIG2H	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300005h	CONFIG3H	MCLRE	_		_		LPT10SC	PBADEN	CCP2MX	1011
300006h	CONFIG4L	DEBUG	XINST	BBSIZ1	BBSIZ0	r	LVP		STVREN	1000 01-1
300008h	CONFIG5L	_	—	_	_	—	—	CP1	CP0	11
300009h	CONFIG5H	CPD	CPB	_	—	_	_	_	_	11
30000Ah	CONFIG6L	_	_	_	—	_	_	WRT1	WRT0	11
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_		_			111
30000Ch	CONFIG7L				_			EBTR1	EBTR0	11
30000Dh	CONFIG7H	_	EBTRB	_	—	_	_	_	_	-1
3FFFFEh	DEVID1 ⁽¹⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx(2)
3FFFFFh	DEVID2 ⁽¹⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 1100

TABLE 24-1: CONFIGURATION BITS AND DEVICE IDs

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved, maintain as '0'. Shaded cells are unimplemented, read as '0'.

Note 1: Unimplemented in PIC18F2221/4221 devices; maintain these bits set.

2: See Register 24-14 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.

		-								
	R/P-1	U-0	U-0	U-0	U-0	R/P-0	R/P-1	R/P-1		
	MCLRE		_		_	LPT10SC	PBADEN	CCP2MX		
	bit 7							bit 0		
	_									
bit 7	MCLRE: M	ICLR Pin Er	nable bit							
	1 = MCLR	pin enabled	l; RE <u>3 input</u>	pin disabled						
	0 = RE3 in	put pin enal	oled; MCLR	disabled						
bit 6-3	Unimplem	ented: Rea	d as '0'							
bit 2	LPT1OSC:	Low-Powe	r Timer1 Os	cillator Enab	le bit					
	1 = Timer1	1 = Timer1 configured for low-power operation								
	0 = Timer1	configured	for higher p	ower operat	ion					
bit 1	PBADEN:	PORTB A/E	D Enable bit							
	(Affects AD	CON1 Res	et state. AD	CON1 control	ols PORTB	<4:0> pin cor	nfiguration.)			
	1 = PORTE	3<4:0> pins	are configu	red as analo	g input cha	nnels on Res	set			
	0 = PORTE	3<4:0> pins	are configu	red as digita	I I/O on Res	set				
bit 0	CCP2MX:	CCP2 MUX	bit							
	1 = CCP2 i	nput/output	is multiplex	ed with RC1						
	0 = CCP2 i	input/output	is multiplex	ed with RB3						
	r									
	Legend:									
	R = Reada	ble bit	P = Progr	ammable bit	t U = Uni	mplemented	bit, read as	'0'		
	-n = Value	when devic	e is unprogra	ammed	u = Unc	hanged from	programme	d state		

REGISTER 24-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)

COMF	Complem	ent f		CPFSEQ	Compare	e f with W, SI	kip if f = W
Syntax:	COMF f	{,d {,a}}		Syntax:	CPFSEQ	f {,a}	
Operands:	$0 \le f \le 255$ $d \in [0.11]$			Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5	
Operation:	$a \in [0, 1]$ $\overline{(f)} \rightarrow dest$			Operation:	(f) – (W), skip if (f) = (unsianed	· (W) comparison)	
Status Affected:	N, Z			Status Affected	d: None		
Encoding:	0001	11da ff	ff ffff	Encodina:	0110	001a ff	ff ffff
Description:	The content complement stored in W stored back If 'a' is '0', ti GPR bank (If 'a' is '0' a set is enabl in Indexed I mode when Section 25 Bit-Oriente Literal Offs	ts of register ' tted. If 'd' is '0' . If 'd' is '1', th in register 'f' he Access Ba he BSR is use (default). nd the extend led, this instru Literal Offset <i>J</i> never $f \le 95$ (5 .2.3 "Byte-Or ed Instruction set Mode" for	f' are c', the result is e result is (default). nk is selected. d to select the ed instruction ction operates Addressing Fh). See iented and is in Indexed details.	Encoding:0110001.4Description:Compares the collocation 'f' to the performing an under of the the performing and under of the the discarded and a sinstead, making the instruction.If 'f' = W, then the discarded and a sinstead, making the instruction.If 'a' is '0', the Act If 'a' is '0', the Act If 'a' is '0' and the set is enabled, the in Indexed Literal mode wheneverContinue of the Description of the the Description of the the Continue of the the <td>the contents o to the contents o to the contents o to the contents and a nop is e aking this a two the Access Ba the BSR is use (default). and the extend oled, this instru- Literal Offset / never f \leq 95 (5 5 2 3 "Buto. Or</td> <td>f data memory f data memory s of W by subtraction. d instruction is xecuted o-cycle nk is selected. ed instruction ction operates Addressing Fh). See</td>		the contents o to the contents o to the contents o to the contents and a nop is e aking this a two the Access Ba the BSR is use (default). and the extend oled, this instru- Literal Offset / never f \leq 95 (5 5 2 3 "Buto. Or	f data memory f data memory s of W by subtraction. d instruction is xecuted o-cycle nk is selected. ed instruction ction operates Addressing Fh). See
Words:	1				Bit-Orient	ed Instruction	iented and
Cycles:	1				Literal Of	fset Mode" for	details.
Q Cycle Activity:				Words:	1		
Q1 Decode	Q2 Read register 'f'	Q3 Process Data	Q4 Write to destination	Cycles:	1(2) Note: 3 by	cycles if skip ar a 2-word instru	nd followed uction.
Fuenale	~~~~			Q Cycle Activ	ity:		
	COME	REG, U, U		Q1	Q2	Q3	Q4
Before Instru	ction = 13b			Decod	le Read	Process	NO
After Instructi	ion			lf skip:	register i	Data	operation
REG	= 13h			Q1	Q2	Q3	Q4
W	= ECh			No	No	No	No
				operati	on operation	operation	operation
				If skip and fol	lowed by 2-word i	nstruction:	
				Q1	Q2	Q3	Q4
				No	NO operation	No	No
				No	No	No	No
				operati	on operation	operation	operation
				Example:	HERE NEQUAL EQUAL	CPFSEQ REC : :	G, O
				Before In PC / W REC After Inst	struction Address = H = ? G = ? ruction	ERE	
				lf RE	$EG = V$ $PC = A$ $EG \neq V$ $PC = A$	/; ddress (EQUA /; ddress (NEQU	L) AL)

Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
102	TR	SDA and SCL Rise Time	100 kHz mode	_	1000	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode ⁽¹⁾	—	300	ns	
103	TF	SDA and SCL Fall Time	100 kHz mode	_	300	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode ⁽¹⁾	—	100	ns	
90	Tsu:sta	Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	Only relevant for Repeated Start condition
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
91	Thd:sta	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period, the first clock pulse is generated
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	ms	
107	TSU:DAT	Data Input	100 kHz mode	250	_	ns	(Note 2)
		Setup Time	400 kHz mode	100	_	ns	
92	Tsu:sto	STO Stop Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	
			400 kHz mode	—	1000	ns	
			1 MHz mode ⁽¹⁾	—	_	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	ms	Time the bus must be free
			400 kHz mode	1.3	—	ms	before a new transmission can start
D102	Св	Bus Capacitive L	oading		400	pF	

TABLE 27-21: MASTER SSP I²C[™] BUS DATA REQUIREMENTS

Note 1: Maximum pin capacitance = 10 pF for all I²C pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter 102 + parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released.

RRNCF	
SETF	
SETF (Indexed Literal Offset Mode)	
SLEEP	
Standard Instructions	
SUBFWB	
SUBLW	
SUBWF	
SUBWFB	
SWAPF	
TBLRD	
TBLWT	
TSTFSZ	
XORLW	
XORWF	320
INTCON Registers	99–101
Inter-Integrated Circuit. See I ² C.	
Internal Oscillator Block	
Adjustment	
INTIO Modes	
INTOSC Frequency Drift	
INTOSC Output Frequency	
OSCTUNE Register	
PLL in INTOSC Modes	
Internal RC Oscillator	
Use with WDT	
Internet Address	
Interrupt Sources	
A/D Conversion Complete	
Capture Complete (CCP)	
Compare Complete (CCP)	
Interrupt-on-Change (RB7:RB4)	
INTx Pin	
PORTB, Interrupt-on-Change	
TMR0	109
TMR0 Overflow	
TMR1 Overflow	133
TMR2 to PR2 Match (PWM)	150, 155
TMR3 Overflow	141, 143
Interrupts	
INTOSC, INTRC. See Internal Oscillator Block.	
IORLW	
IORWF	
IPR Registers	

L

LFSR)3
Low-Voltage ICSP Programming. See Single-Supply ICSP	
Programming	

Μ

Master Clear (MCLR)	49
Master Synchronous Serial Port (MSSP). See MSSP.	
Memory Organization	59
Data Memory	65
Program Memory	59
Memory Programming Requirements	349
Microchip Internet Web Site	399
Migration from Baseline to Enhanced Devices	387
Migration from High-End to Enhanced Devices	388
Migration from Mid-Range to Enhanced Devices	388
MOVF	303
MOVFF	304
MOVLB	304
MOVLW	305
MOVSF	323

MOVSS	324
MOVWF	305
MPLAB ASM30 Assembler, Linker, Librarian	330
MPLAB ICD 2 In-Circuit Debugger	331
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator	331
MPLAB Integrated Development Environment	
Software	329
MPLAB PM3 Device Programmer	331
MPLAB REAL ICE In-Circuit Emulator System	331
MPLINK Object Linker/MPLIB Object Librarian	330
MSSP	
ACK Pulse 181,	183
Control Registers (general)	167
I ² C Mode. See I ² C Mode.	
Module Overview	167
SPI Master/Slave Connection	171
SPI Mode. See SPI Mode.	
SSPBUF Register	172
SSPSR Register	172
MULLW	306
MULWF	306

Ν

NEGF	307
NOP	307

0

Oscillator Configuration	
EC	29
ECIO	29
HS	29
HSPLL	
Internal Oscillator Block	32
INTIO1	29
INTIO2	29
LP	29
RC	29
RCIO	29
XT	29
Oscillator Selection	259
Oscillator Start-up Timer (OST)	38, 51
Oscillator Switching	35
Oscillator Transitions	36
Oscillator, Timer1	. 133, 143
Oscillator, Timer3	141

Ρ

Packaging Information	373
Marking	373
Parallel Slave Port (PSP)	120, 126
Associated Registers	127
CS (Chip Select)	126
PORTD	126
RD (Read Input)	126
Select (PSPMODE Bit)	120, 126
WR (Write Input)	126
PICSTART Plus Development Programmer	332
PIE Registers	104
Pin Functions	
MCLR/VPP/RE3	14, 18
OSC1/CLKI/RA7	14, 18
OSC2/CLKO/RA6	14, 18
RA0/AN0	15, 19
RA1/AN1	15, 19