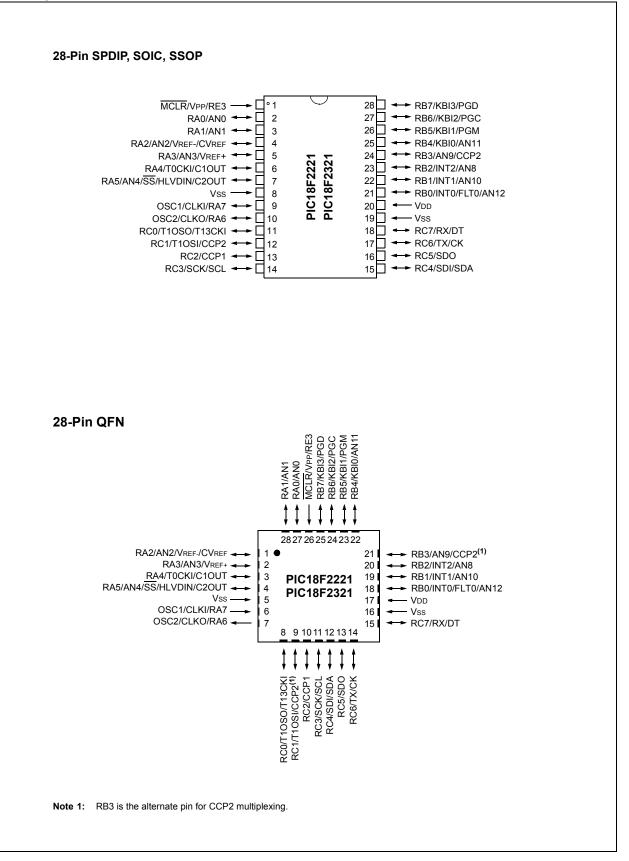


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4221-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 1-3: PIC1				1 1/01	JESCRI			
Pin Name	Pin Number			Pin	Buffer	Description		
	PDIP	QFN	TQFP	Туре	Туре	Description		
						PORTD is a bidirectional I/O port or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when the PSP module is enabled.		
RD0/PSP0 RD0 PSP0	19	38	38	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.		
RD1/PSP1 RD1 PSP1	20	39	39	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.		
RD2/PSP2 RD2 PSP2	21	40	40	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.		
RD3/PSP3 RD3 PSP3	22	41	41	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.		
RD4/PSP4 RD4 PSP4	27	2	2	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.		
RD5/PSP5/P1B RD5 PSP5 P1B	28	3	3	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.		
RD6/PSP6/P1C RD6 PSP6 P1C	29	4	4	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.		
RD7/PSP7/P1D RD7 PSP7 P1D	30	5	5	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.		
Legend:TTL = TTL compatible inputCMOS = CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsI= InputP = Power I^2C = ST with I^2C^{TM} or SMB levelsO= Output								

TABLE 1-3: PIC18F4221/4321 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18F MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18F2221/2321/4221/4321 family family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

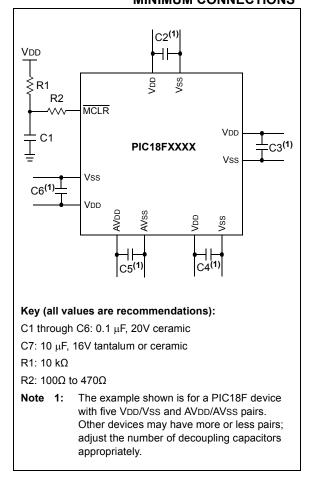
The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin
 (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP Pins"**)
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.5 "External Oscillator Pins")


Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for analog modules is implemented

Note:	The AVDD and AVSS pins must always be							
	connected, regardless of whether any o							
	the analog modules are being used.							

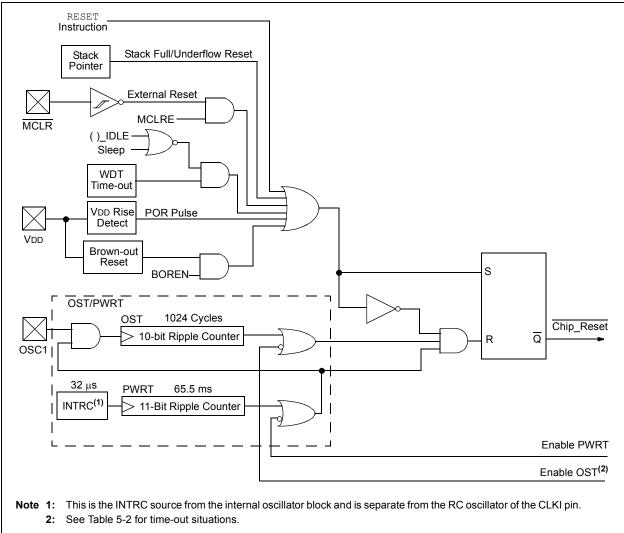
The minimum mandatory connections are shown in Figure 2-1.

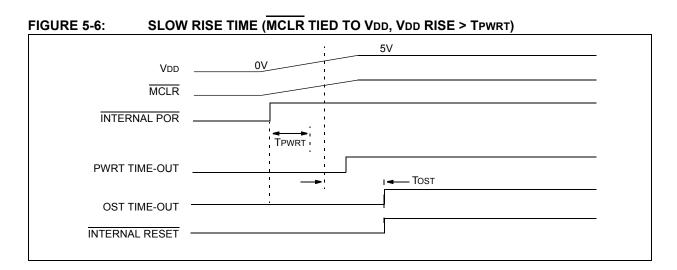
FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

5.0 RESET

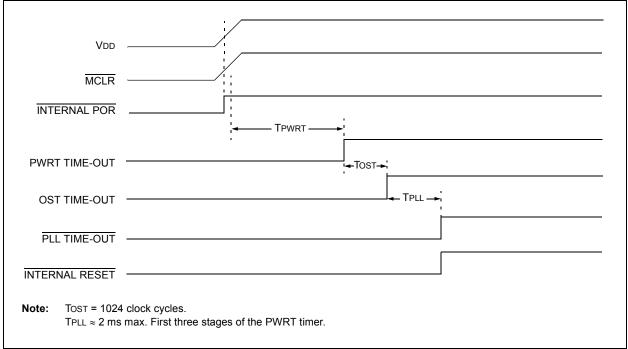
The PIC18F2221/2321/4221/4321 family devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset


This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 6.1.2.4 "Stack Full and Underflow Resets". WDT Resets are covered in Section 24.2 "Watchdog Timer (WDT)". A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 5-1.


5.1 RCON Register

Device Reset events are tracked through the RCON register (Register 5-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 5.6 "Reset State of Registers"**.


The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 10.0 "Interrupts". BOR is covered in Section 5.4 "Brown-out Reset (BOR)".

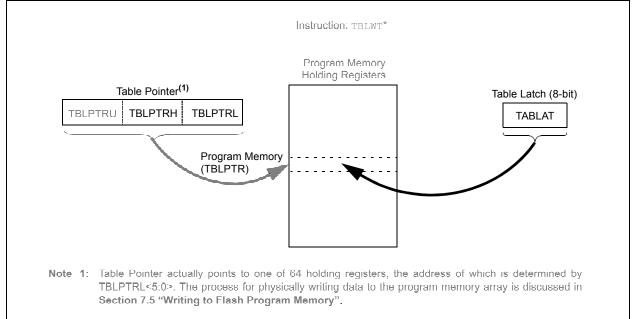
Register	Aŗ	oplicabl	e Devic	es	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt	
TOSU	2221	2321	4221	4321	0 0000	0 0000	0 uuuu (3)	
TOSH	2221	2321	4221	4321	0000 0000	0000 0000	uuuu uuuu (3)	
TOSL	2221	2321	4221	4321	0000 0000	0000 0000	uuuu uuuu (3)	
STKPTR	2221	2321	4221	4321	00-0 0000	uu-0 0000	uu-u uuuu (3)	
PCLATU	2221	2321	4221	4321	00 0000	00 0000	uu uuuu	
PCLATH	2221	2321	4221	4321	0000 0000	0000 0000	սսսս սսսս	
PCL	2221	2321	4221	4321	0000 0000	0000 0000	PC + 2 ⁽²⁾	
TBLPTRU	2221	2321	4221	4321	00 0000	00 0000	uu uuuu	
TBLPTRH	2221	2321	4221	4321	0000 0000	0000 0000	uuuu uuuu	
TBLPTRL	2221	2321	4221	4321	0000 0000	0000 0000	uuuu uuuu	
TABLAT	2221	2321	4221	4321	0000 0000	0000 0000	uuuu uuuu	
PRODH	2221	2321	4221	4321	XXXX XXXX	սսսս սսսս	uuuu uuuu	
PRODL	2221	2321	4221	4321	XXXX XXXX	uuuu uuuu	uuuu uuuu	
INTCON	2221	2321	4221	4321	0000 000x	0000 000u	uuuu uuuu (1)	
INTCON2	2221	2321	4221	4321	1111 -1-1	1111 -1-1	uuuu -u-u (1)	
INTCON3	2221	2321	4221	4321	11-0 0-00	11-0 0-00	uu-u u-uu (1)	
INDF0	2221	2321	4221	4321	N/A	N/A	N/A	
POSTINC0	2221	2321	4221	4321	N/A	N/A	N/A	
POSTDEC0	2221	2321	4221	4321	N/A	N/A	N/A	
PREINC0	2221	2321	4221	4321	N/A	N/A	N/A	
PLUSW0	2221	2321	4221	4321	N/A	N/A	N/A	
FSR0H	2221	2321	4221	4321	0000	0000	uuuu	
FSR0L	2221	2321	4221	4321	XXXX XXXX	นนนน นนนน	սսսս սսսս	
WREG	2221	2321	4221	4321	XXXX XXXX	นนนน นนนน	սսսս սսսս	
INDF1	2221	2321	4221	4321	N/A	N/A	N/A	
POSTINC1	2221	2321	4221	4321	N/A	N/A	N/A	
POSTDEC1	2221	2321	4221	4321	N/A	N/A	N/A	
PREINC1	2221	2321	4221	4321	N/A	N/A	N/A	
PLUSW1	2221	2321	4221	4321	N/A	N/A	N/A	

TABLE 5-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).


3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

FIGURE 7-2: TABLE WRITE OPERATION

7.2 Control Registers

Several control registers are used in conjunction with the ${\tt TBLRD}$ and ${\tt TBLWT}$ instructions. These include the:

- EECON1 register
- · EECON2 register
- TABLAT register
- TBLPTR registers

7.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 7-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The EEPGD control bit determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

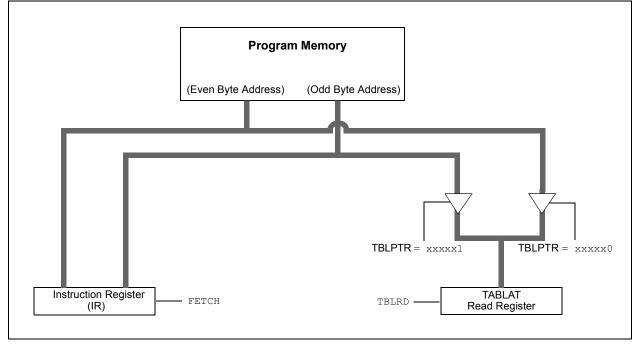
The CFGS control bit determines if the access will be to the Configuration/Calibration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on Configuration registers regardless of EEPGD (see **Section 24.0 "Special Features of the CPU"**). When clear, memory selection access is determined by EEPGD. The FREE bit, when set, will allow a program memory erase operation. When FREE is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR bit							
	may read as '1'. This can indicate that a							
	write operation was prematurely termi-							
	nated by a Reset, or a write operation was							
	attempted improperly.							

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

Note:	The EEIF interrupt flag bit (PIR2<4>) is set
	when the write is complete. It must be
	cleared in software.


7.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and place it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 7-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 7-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 7-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW MOVWF MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH		Load TBLPTR with the base address of the word
	MOVLW	CODE ADDR LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_ODD		

18.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit (SSPCON1<4>).

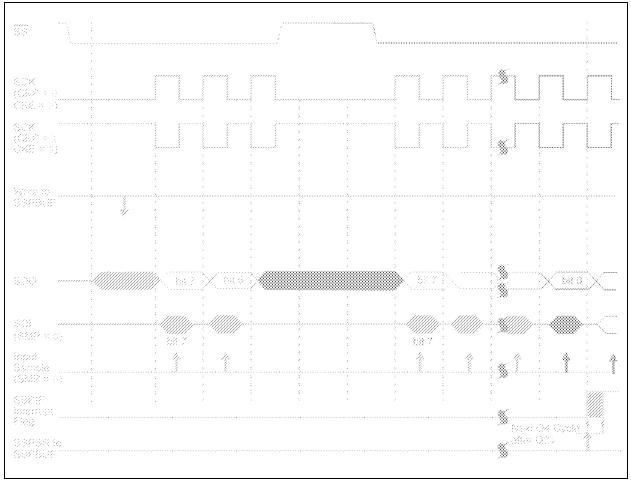
While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

18.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI operation must be in Slave mode with the \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). When the \overline{SS} pin is low, transmission and reception are enabled and the

SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.


Note 1:	When	When the SPI interface is in Slave mode									
	with	SS	pin	control	enabled						
	(SSPCON1 < 3:0 > = 0100), the SPI module										
	will res	et if the	SS pir	n is set to V	DD.						

2: If the SPI interface is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

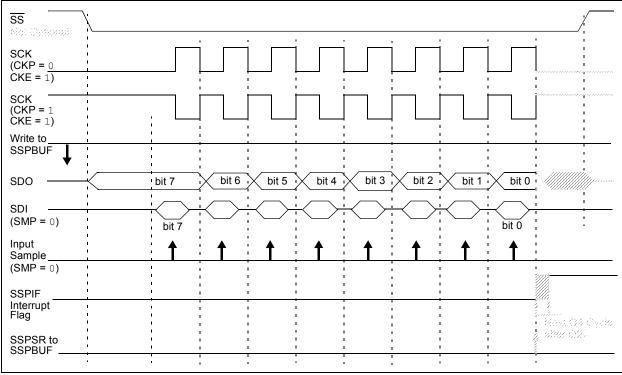
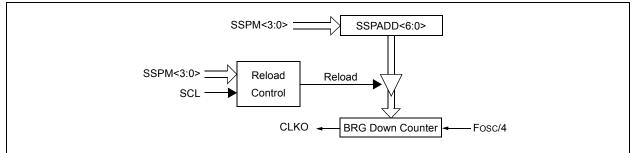

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 18-4: SLAVE SYNCHRONIZATION WAVEFORM

FIGURE 18-5:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	H CKE :	= 0)			
- SS Opäend	• • •										
90X (CRP = 0 (CRS = 0)											
497°Z	: 4		· · ·	· · ·		· ·		· : : ······			3 3
(CR49 + 1 OKE + 0)	: : :										
Véla la SSPSUF		•	2 2 2 2	: : : :	e Garana E E	•	2 2 2	· 	(*
9870		K 158 V	 X	X 58.6		X68.3	X 68.0			<u>(3</u> 3-6)	
809 (9849 = 0)	· · · · ·			dijijijijiji							* 1
inguja Samagoiae	- - - 		, , , , , , , , , , , , , , , , , , , ,	. 49.						<i>a</i> .	
(53492 == 0) (5389299 =============== ==================	: : :		- 5 5 5 5	e • • • •	- 5 5 6 6	: :	· 5 5 5 5	, , ; ;		Next ()	
SSPSR 5 SSPSRF	, , 6	• • •)) //////////////////////////////////	: : 	t t 5	• • •) ; ,	: : · · · · · · · · · · · · · · · · · ·		2002 (22 2022 (22 2023 (22	

FIGURE 18-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)


18.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 18-19). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 18-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

FIGURE 18-19: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 18-3: I²C[™] CLOCK RATE W/BRG

Fosc	Fcy	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
40 MHz	10 MHz	20 MHz	18h	400 kHz
40 MHz	10 MHz	20 MHz	1Fh	312.5 kHz
40 MHz	10 MHz	20 MHz	63h	100 kHz
16 MHz	4 MHz	8 MHz	09h	400 kHz
16 MHz	4 MHz	8 MHz	0Ch	308 kHz
16 MHz	4 MHz	8 MHz	27h	100 kHz
4 MHz	1 MHz	2 MHz	02h	333 kHz
4 MHz	1 MHz	2 MHz	09h	100 kHz
4 MHz	1 MHz	2 MHz	00h	1 MHz

REGISTER 19-2:	RCSTA: R		TATUS AN			TER							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x					
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D					
	bit 7							bit 0					
bit 7		ial Dart Enal	bla bit										
bit 7		ial Port Enal		DV/DT and	TV/CK pipe	an aprial pa	rt nina)						
		 1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins) 0 = Serial port disabled (held in Reset) 											
bit 6	RX9: 9-bit	X9: 9-bit Receive Enable bit											
		 1 = Selects 9-bit reception 0 = Selects 8-bit reception 											
bit 5	SREN: Sin	REN: Single Receive Enable bit											
		Asynchronous mode: Don't care. Synchronous mode – Master:											
	Synchrono												
		1 = Enables single receive											
		es single rec											
		leared after	-	complete.									
	Don't care.	<u>us mode – S</u>	<u>blave:</u>										
bit 4		ntinuous Re	ceive Enable	e bit									
	Asynchron												
	1 = Enable												
	0 = Disable	es receiver											
	Synchrono				ODEN								
		s continuous es continuou		til enable bit	CREN is cle	eared (CREI	N overrides	SREN)					
bit 3		ddress Dete		t									
bit o		ous mode 9-											
					upt and load	s the receiv	e buffer whe	en RSR<8>					
	0 = Disabl	es address o	detection, all	bytes are r	eceived and	ninth bit car	n be used as	s parity bit					
		ous mode 9-	bit (RX9 = c) <u>):</u>									
	Don't care.												
bit 2		ming Error b											
	1 = Framin 0 = No fran		be updated	by reading	RCREG regi	ister and rec	eiving next	valid byte)					
bit 1	OERR: OV	errun Error b	pit										
		n error (can	be cleared b	by clearing b	oit CREN)								
	0 = No ove												
bit 0		bit of Receiv					C	_					
	I his can be	e address/da	ata bit or a p	arity bit and	must be cal	culated by u	ser tirmware	9.					
	Legend:												
	R = Reada	ble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	ʻ0'					
	-n = Value		'1' = B	it is set		s cleared	x = Bit is u						
			i – D										

19.4.2 EUSART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep, or any Idle mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting the CREN bit prior to entering Sleep or any Idle mode, then a word may be received while in this low-power mode. Once the word is received, the RSR register will transfer the data to the RCREG register; if the RCIE enable bit is set, the interrupt generated will wake the chip from the lowpower mode. If the global interrupt is enabled, the program will branch to the interrupt vector. To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If the signal from the CK pin is to be inverted, set the TXCKP bit.
- 4. If 9-bit reception is desired, set bit, RX9.
- 5. To enable reception, set enable bit, CREN.
- Flag bit, RCIF, will be set when reception is complete. An interrupt will be generated if enable bit, RCIE, was set.
- 7. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	57
RCREG	EUSART F	Receive Regi	ster						57
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	57
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	57
SPBRGH	EUSART E	aud Rate G	enerator Re	gister High	Byte				57
SPBRG	EUSART E	aud Rate G	enerator Re	gister Low I	Byte				57

TABLE 19-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

Note 1: These bits are unimplemented on 28-pin devices and read as '0'.

23.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

23.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
HLVDCON	VDIRMAG		IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	56
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
PIR2	OSCFIF	CMIF	—	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	58
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	58
IPR2	OSCFIP	CMIP		EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	58

TABLE 23-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

TABLE 25-2: PIC18FXXXX INSTRUCTION SET

Mnemo	onic,	Description	Qualas	16-Bit Instruction Word				Status	Nataa
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED (OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da0	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	0da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st Word	2	1100	ffff	ffff	ffff	None	
		f _d (destination) 2nd Word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with Borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
	, . , .	Borrow						, _, , _ , .	
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	,

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

CLRF	Clear f			CLRWDT	Clear Wat	tchdog Time	ər		
Syntax:	CLRF f{,a	}		Syntax:	CLRWDT				
Operands:	$0 \leq f \leq 255$	$0 \leq f \leq 255$			None	None			
	a ∈[0,1]			Operation:	$000h \rightarrow Wl$,			
Operation:	$\begin{array}{l} 000h \rightarrow f, \\ 1 \rightarrow Z \end{array}$				$000h \rightarrow Wl$ $1 \rightarrow TO,$ $1 \rightarrow PD$	DT postscaler,			
Status Affected:	Z			Status Affected:	$T \rightarrow PD$ TO, PD				
Encoding:	0110	101a fff	ff ffff				0.0.0.1.0.0		
Description:		ontents of the	specified	Encoding:	0000	0000 00			
	register. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).			Description: CLRWDT instruction res Watchdog Timer. It also postscaler of the WDT. and PD, are set.			resets the		
		nd the extende		Words:	1				
		iteral Offset A	tion operates	Cycles:	1				
		ever f ≤ 95 (5F	0	Q Cycle Activity					
		2.3 "Byte-Ori d Instruction		Q1	Q2	Q3	Q4		
		et Mode" for		Decode	No	Process	No		
Words:	1				operation	Data	operation		
Cycles:	1			Example:	CLRWDT				
Q Cycle Activity:				Before Inst					
Q1	Q2	Q3	Q4		Counter =	?			
Decode	Read register 'f'	Process Data	Write register 'f'		ction Counter = Postscaler =	00h 0			
Example:	CLRF	FLAG_REG,	1	TO PD	=	1 1			
Before Instru FLAG_F After Instruct FLAG_F	REG = 5Ah								

DECFSZ	Decremer	nt f, Skip if (D	DCF	SNZ
Syntax:	DECFSZ f	{,d {,a}}		Synt	ax:
Operands:	$0 \le f \le 255$ $d \in [0, 1]$ $a \in [0, 1]$			Oper	ands:
Operation:	(f) – $1 \rightarrow de$ skip if result			Oper	ation:
Status Affected:	None			Statu	is Affected:
Encoding:	0010	11da ff:	ff ffff	Enco	oding:
Description:	decremente placed in W placed back If the result which is alre and a NOP is it a two-cycl If 'a' is '0', th GPR bank (If 'a' is '0' an set is enable in Indexed I mode when Section 25. Bit-Oriente	le instruction. The Access Bar The BSR is use default). The the extend ed, this instru- Literal Offset λ ever f \leq 95 (5 2.3 "Byte-Or	the result is ne result is (default). t instruction, is discarded stead, making nk is selected. d to select the ed instruction ction operates Addressing Fh). See :iented and is in Indexed	Desc	pription:
Words:	1				
Cycles:	1(2)			Word	ds:
-,	Note: 3 cy	cles if skip ar 2-word instru		Cycle	es:
Q Cycle Activity:			.	0.0	ycle Activity:
Q1	Q2 Read	Q3 Process	Q4 Write to	QU	Q1
Decode	register 'f'	Data	destination		Decode
lf skip:					
Q1	Q2	Q3	Q4	lf sk	kip:
No	No	No	No		Q1
operation	operation	operation	operation		No operation
If skip and followe Q1	a by 2-word ins Q2		Q4	lf sk	ip and followed
No	No	Q3 No	No	1.01	Q1
operation	operation	operation	operation		No
No	No	No	No		operation
operation	operation	operation	operation		No
Example:	HERE CONTINUE	DECFSZ GOTO	CNT, 1, 1 LOOP	Exar	operation
Before Instruc PC After Instructi CNT If CNT	= Address on = CNT – 1				Before Instruct TEMP After Instruction TEMP
IF CNT PC If CNT PC	≠ 0;	GONTINUE			IF TEMP If TEMP If TEMP PC

•••		2001011101							
ynta	IX:	DCFSNZ	f {,d {,a}}						
pera	ands:	$0 \le f \le 255$ $d \in [0, 1]$ $a \in [0, 1]$							
nor	ation:	$a \in [0, 1]$ (f) $-1 \rightarrow de$	set						
per	allon.	()	skip if result $\neq 0$						
tatu									
nco	ding:	0100	11da ffff ffff						
esc	ription:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed							
/ord	s:	1							
ycle			cycles if skip a a 2-word instr						
a Ci	cle Activity: Q1	Q2	02	04					
[Decode	Read	Q3 Process	Q4 Write to					
	Docodo	register 'f'	Data	destination					
fski	p:								
,	Q1	Q2	Q3	Q4					
	No	No	No	No					
ا د مار	operation	operation	operation	operation					
SKI	p and followed Q1	d by 2-word in: Q2	Struction: Q3	Q4					
ſ									
	No operation	No operation	No operation	No operation					
	No	No	No	No					
	operation	operation	operation	operation					
xam	iple:		:	IP, 1, 0					
l	Before Instruc TEMP	tion =	?						
	After Instructic TEMP If TEMP PC		r TEMP – 1 0; Address (2	ZERO)					
	If TEMP	– ≠		101/01					

≠ =

Decrement f, Skip if Not 0

0; Address (NZERO)

27.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iικ (Vι < 0 or Vι > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

- **Note 1:** Power dissipation is calculated as follows: Pdis = VDD x {IDD $- \sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)
 - **2:** Voltage spikes below Vss at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/ RE3 pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

27.1 DC Characteristics:

Supply Voltage PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial)

	2221/232 (strial)	1/4221/4321	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
D001	Vdd	Supply Voltage							
		PIC18LF2X21/4X21	2.0	_	5.5	V			
		PIC18F2X21/4X21	4.2	—	5.5	V			
D001C	AVdd	Analog Supply Voltage	VDD-0.3V	_	VDD + 0.3V	V			
D001D	AVss	Analog Ground Voltage	Vss - 0.3V	_	Vss + 0.3V	V			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_	_	V			
D003	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	0.7	V	See section on Power-on Reset for details		
D004	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05		_	V/ms	See section on Power-on Reset for details		
	VBOR	Brown-out Reset Voltag	e						
D005		PIC18LF2X21/4X21							
		BORV<1:0> = 11	2.00	2.11	2.22	V			
		BORV<1:0> = 10	2.65	2.79	2.93	V			
D005		All devices							
		BORV<1:0> = 01 ⁽²⁾	4.11	4.33	4.55	V			
		BORV<1:0> = 00	4.36	4.59	4.82	V			

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

2: With BOR enabled, full-speed operation (Fosc = 40 MHz) is supported until a BOR occurs. This is valid although VDD may be below the minimum voltage for this frequency.