

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4221-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE I T. BETTOETEAT				
Features	PIC18F2221	PIC18F2321	PIC18F4221	PIC18F4321
Operating Frequency	DC – 40 MHz			
Program Memory (Bytes)	4096	8192	4096	8192
Program Memory (Instructions)	2048	4096	2048	4096
Data Memory (Bytes)	512	512	512	512
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/ PWM Modules	0	0	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Parallel Communications (PSP)	No	No Yes		Yes
10-bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT			
Programmable Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled			
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP	40-pin PDIP 44-pin QFN 44-pin TQFP

TABLE 1-1: DEVICE FEATURES

5.4 Brown-out Reset (BOR)

PIC18F2221/2321/4221/4321 family devices implement a BOR circuit that provides the user with a number of configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits. There are a total of four BOR configurations which are summarized in Table 5-1.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below VBOR (parameter D005) for greater than TBOR (parameter 35) will reset the device. A Reset may or may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR.

If the Power-up Timer is enabled, it will be invoked after VDD rises above VBOR; it then will keep the chip in Reset for an additional time delay, TPWRT (parameter 33). If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay.

BOR and the Power-on Timer (PWRT) are independently configured. Enabling BOR Reset does not automatically enable the PWRT.

5.4.1 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<6>). Setting SBOREN enables the BOR to function as previously described. Clearing SBOREN disables the BOR entirely. The SBOREN bit operates only in this mode; otherwise it is read as '0'.

Placing the BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change BOR configuration. It also allows the user to tailor device power consumption in software by eliminating the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

Note:	Even when BOR is under software control,
	the Brown-out Reset voltage level is still
	set by the BORV<1:0> Configuration bits.
	It cannot be changed in software.

5.4.2 DETECTING BOR

When Brown-out Reset is enabled, the BOR bit always resets to '0' on any Brown-out Reset or Power-on Reset event. This makes it difficult to determine if a Brown-out Reset event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any Power-on Reset event. If BOR is '0' while POR is '1', it can be reliably assumed that a Brown-out Reset event has occurred.

5.4.3 DISABLING BOR IN SLEEP MODE

When BOREN<1:0> = 10, the BOR remains under hardware control and operates as previously described. Whenever the device enters Sleep mode, however, the BOR is automatically disabled. When the device returns to any other operating mode, BOR is automatically re-enabled.

This mode allows for applications to recover from brown-out situations, while actively executing code, when the device requires BOR protection the most. At the same time, it saves additional power in Sleep mode by eliminating the small incremental BOR current.

BOR Configuration		Status of			
BOREN1	BOREN0	(RCON<6>)	BOR Operation		
0	0	Unavailable	BOR disabled; must be enabled by reprogramming the Configuration bits.		
0	1	Available	BOR enabled in software; operation controlled by SBOREN.		
1	0	Unavailable	BOR enabled in hardware in Run and Idle modes, disabled during Sleep mode.		
1	1	Unavailable	BOR enabled in hardware; must be disabled by reprogramming the Configuration bits.		

TABLE 5-1: BOR CONFIGURATIONS

Example 9-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 9-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES3:RES0).

EQUATION 9-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		$(ARG1L \bullet ARG2L)$

EXAMPLE 9-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1L, W	
MULWF	ARG2L	; ARG1L * ARG2L->
		; PRODH:PRODL
MOVFF	PRODH, RES1	;
MOVFF	PRODL, RESO	;
;		
MOVF	ARG1H, W	
MULWF	ARG2H	; ARG1H * ARG2H->
		; PRODH:PRODL
MOVFF	PRODH, RES3	;
MOVFF	PRODL, RES2	;
;		
MOVF	ARG1L, W	
MULWF	ARG2H	; ARG1L * ARG2H->
		; PRODH:PRODL
MOVF	PRODL, W	;
ADDWF	RES1, F	; Add cross
MOVF	PRODH, W	; products
ADDWFC	RES2, F	;
CLRF	WREG	;
ADDWFC	RES3, F	;
;		
MOVE'	ARGIH, W	;
MOTMF.	ARGZL	; ARGIH * ARG2L->
		; PRODH:PRODL
MOVE'	PRODL, W	;
ADDWF'	KESI, F	; Add cross
MOVE'	PRODH, W	; products
ADDWFC	RESZ, F	;
CLRF.	WKEG	;
ADDWF'C	RESJ, F	;

Example 9-4 shows the sequence to do a 16 x 16 signed multiply. Equation 9-2 shows the algorithm used. The 32-bit result is stored in four registers (RES3:RES0). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 9-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0	= ARG1H:ARG1L • ARG2H:ARG2L
	$= (ARG1H \bullet ARG2H \bullet 2^{16}) +$
	$(ARG1H \bullet ARG2L \bullet 2^8) +$
	$(ARG1L \bullet ARG2H \bullet 2^8) +$
	$(ARG1L \bullet ARG2L) +$
	$(-1 \bullet ARG2H < 7 > \bullet ARG1H:ARG1L \bullet 2^{16}) +$
	$(-1 \bullet ARG1H \le 7 \ge \bullet ARG2H: ARG2L \bullet 2^{16})$

EXAMPLE 9-4: 16 x 16 SIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
			;	PRODH:PRODL
	MOVFF	PRODH, RES1	;	
	MOVFF	PRODL, RESO	;	
;				
	MOVF	ARG1H, W		
	MULWF	ARG2H	;	ARG1H * ARG2H ->
	MOUTER		;	PRODH:PRODL
	MOVEE	PRODH, RES3	;	
	MOVEE	FRODI, RESZ	'	
'	MOVE	ARG1L, W		
	MULWF	ARG2H	;	ARG1L * ARG2H ->
			;	PRODH: PRODL
	MOVF	PRODL, W	;	
	ADDWF	RES1, F	;	Add cross
	MOVF	PRODH, W	;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	MOVF	ARG1H, W	;	
	MULWF	ARG2L	;	ARGIH * ARG2L ->
	MOVE	DRODI W	;	PRODH:PRODL
		RESI F	΄.	Add gross
	MOVE	PRODH. W	;	products
	ADDWFC	RES2, F	;	<u></u>
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	BTFSS	ARG2H, 7	;	ARG2H:ARG2L neg?
	BRA	SIGN_ARG1	;	no, check ARG1
	MOVF	ARG1L, W	;	
	SUBWF	RES2	;	
	MOVE	ARGIH, W	;	
	SUBWEB	KE22		
STG	N ARG1			
0101	BTFSS	ARG1H, 7	;	ARG1H:ARG1L neg?
	BRA	CONT CODE	;	no, done
	MOVF	ARG2L, W	;	
	SUBWF	RES2	;	
	MOVF	ARG2H, W	;	
	SUBWFB	RES3		
;				
CON	I_CODE			
	:			

11.6 Parallel Slave Port

Note:	The Parallel Slave Port is only available on
	40/44-pin devices.

In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 11-1). Setting control bit, PSPMODE (TRISE<4>), enables PSP operation as long as the Enhanced CCP module is not operating in Dual Output or Quad Output PWM mode. In Slave mode, the port is asynchronously readable and writable by the external world.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit, PSPMODE, enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the WR input and RE2 is the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits, PFCG<3:0> (ADCON1<3:0>), must also be set to a value in the range of '1010' through '1111'.

A write to the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits are both set when the write ends.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The data in PORTD is read out and the OBF bit is clear. If the user writes new data to PORTD to set OBF, the data is immediately read out; however, the OBF bit is not set.

When either the \overline{CS} or \overline{RD} lines are detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP. When this happens, the IBF and OBF bits can be polled and the appropriate action taken. The timing for the control signals in Write and Read modes is shown in Figure 11-3 and Figure 11-4, respectively.

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55
RCON	IPEN	SBOREN ⁽¹⁾		RI	TO	PD	POR	BOR	54
PIR1	PSPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58
PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58
IPR1	PSPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	58
PIE2	OSCFIE	CMIE		EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	58
IPR2	OSCFIP	CMIP		EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	58
TRISB	PORTB Data Direction Register					58			
TRISC	PORTC Data Direction Register					58			
TMR1L	Timer1 Register Low Byte					56			
TMR1H	Timer1 Reg	gister High B	yte						56
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	56
TMR3H	Timer3 Reg	gister High B	yte						57
TMR3L	Timer3 Reg	gister Low B	yte						57
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	57
CCPR1L	Capture/Co	mpare/PWN	/I Register 1	Low Byte					57
CCPR1H	Capture/Compare/PWM Register 1 High Byte				57				
CCP1CON	P1M1 ⁽²⁾	P1M0 ⁽²⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	57
CCPR2L	Capture/Compare/PWM Register 2 Low Byte					57			
CCPR2H	Capture/Co	mpare/PWN	/I Register 2	High Byte					57
CCP2CON			DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	57

TADIE 46 2.		COMDADE	
IADLE 10-3:	REGISTERS ASSUCIATED WITH CAPTURE		
		,	

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Capture/Compare, Timer1 or Timer3.

Note 1: The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, it is disabled and reads as '0'. See Section 5.4 "Brown-out Reset (BOR)".

2: These bits are unimplemented on 28-pin devices and read as '0'.

17.4.5 FULL-BRIDGE MODE

In Full-Bridge Output mode, four pins are used as outputs; however, only two outputs are active at a time. In the Forward mode, pin P1A is continuously active and pin P1D is modulated. In the Reverse mode, pin P1C is continuously active and pin P1B is modulated. These are illustrated in Figure 17-6. P1A, P1B, P1C and P1D outputs are multiplexed with the PORTC<2> and PORTD<7:5> data latches. The TRISC<2> and TRISD<7:5> bits must be cleared to make the P1A, P1B, P1C and P1D pins outputs.

18.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- · Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the write collision detect bit, WCOL

(SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 18-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP Status register (SSPSTAT) indicates the various status conditions.

Note:	To avoid lost data in Master mode, a read of
	the SSPBUF must be performed to clear the
	Buffer Full (BF) detect bit (SSPSTAT<0>)
	between each transmission.

Note: The SSPBUF register cannot be used with read-modify-write instructions, such as BCF, BTFSC and COMF, etc.

EXAMPLE 18-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BTFSS	SSPSTAT, BF	;Has data been received (transmit complete)?
	BRA	LOOP	;No
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit

18.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit (SSPCON1<4>).

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

18.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI operation must be in Slave mode with the \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). When the \overline{SS} pin is low, transmission and reception are enabled and the

SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

Note 1:	When	the SPI	interfa	ace is in Sla	ave mode
	with	SS	pin	control	enabled
	(SSPC	ON1<3	:0>=0	100), the SI	PI module
	will res	et if the	SS pir	n is set to Vi	DD.

2: If the SPI interface is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 18-4: SLAVE SYNCHRONIZATION WAVEFORM

18.4.3.2 Address Masking

Masking an address bit causes that bit to become a "don't care". When one address bit is masked, two addresses will be Acknowledged and cause an interrupt. It is possible to mask more than one address bit at a time, which makes it possible to Acknowledge up to 31 addresses in 7-Bit Addressing mode and up to 63 addresses in 10-Bit Addressing mode (see Example 18-2).

The l^2C slave behaves the same way whether address masking is used or not. However, when address masking is used, the l^2C slave can Acknowledge multiple addresses and cause interrupts. When this occurs, it is necessary to determine which address caused the interrupt by checking the SSPBUF register.

• 7-Bit Addressing mode

Address mask bits, ADMSK<5:1>, mask the corresponding address bits in the SSPADD register. For any ADMSK bits that are active (ADMSK<n> = 1), the corresponding address bit is ignored (ADD<n> = x). For the module to issue an address Acknowledge, it is sufficient to match only on addresses that do not have an active address mask.

• 10-Bit Addressing mode

Address mask bits, ADMSK<5:2>, mask the corresponding address bits in the SSPADD register. In addition, ADMSK<1> simultaneously masks the two LSBs of the address, ADD<1:0>. For any ADMSK bits that are active (ADMSK<n> = 1), the corresponding address bit is ignored (ADD<n> = x). Also note that although in 10-Bit Addressing mode, the upper address bits reuse part of the SSPADD register bits, the address mask bits do not interact with those bits. They only affect the lower address bits.

Note 1: ADMSK<1> masks the two Least Significant bits of the address.

2: The two Most Significant bits of the address are not affected by address masking.

EXAMPLE 18-2: ADDRESS MASKING

7-Bit Addressing mode:

SSPADD<7:1> = 1010 0000

ADMSK<5:1> = 00 111

Addresses Acknowledged = 0xA0, 0xA2, 0xA4, 0xA6, 0xA8, 0xAA, 0xAC, 0xAE

10-Bit Addressing mode:

SSPADD<7:0> = 1010 0000 (The two MSbs are ignored in this example since they are not affected)

ADMSK<5:1> = 00 111

Addresses Acknowledged = 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF

The upper two bits are not affected by the address masking.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
CSRC: Clo	ck Source S	elect bit					
<u>Asynchrond</u> Don't care.	ous mode:						
<u>Synchronou</u> 1 = Master 0 = Slave n	<u>us mode:</u> mode (clock node (clock	c generated from extern	internally fro al source)	om BRG)			
TX9: 9-bit 7	Fransmit Ena	able bit					
1 = Selects 0 = Selects	9-bit transn 8-bit transn	nission nission					
TXEN: Tran	nsmit Enable	e bit					
1 = Transm 0 = Transm	nit enabled nit disabled						
Note:	SREN/CRE	N overrides	TXEN in S	ync mode.			
SYNC: EU	SART Mode	Select bit					
1 = Synchr 0 = Asynch	onous mode Ironous mod	e					
SENDB: Se	end Break C	haracter bit					
<u>Asynchrono</u> 1 = Send S 0 = Sync B	<u>ous mode:</u> sync Break o reak transm	n next trans ission comp	mission (cle	eared by hare	dware upon	completion)	
Synchrono Don't care.	us mode:						
BRGH: Hig	h Baud Rate	e Select bit					
Asynchrono 1 = High sp 0 = Low sp	<u>ous mode:</u> beed eed						
Synchronol Unused in f	us mode: this mode.						
TRMT: Trar	nsmit Shift R	egister Stat	us bit				
1 = TSR en 0 = TSR fu	npty II						
TX9D: 9th	bit of Transn	nit Data					
Can be add	dress/data bi	t or a parity	bit.				
l egend:							
R = Readal	hle hit	W = W	/ritable bit	U = Unim	nolemented	hit read as	'0'

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

REGISTER

x = Bit is unknown

REGISTER 24-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)							001h)					
	R/P-0	R/P-0	U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1				
	IESO	FCMEN	_		FOSC3	FOSC2	FOSC1	FOSC0				
	bit 7							bit 0				
bit 7	IESO: Inter 1 = Oscillat	IESO: Internal/External Oscillator Switchover bit 1 = Oscillator Switchover mode enabled										
bit 6	FCMEN: Fail-Sail 0 = Fail-Sail	 FCMEN: Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled 										
bit 5-4	Unimplem	ented: Read	d as '0'									
bit 3-0) FOSC<3:0>: Oscillator Selection bits											
	11xx = Exi 101x = Exi 1001 = Inte 1000 = Inte 0111 = Exi 0110 = HS 0101 = EC 0011 = Exi 0010 = HS 0001 = XT 0000 = LP	FOSC<3:0>: Oscillator Selection bits 11xx = External RC oscillator, CLKO function on RA6 101x = External RC oscillator, CLKO function on RA6 1001 = Internal oscillator block, CLKO function on RA6, port function on RA7 1000 = Internal oscillator block, port function on RA6 and RA7 0111 = External RC oscillator, port function on RA6 0110 = HS oscillator, PLL enabled (Clock Frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0010 = HS oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0010 = HS oscillator 0001 = XT oscillator 0000 = LP oscillator										
Legend:												
	R = Readat	ole bit	P = Progra	ammable bit	U = Unin	plemented	bit, read as	0'				
-n = Value when device is unprogrammed u = Unchanged from programmed stat						d state						

NEGF	Negate f
Syntax:	NEGF f {,a}
Operands:	0 ≤ f ≤ 255 a ∈ [0, 1]
Operation:	$(\overline{f}) + 1 \rightarrow f$
Status Affected:	N, OV, C, DC, Z
Encoding:	0110 110a ffff ffff
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.
Words:	1
Cycles:	1
Q Cycle Activity:	

NOF		1	No Operation						
Synta	ax:	١	NOP						
Oper	ands:	١	None						
Oper	ation:	١	No operatio	on					
Statu	s Affected:	١	None						
Encoding:			0000	0000	000	0	0000		
			1111	XXXX XXXX		xx	XXXX		
Desc	ription:	١	No operation.						
Word	ls:	1	1						
Cycles:									
QC	ycle Activity:								
	Q1		Q2	Q	3		Q4		
	Decode		No	No)		No		
		C	peration	opera	tion	op	peration		

Example:

None.

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example: NEGF REG, 1

> Before Instruction REG = 0011 1010 [3Ah] After Instruction REG = 1100 0110 [C6h]

© 2009 Microchip Technology Inc.

RRN	NCF	Rotate Right f (No Carry)						
Synta	ax:	RRNCF	f {	,d {,a}}				
Oper	ands:	0 ≤ f ≤ 259 d ∈ [0,1] a ∈ [0,1]	0 ≤ f ≤ 255 d ∈ [0, 1] a ∈ [0, 1]					
Oper	ation:	$(f < n >) \rightarrow$ $(f < 0 >) \rightarrow$	des des	st <n 1<br="" –="">st<7></n>	>,			
Statu	is Affected:	N, Z						
Enco	oding:	0100		00da	ffí	ff	ffff	
Desc	ription:	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Word	ds:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2		Q3	5		Q4	
	Decode	Read register 'f'		Proce Dat	ess a	V de	Vrite to stination	
<u>Exan</u>	nple 1: Before Instruc REG After Instructio REG	RRNCF tion = 1101 on = 1110	R1 01 10	EG, 1, .11)11	0			
Exan	<u>nple 2:</u>	RRNCF	RI	EG, 0,	0			
	Before Instruc	tion						
	W REG After Instructio	= ? = 1101	01	.11				
	W	= 1110	10	011				
	REG	= 1101	01	11				

SET	F	Set f						
	•		<u>,</u>					
Synta	ax:	SEIF f{,	a}					
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0, 1]					
Oper	ation:	$FFh\tof$						
Statu	is Affected:	None						
Enco	oding:	0110	100a	ffff	ffff			
	лрион.	are set to F If 'a' is '0', ' If 'a' is '1', ' GPR bank If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Oriente Literal Off	The contents of the specified register are set to FFh. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed					
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Proce Dat	ess a i	Write register 'f'			
<u>Exan</u>	nple: Before Instruc REG	SETF tion = 54	reg \h	5, 1				
	After Instruction							

= FFh

REG

DC Characteristics: Power-Down and Supply Current PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial) (Continued)

PIC18LF2 (Indust	Standa Operat	i rd Ope ing tem	rating (perature	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ess otherwise states $\leq +85^{\circ}$ C for indust	ted) strial	
PIC18F222 (Indust	Standa Operat	ing tem	rating (perature	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ess otherwise states $x \le +85^{\circ}$ C for indust $x \le +125^{\circ}$ C for external for the extern	ted) strial ended	
Param No.	Device	Тур	Мах	Units		Conditio	ns
	Supply Current (IDD) ⁽²⁾			-			
	PIC18LF2X21/4X21	160	230	μA	-40°C		
		170	230	μA	+25°C	VDD = 2.0V	
		170	230	μA	+85°C		
	PIC18LF2X21/4X21	220	330	μA	-40°C		
		240	330	μA	+25°C	VDD = 3.0V	Fosc = 1 MHz (RC_IDLE mode, INTOSC source)
		250	330	μA	+85°C		
	All Devices	410	500	μA	-40°C		
		420	500	μA	+25°C		
		430	500	μA	+85°C	VDD = 5.0V	
	Extended Devices Only	450	500	μA	+125°C		
	PIC18LF2X21/4X21	310	440	μA	-40°C		
		330	440	μA	+25°C	VDD = 2.0V	
		340	440	μA	+85°C		
	PIC18LF2X21/4X21	480	750	μA	-40°C		
		500	750	μA	+25°C	VDD = 3.0V	Fosc = 4 MHz
		520	750	μA	+85°C		INTOSC source)
	All Devices	0.91	1.3	mA	-40°C		-)
		0.93	1.3	mA	+25°C		
		0.96	1.3	mA	+85°C	VDD = 5.0V	
	Extended Devices Only	0.98	1.3	mA	+125°C		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

- 3: Low-power, Timer1 oscillator is selected unless otherwise indicated, where LPT1OSC (CONFIG3H<2>) = 1.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.
- 5: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0.

27.2

27.3 DC Characteristics: PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial) (Continued)

DC CH4	DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$			
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions	
	IPU	Weak Pull-up Current					
D070	IPURB	PORTB Weak Pull-up Current	50	400	μA	Vdd = 5V, Vpin = Vss	
	Vol	Output Low Voltage					
D080		I/O Ports	—	0.6	V	Io∟ = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
D083		OSC2/CLKO (RC, RCIO, EC, ECIO modes)	—	0.6	V	Io∟ = 1.6 mA, VDD = 4.5V, -40°C to +85°C	
	Vон	Output High Voltage ⁽³⁾					
D090		I/O Ports	Vdd - 0.7	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C	
D092		OSC2/CLKO (RC, RCIO, EC, ECIO modes)	Vdd - 0.7	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C	
		Capacitive Loading Specs on Output Pins					
D100	COSC2	OSC2 Pin	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101	Сю	All I/O Pins and OSC2 (in RC mode)	_	50	pF	Maximum that allows the AC Timing Specifications to be met	
D102	Св	SCL, SDA	_	400	pF	Maximum bus capacitance permitted by I ² C™ Specification	

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the $PIC^{\mathbb{R}}$ device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 27-9: 0	CLKO AND I/O TIMING	REQUIREMENTS
---------------	---------------------	--------------

Param No.	Symbol	Characteri	Min	Тур	Мах	Units	Conditions	
10	TosH2ckL	OSC1 ↑ to CLKO \downarrow	_	75	200	ns	(Note 1)	
11	TosH2ckH	OSC1 ↑ to CLKO ↑	—	75	200	ns	(Note 1)	
12	TckR	CLKO Rise Time	—	35	100	ns	(Note 1)	
13	TckF	CLKO Fall Time		—	35	100	ns	(Note 1)
14	TckL2ioV	CLKO \downarrow to Port Out Valid		—		0.5 Tcy + 20	ns	(Note 1)
15	TioV2ckH	Port In Valid before CLKO ↑		0.25 Tcy + 25		—	ns	(Note 1)
16	TckH2iol	Port In Hold after CLKO ↑		0	_	—	ns	(Note 1)
17	TosH2ioV	OSC1 ↑ (Q1 cycle) to Po	—	50	150	ns		
18	TosH2iol	OSC1 ↑ (Q2 cycle) to	PIC18FXXXX	100		—	ns	
18A		Port Input Invalid (I/O in hold time)	PIC18 LF XXXX	200	—	—	ns	VDD = 2.0V
19	TioV2osH	Port Input Valid to OSC1 \uparrow	(I/O in setup time)	0	—	—	ns	
20	TioR	Port Output Rise Time	PIC18 F XXXX	—	10	25	ns	
20A			PIC18 LF XXXX	—	_	60	ns	VDD = 2.0V
21	TioF	Port Output Fall Time	PIC18 F XXXX	—	10	25	ns	
21A			PIC18 LF XXXX	—	_	60	ns	VDD = 2.0V
22†	Tinp	INTx Pin High or Low Tim	Тсү		_	ns		
23†	Trbp	RB<7:4> Change INTx High or Low Time		Тсү	_	—	ns	

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

TABLE 27-20: MASTER SSP I²C[™] BUS START/STOP BITS REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
90	Tsu:sta	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—		Repeated Start condition	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_			
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	—		first clock pulse is generated	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_			
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)				
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns		
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	1		

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

FIGURE 27-20: MASTER SSP I²C[™] BUS DATA TIMING

