

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4321-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	ımber								
Pin Name	SPDIP, SOIC, SSOP	QFN	Pin Type	Buffer Type	Description					
					PORTA is a bidirectional I/O port.					
RA0/AN0 RA0 AN0	2	27	I/O I	TTL Analog	Digital I/O. Analog Input 0.					
RA1/AN1 RA1 AN1	3	28	I/O I	TTL Analog	Digital I/O. Analog Input 1.					
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	1	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (low) input. Comparator reference voltage output.					
RA3/AN3/VREF+ RA3 AN3 VREF+	5	2	I/O I I	TTL Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (high) input.					
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	3	I/O I O	ST ST	Digital I/O. Open-collector output. Timer0 external clock input. Comparator 1 output.					
RA5/AN4/SS/HLVDIN/ 7 4 I C2OUT I/O TTL Digital I/O. RA5 I I Analog AN4 I Analog Analog Input 4. SS I TTL SPI slave select input. HLVDIN I Analog High/Low-Voltage Detect input. C2OUT O — Comparator 2 output.				Digital I/O. Analog Input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output.						
RA6					See the OSC2/CLKO/RA6 pin.					
RA7					See the OSC1/CLKI/RA7 pin.					
Legend: TTL = TTL co ST = Schmi I^2C = ST with	mpatible tt Trigger h I ² C™ o	input input w r SMB	/ith CN levels	IOS leve	CMOS = CMOS compatible input or output els I = Input P = Power O = Output					

TABLE 1-2: PIC18F2221/2321 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18F MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18F2221/2321/4221/4321 family family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin
 (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP Pins"**)
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for analog modules is implemented

Note:	The AVDD and AVSS pins must always be
	connected, regardless of whether any of
	the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

DSCFIF CMIF		R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
 bit 0 SCFIF: Oscillator Fail Interrupt Flag bit Device oscillator failed, clock input has changed to INTOSC (must be cleared in software) Device clock operating MIF: Comparator Interrupt Flag bit Comparator input has changed (must be cleared in software) Comparator input has not changed nimplemented: Read as '0' EIF: Data EEPROM/Flash Write Operation Interrupt Flag bit The write operation is not complete or has not been started CLIF: Bus Collision Interrupt Flag bit A bus collision occurred (must be cleared in software) No bus collision occurred (must be cleared in software) No bus collision occurred (must be cleared in software) No bus collision occurred (must be cleared in software) A high/low-voltage Detect Interrupt Flag bit A high/low-voltage condition occurred; direction determined by VDIRMAG bit (HLVDCON<7>) A high/low-voltage condition has not occurred MR3IF: TMR3 Overflow Interrupt Flag bit TMR3 register overflowed (must be cleared in software) TMR3 register capture occurred (must be cleared in software) TMR3 register capture occurred (must be cleared in software) TMR1 register capture occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) 	I	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF			
SCFIF: Oscillator Fail Interrupt Flag bit = Device oscillator failed, clock input has changed to INTOSC (must be cleared in software) = Device clock operating MIF: Comparator Interrupt Flag bit = Comparator input has changed (must be cleared in software) = Comparator input has not changed nimplemented: Read as '0' EIF: Data EEPROM/Flash Write Operation Interrupt Flag bit = The write operation is complete (must be cleared in software) = The write operation is not complete or has not been started CLIF: Bus Collision Interrupt Flag bit = A bus collision occurred (must be cleared in software) = No bus collision occurred (must be cleared in software) = No bus collision occurred (further there is the software) = A high/Low-Voltage Detect Interrupt Flag bit = A high/low-voltage condition has not occurred MR3IF: TMR3 Overflow Interrupt Flag bit = TMR3 register overflowed (must be cleared in software) = TMR3 register did not overflow CP2IF: CCP2 Interrupt Flag bit = A TMR1 register capture occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred		bit 7							bit 0			
 Device oscillator failed, clock input has changed to INTOSC (must be cleared in software) Device clock operating MIF: Comparator Interrupt Flag bit Comparator input has changed (must be cleared in software) Comparator input has not changed nimplemented: Read as '0' EIF: Data EEPROM/Flash Write Operation Interrupt Flag bit The write operation is complete (must be cleared in software) The write operation is not complete or has not been started CLIF: Bus Collision Interrupt Flag bit A bus collision occurred (must be cleared in software) No bus collision occurred (must be cleared in software) No bus collision occurred LVDIF: High/Low-Voltage Detect Interrupt Flag bit A high/low-voltage condition has not occurred MR3IF: TMR3 Overflow Interrupt Flag bit TMR3 register oderflow (must be cleared in software) TMR3 register did not overflow CP2IF: CCP2 Interrupt Flag bit A TMR1 register capture occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred VMI mode: nused in this mode. 		OSCFIF: O	scillator Fail	Interrupt FI	ag bit							
MIF: Comparator Interrupt Flag bit = Comparator input has changed (must be cleared in software) = Comparator input has not changed nimplemented: Read as '0' EIF: Data EEPROM/Flash Write Operation Interrupt Flag bit = The write operation is complete (must be cleared in software) = The write operation is not complete or has not been started CLIF: Bus Collision Interrupt Flag bit = A bus collision occurred (must be cleared in software) = No bus collision occurred (must be cleared in software) = No bus collision occurred (must be cleared in software) = A high/low-voltage condition occurred; direction determined by VDIRMAG bit (HLVDCON<7>) = A high/low-voltage condition has not occurred MR3IF: TMR3 Overflow Interrupt Flag bit = TMR3 register overflowed (must be cleared in software) = TMR3 register overflowed (must be cleared in software) = TMR3 register capture occurred (must be cleared in software) = A TIMR1 register capture occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = A TIMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare matc		1 = Device 0 = Device	oscillator fa clock opera	iled, clock ir ting	nput has cha	anged to INT	OSC (must	be cleared i	n software)			
 Comparator input has changed (must be cleared in software) Comparator input has not changed nimplemented: Read as '0' EIF: Data EEPROM/Flash Write Operation Interrupt Flag bit The write operation is complete (must be cleared in software) The write operation is not complete or has not been started CLIF: Bus Collision Interrupt Flag bit A bus collision occurred (must be cleared in software) No bus collision occurred (must be cleared in software) No bus collision occurred (must be cleared in software) A high/low-voltage condition occurred; direction determined by VDIRMAG bit (HLVDCON<7>) A high/low-voltage condition has not occurred WR3IF: TMR3 Overflow Interrupt Flag bit TMR3 register overflowed (must be cleared in software) TMR3 register overflowed (must be cleared in software) TMR3 register capture occurred (must be cleared in software) TMR3 register capture occurred (must be cleared in software) TMR1 register capture occurred (must be cleared in software) N TMR1 register compare match occurred (must be cleared in software) N TMR1 register compare match occurred (must be cleared in software) N TMR1 register compare match occurred (must be cleared in software) N TMR1 register compare match occurred (must be cleared in software) N TMR1 register compare match occurred (must be cleared in software) N TMR1 register compare match occurred (must be cleared in software) N TMR1 register compare match occurred (must be cleared in software) 	CMIF: Comparator Interrupt Flag bit											
<pre>himplemented: Read as '0' EIF: Data EEPROM/Flash Write Operation Interrupt Flag bit = The write operation is complete (must be cleared in software) = The write operation is not complete or has not been started CLIF: Bus Collision Interrupt Flag bit = A bus collision occurred (must be cleared in software) = No bus collision occurred LVDIF: High/Low-Voltage Detect Interrupt Flag bit = A high/low-voltage condition occurred; direction determined by VDIRMAG bit (HLVDCON-7>) = A high/low-voltage condition has not occurred WR3IF: TMR3 Overflow Interrupt Flag bit = TMR3 register overflowed (must be cleared in software) = No TMR1 register capture occurred mpare mode: = A TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TM</pre>	1 = Comparator input has changed (must be cleared in software)0 = Comparator input has not changed											
EIF: Data EEPROM/Flash Write Operation Interrupt Flag bit = The write operation is complete (must be cleared in software) = The write operation is not complete or has not been started CLIF: Bus Collision Interrupt Flag bit = A bus collision occurred (must be cleared in software) = No bus collision occurred LVDIF: High/Low-Voltage Detect Interrupt Flag bit = A high/low-voltage condition occurred; direction determined by VDIRMAG bit (HLVDCON<7>) = A high/low-voltage condition has not occurred MR3IF: TMR3 Overflow Interrupt Flag bit = TMR3 register overflowed (must be cleared in software) = TMR3 register overflowed (must be cleared in software) = TMR3 register capture occurred (must be cleared in software) = A TMR1 register capture occurred (must be cleared in software) = No TMR1 register capture occurred (must be cleared in software) = No TMR1 register capture occurred (must be cleared in software) = No TMR1 register capture occurred (must be cleared in software) = No TMR1 register capture occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occ	Unimplemented: Read as '0'											
 The write operation is complete (must be cleared in software) The write operation is not complete or has not been started CLIF: Bus Collision Interrupt Flag bit A bus collision occurred (must be cleared in software) No bus collision occurred LVDIF: High/Low-Voltage Detect Interrupt Flag bit A high/low-voltage condition occurred; direction determined by VDIRMAG bit (HLVDCON<7>) A high/low-voltage condition has not occurred MR3IF: TMR3 Overflow Interrupt Flag bit TMR3 register overflowed (must be cleared in software) TMR3 register overflowed (must be cleared in software) TMR3 register did not overflow CP2IF: CCP2 Interrupt Flag bit apture mode: A TMR1 register capture occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) 	EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit											
CLIF: Bus Collision Interrupt Flag bit = A bus collision occurred (must be cleared in software) = No bus collision occurred LVDIF: High/Low-Voltage Detect Interrupt Flag bit = A high/low-voltage condition occurred; direction determined by VDIRMAG bit (HLVDCON<7>) = A high/low-voltage condition has not occurred MR3IF: TMR3 Overflow Interrupt Flag bit = TMR3 register overflowed (must be cleared in software) = TMR3 register overflowed (must be cleared in software) = TMR3 register capture occurred (must be cleared in software) = A TMR1 register capture occurred (must be cleared in software) = No TMR1 register capture occurred (must be cleared in software) = A TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared i		 1 = The write operation is complete (must be cleared in software) 0 = The write operation is not complete or has not been started 										
 A bus collision occurred (must be cleared in software) No bus collision occurred LVDIF: High/Low-Voltage Detect Interrupt Flag bit A high/low-voltage condition occurred; direction determined by VDIRMAG bit (HLVDCON<7>) A high/low-voltage condition has not occurred MR3IF: TMR3 Overflow Interrupt Flag bit TMR3 register overflowed (must be cleared in software) TMR3 register did not overflow CP2IF: CCP2 Interrupt Flag bit a true mode: A TMR1 register capture occurred (must be cleared in software) No TMR1 register capture occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred WM mode: nused in this mode. 		BCLIF: Bus Collision Interrupt Flag bit										
LVDIF: High/Low-Voltage Detect Interrupt Flag bit = A high/low-voltage condition occurred; direction determined by VDIRMAG bit (HLVDCON<7>) = A high/low-voltage condition has not occurred MR3IF: TMR3 Overflow Interrupt Flag bit = TMR3 register overflowed (must be cleared in software) = TMR3 register did not overflow CP2IF: CCP2 Interrupt Flag bit apture mode: = A TMR1 register capture occurred (must be cleared in software) = No TMR1 register capture occurred (must be cleared in software) = A TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare (must be cleared in software) = No TMR1 register compar		 1 = A bus collision occurred (must be cleared in software) 0 = No bus collision occurred 										
 A high/low-voltage condition occurred; direction determined by VDIRMAG bit (HLVDCON<7>) A high/low-voltage condition has not occurred MR3IF: TMR3 Overflow Interrupt Flag bit TMR3 register overflowed (must be cleared in software) TMR3 register did not overflow CP2IF: CCP2 Interrupt Flag bit apture mode: A TMR1 register capture occurred (must be cleared in software) No TMR1 register capture occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) Ro TMR1 register compare match occurred (must be cleared in software) Mo TMR1 register compare match occurred (must be cleared in software) 		HLVDIF: Hi	gh/Low-Volt	age Detect	Interrupt Fla	g bit						
 A high/low-voltage condition has not occurred MR3IF: TMR3 Overflow Interrupt Flag bit TMR3 register overflowed (must be cleared in software) TMR3 register did not overflow CP2IF: CCP2 Interrupt Flag bit apture mode: A TMR1 register capture occurred (must be cleared in software) No TMR1 register capture occurred ompare mode: A TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) Ro TMR1 register compare match occurred (must be cleared in software) Ro TMR1 register compare match occurred (must be cleared in software) 		1 = A high/ (HLVD)	low-voltage CON<7>)	condition or	curred; dire	ction determ	nined by VD	IRMAG bit				
<pre>MR3IF: TMR3 Overflow Interrupt Flag bit = TMR3 register overflowed (must be cleared in software) = TMR3 register did not overflow CP2IF: CCP2 Interrupt Flag bit apture mode: = A TMR1 register capture occurred (must be cleared in software) = No TMR1 register capture occurred ompare mode: = A TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred WM mode: nused in this mode. egend:</pre>		0 = A high/	low-voltage	condition ha	as not occur	red						
 TMR3 register overflowed (must be cleared in software) TMR3 register did not overflow CP2IF: CCP2 Interrupt Flag bit apture mode: A TMR1 register capture occurred (must be cleared in software) No TMR1 register capture occurred ompare mode: A TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred WM mode: nused in this mode. 		TMR3IF: T	MR3 Overflo	w Interrupt	Flag bit							
<pre>CP2IF: CCP2 Interrupt Flag bit apture mode: = A TMR1 register capture occurred (must be cleared in software) = No TMR1 register capture occurred ompare mode: = A TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred WM mode: nused in this mode. egend:</pre>		1 = TMR3 0 = TMR3	register over register did i	flowed (mu not overflow	st be cleare	d in software	e)					
 apture mode: apture mode: A TMR1 register capture occurred (must be cleared in software) No TMR1 register capture occurred a TMR1 register compare match occurred (must be cleared in software) A TMR1 register compare match occurred WM mode: nused in this mode. 		CCP2IF: C	CP2 Interrup	ot Flag bit								
ompare mode: = A TMR1 register compare match occurred (must be cleared in software) = No TMR1 register compare match occurred <u>WM mode:</u> nused in this mode.		Capture mc 1 = A TMR 0 = No TM	o <u>de:</u> 1 register ca R1 register o	apture occur capture occu	rred (must b urred	e cleared in	software)					
WM mode: nused in this mode. egend:		<u>Compare m</u> 1 = A TMR 0 = No TM	i <u>ode:</u> 1 register co R1 register o	ompare mate	ch occurred atch occurre	(must be cle d	eared in soft	ware)				
egend:		<u>PWM mode</u> Unused in t	<u>:</u> his mode.									
= Decade b = bit $N = N/mitchele bit = L = Unimensional concentration bit = (0)$]	Legend:		\A(_ \A(itabla bit	11 11e ⁻		ait mode at (0,			

'1' = Bit is set

'0' = Bit is cleared

REGISTER 10-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

-n = Value at POR

x = Bit is unknown

	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	OSCFIP	CMIP		EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP		
	bit 7	•	<u> </u>	·	<u> </u>	<u> </u>	·	bit 0		
bit 7	OSCFIP: C	Scillator Fai	I Interrupt P	riority bit						
	1 = High p	riority								
L:1 C		nority								
DITO	CIVIIP: CON	nparator inte	Propt Priority	y Dit						
	$1 = \Pi g \Pi p$ 0 = Low pr	riority								
bit 5	Unimplem	ented: Rea	d as '0'							
bit 4	EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit									
	1 = High p	riority				-				
	0 = Low pr	riority								
bit 3	BCLIP: Bu	s Collision I	nterrupt Prio	rity bit						
	1 = High p	riority								
	0 = Low pr	riority								
bit 2	HLVDIP: H	igh/Low-Vol	tage Detect	Interrupt Pri	iority bit					
	1 = High p	riority								
	0 = Low pr	riority								
bit 1	TMR3IP: 1	MR3 Overtio	ow Interrupt	Priority bit						
	1 = High p	riority								
L:1 0			-+ Driority hi	1						
DIEU		-CPZ IIIleiru	pt Phonty bi	l I						
	$1 = \Pi g \Pi p$ 0 = I o w p r	riority								
	0 201 p.	loney								
	Legend:									
	R = Reada	ble bit	W = Wr	itable bit	U = Unim	plemented b	oit, read as '	0'		

'1' = Bit is set

'0' = Bit is cleared

REGISTER 10-9: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

-n = Value at POR

x = Bit is unknown

15.1 Timer3 Operation

Timer3 can operate in one of three modes:

- Timer
- Synchronous Counter
- Asynchronous Counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>). When TMR3CS is cleared (= 0), Timer3 increments on every internal instruction cycle (Fosc/4). When the bit is set, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

As with Timer1, the RC1/T1OSI and RC0/T1OSO/ T13CKI pins become inputs when the Timer1 oscillator is enabled. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 15-1: TIMER3 BLOCK DIAGRAM (8-BIT READ/WRITE MODE)

FIGURE 15-2: TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

NOTES:

REGISTER 17-3:	ECCP1AS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽¹⁾	PSSBD0 ⁽¹⁾			
	bit 7							bit 0			
bit 7	ECCPASE:	ECCP Auto	-Shutdown	Event Status	bit						
	 a shutdown event has occurred; ECCP outputs are in shutdown state a ECCP outputs are operating 										
bit 6-4	ECCPAS<2:0>: ECCP Auto-Shutdown Source Select bits										
bit 3-2	<pre>111 = FLT0 or Comparator 1 or Comparator 2 110 = FLT0 or Comparator 2 101 = FLT0 or Comparator 1 100 = FLT0 011 = Either Comparator 1 or 2 010 = Comparator 2 output 001 = Comparator 1 output 000 = Auto-shutdown is disabled</pre>										
	 1x = Pins A and C are tri-state (40/44-pin devices); PWM output is tri-state (28-pin devices) 01 = Drive Pins A and C to '1' 00 = Drive Pins A and C to '0' 										
bit 1-0	PSSBD<1:(1x = Pins B 01 = Drive I 00 = Drive I	D>: Pins B a and D tri-st Pins B and I Pins B and I	nd D Shutdo ate D to '1' D to '0'	own State Co	ontrol bits ⁽¹)					
	Note 1:	Unimpleme	nted on 28-p	oin devices; l	bits read as	3 'O'.					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

18.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 18-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI operation is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 18-3, Figure 18-5 and Figure 18-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- · Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 18-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 18-3: SPI MODE WAVEFORM (MASTER MODE)

18.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit (SSPCON1<4>).

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

18.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI operation must be in Slave mode with the \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). When the \overline{SS} pin is low, transmission and reception are enabled and the

SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

Note 1:	When	the SPI	interfa	ace is in Sla	ave mode
	with	SS	pin	control	enabled
	(SSPC	ON1<3	:0>=0	100), the SI	PI module
	will res	et if the	SS pir	n is set to Vi	DD.

2: If the SPI interface is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 18-4: SLAVE SYNCHRONIZATION WAVEFORM

19.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any power-managed mode.

19.4.1 EUSART SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes are identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG register.
- c) Flag bit, TXIF, will not be set.
- When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit, TXIF, will now be set.
- e) If enable bit, TXIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If the signal from the CK pin is to be inverted, set the TXCKP bit.
- 5. If 9-bit transmission is desired, set bit, TX9.
- 6. Enable the transmission by setting enable bit, TXEN.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 8. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55		
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	58		
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	58		
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	58		
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	57		
TXREG	EUSART T	ransmit Regi	ister						57		
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	57		
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	57		
SPBRGH	EUSART E	Baud Rate Ge	enerator Re	gister High	Byte				57		
SPBRG	EUSART E	Baud Rate Ge	enerator Re	gister Low I	Byte				57		

TABLE 19-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: These bits are unimplemented on 28-pin devices and read as '0'.

REGISTER 20-2: ADCON1: A/D CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0 ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾
_	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5 VCFG1: Voltage Reference Configuration bit (VREF- source) 1 = VREF- (AN2)

0 = Vss

bit 4 VCFG0: Voltage Reference Configuration bit (VREF+ source) 1 = VREF+ (AN3)

0 = VDD

bit 3-0 PCFG<3:0>: A/D Port Configuration Control bits

PCFG<3:0>	AN12	AN11	AN10	AN9	AN8	AN7 ⁽²⁾	AN6 ⁽²⁾	AN5 ⁽²⁾	AN4	AN3	AN2	AN1	ANO
₀₀₀₀ (1)	А	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	Α
0001	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0010	А	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	Α
0011	D	Α	Α	Α	А	Α	Α	А	Α	Α	Α	Α	Α
0100	D	D	Α	Α	А	Α	Α	Α	А	Α	А	Α	Α
0101	D	D	D	Α	Α	Α	Α	А	Α	Α	Α	Α	Α
0110	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α
0111 (1)	D	D	D	D	D	А	А	А	А	А	А	А	А
1000	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α
1001	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
1010	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α
1011	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α
1100	D	D	D	D	D	D	D	D	D	D	Α	Α	Α
1101	D	D	D	D	D	D	D	D	D	D	D	Α	А
1110	D	D	D	D	D	D	D	D	D	D	D	D	А
1111	D	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input

D = Digital I/O

- **Note 1:** The POR value of the PCFG bits depends on the value of the PBADEN Configuration bit. When PBADEN = 1, PCFG<3:0> = 0000; when PBADEN = 0, PCFG<3:0> = 0111.
 - 2: AN5 through AN7 are available only on 40/44-pin devices.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D converter can be configured as an analog input, or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0 register) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 20-1.

FIGURE 20-1: A/D BLOCK DIAGRAM

21.0 COMPARATOR MODULE

The analog comparator module contains two comparators that can be configured in a variety of ways. The inputs can be selected from the analog inputs multiplexed with pins RA0 through RA5, as well as the on-chip voltage reference (see Section 22.0 "Comparator Voltage Reference Module"). The digital outputs (normal or inverted) are available at the pin level and can also be read through the control register.

The CMCON register (Register 21-1) selects the comparator input and output configuration. Block diagrams of the various comparator configurations are shown in Figure 21-1.

REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0
bit 7							bit 0

bit 7 C2OUT: Comparator 2 Output bit When C2INV = 0: 1 = C2 VIN+ > C2 VIN-0 = C2 VIN + < C2 VIN -When C2INV = 1: 1 = C2 VIN + < C2 VIN -0 = C2 VIN+ > C2 VINbit 6 C1OUT: Comparator 1 Output bit When C1INV = 0: 1 = C1 VIN+ > C1 VIN-0 = C1 VIN + < C1 VIN -When C1INV = 1: 1 = C1 VIN + < C1 VIN -0 = C1 VIN + > C1 VIN bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 output inverted 0 = C2 output not inverted bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 output inverted 0 = C1 output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0> = 110: 1 = C1 VIN- connects to RA3/AN3/VREF+ C2 VIN- connects to RA2/AN2/VREF-/CVREF 0 = C1 VIN- connects to RA0/AN0 C2 VIN- connects to RA1/AN1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 21-1 shows the Comparator modes and the CM<2:0> bit settings. I agand.

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

24.4.3 FSCM INTERRUPTS IN POWER-MANAGED MODES

By entering a power-managed mode, the clock multiplexer selects the clock source selected by the OSCCON register. Fail-Safe Monitoring of the powermanaged clock source resumes in the power-managed mode.

If an oscillator failure occurs during power-managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTOSC multiplexer. An automatic transition back to the failed clock source will not occur.

If the interrupt is disabled, subsequent interrupts while in Idle mode will cause the CPU to begin executing instructions while being clocked by the INTOSC source.

24.4.4 POR OR WAKE FROM SLEEP

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is EC, RC or INTRC modes, monitoring can begin immediately following these events.

For oscillator modes involving a crystal or resonator (HS, HSPLL, LP or XT), the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FCSM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note:	The same logic that prevents false oscilla				
	Clean will also prevent the detection of				
	Sleep, will also prevent the detection of				
	the oscillator's failure to start at all follow-				
	ing these events. This can be avoided by				
	monitoring the OSTS bit and using a				
	timing routine to determine if the oscillator				
	is taking too long to start. Even so, no				
	oscillator failure interrupt will be flagged.				

As noted in Section 24.3.1 "Special Considerations for Using Two-Speed Start-up", it is also possible to select another clock configuration and enter an alternate power-managed mode while waiting for the primary clock to become stable. When the new powermanaged mode is selected, the primary clock is disabled.

NOTES:

ANDWF	AND W with f		BC	Branch i	Branch if Carry		
Syntax:	ANDWF f {,d {,a}}		Syntax:	BC n	BC n		
Operands:	$0 \le f \le 255$		Operands:	-128 ≤ n ≤	-128 ≤ n ≤ 127		
	$d \in [0, 1]$ $a \in [0, 1]$		Operation:	Operation: If Carry bit is '1', $(PC) + 2 + 2n \rightarrow PC$			
Operation:	(W) .AND. (f) \rightarrow dest		Status Affecte	ed: None			
Status Affected:	N, Z		Encodina:	1110	0010 nnr	n nnn	
Encoding:	0001 01da ff	ff ffff	Description:	If the Carr	v bit is '1' then	the program	
Description:	The contents of W are A register 'f'. If 'd' is '0', the in W. If 'd' is '1', the resul in register 'f' (default). If 'a' is '0', the Access Ba If 'a' is '1', the BSR is use GPR bank (default). If 'a' is '0' and the extend set is enabled, this instru- in Indexed Literal Offset mode whenever $f \le 95$ (5 Section 25.2.3 "Byte-O Bit-Oriented Instruction Literal Offset Mode" for	NDed with result is stored t is stored back ank is selected. ed to select the led instruction action operates Addressing oFh). See riented and hs in Indexed	Words: Cycles: Q Cycle Activ If Jump: Q1	will branch The 2's cc added to t increment instruction PC + 2 + 2 two-cycle 1 1(2) vity: Q2	A. pomplement num he PC. Since th ed to fetch the r a, the new addre 2n. This instruct instruction. Q3	ber '2n' is e PC will have next ess will be tion is then a Q4	
Words:	1		Deco	de Read literal	Process	Write to	
Cycles:	1		No	No	No	PC No	
O Cycle Activity:	·		operat	ion operation	operation	operation	
Q 0 yole / lolivity.	02 03	04	If No Jump:				
Decode	Read Process	Write to	Q1	Q2	Q3	Q4	
	register 'f' Data	destination	Deco	de Read literal 'n'	Process Data	No operation	
Example:	ANDWF REG, 0, 0)	Example:	HERE	BC 5		
Before Instru	ction		Before In	struction	DC 3		
W REG After Instruct	= 17h = C2h ion		PC After Inst If C	ruction arry = 1	ddress (HERE);)	
W REG	= 02h = C2h		lf C	PC = a arry = 0 PC = a	ddress (HERE ; ddress (HERE	+ 12) + 2)	

26.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

26.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

26.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

26.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

DC Characteristics: Power-Down and Supply Current PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial) (Continued)

PIC18LF2221/2321/4221/4321 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC18F2221/2321/4221/4321 (Industrial, Extended)		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Param Device No.		Max	Units	Conditions		
	Supply Current (IDD) ⁽²⁾						
	All Devices	7	10	mA	-40°C		
			10	mA	+25°C	VDD = 4.2V	Fosc = 4 MHz, 16 MHz internal (PRI_RUN_HS+PLL)
			10	mA	+85°C		
	Extended Devices Only	6	10	mA	+125°C		(
	All Devices	10	12	mA	-40°C		
			12	mA	+25°C	VDD = 5.0V	FOSC = 4 MHz, 16 MHz internal (PRI_RUN_HS+PLL)
			12	mA	+85°C		
	Extended Devices Only	9	12	mA	+125°C		
	All Devices	17	19	mA	-40°C		Fosc = 10 MHz,
		15	19	mA	+25°C	VDD = 4.2V	40 MHz internal
		15	19	mA	+85°C		(PRI_RUN HS+PLL)
	All Devices	18	23	mA	-40°C]	Fosc = 10 MHz,
		18	23	mA	+25°C	VDD = 5.0V	40 MHz internal
		18	23	mA	+85°C		(PRI_RUN HS+PLL)

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

- 2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;
 - MCLR = VDD; WDT enabled/disabled as specified.
- 3: Low-power, Timer1 oscillator is selected unless otherwise indicated, where LPT1OSC (CONFIG3H<2>) = 1.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.
- 5: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0.

27.2

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	ication (optional):	
Woul	ld you like a reply?YN	
Devid	ce: PIC18F2221/2321/4221/4321 Family	Literature Number: DS39689F
Ques	stions:	
1. V	What are the best features of this documer	nt?
_		
_		
2. ⊦	low does this document meet your hardwa	are and software development needs?
_		
-		
3. C	Do you find the organization of this docume	ent easy to follow? If not, why?
—		
4 V	What additions to the document do you this	nk would enhance the structure and subject?
_		
5. V	What deletions from the document could b	e made without affecting the overall usefulness?
_		
_		
6. Is	s there any incorrect or misleading informa	ation (what and where)?
_		
_		
7. ⊦	low would you improve this document?	
_		
_		