

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K × 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4321-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number			Pin Bu	Buffer	Description			
	PDIP	QFN	TQFP	Туре	Туре	Description			
MCLR/VPP/RE3 MCLR	1	18	18	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.			
Vpp				Р		Programming voltage input.			
RE3				Ι	ST	Digital input.			
OSC1/CLKI/RA7 OSC1	13	32	30	I	Analog	ST buffer when configured in RC mode;			
CLKI				Ι	Analog	analog otherwise. External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)			
RA7				I/O	TTL	General purpose I/O pin.			
OSC2/CLKO/RA6 OSC2	14	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.			
CLKO				0	—	In RC, EC and INTIO modes, OSC2 pin outputs CLKO which has one-fourth the frequency of OSC1			
RA6				I/O	TTL	and denotes the instruction cycle rate. General purpose I/O pin.			
Legend:TTL = TTL compatible inputTTL = TTL compatible inputCMOS = CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsI= InputP = Power I^2C = ST with I^2C^{TM} or SMB levelsO= Output									

TABLE 1-3: PIC18F4221/4321 PINOUT I/O DESCRIPTIONS

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

3.8 Effects of Power-Managed Modes on the Various Clock Sources

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin in Crystal Oscillator modes) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In internal oscillator modes (RC_RUN and RC_IDLE), the internal oscillator block provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the powermanaged mode (see Section 24.2 "Watchdog Timer (WDT)", Section 24.3 "Two-Speed Start-up" and Section 24.4 "Fail-Safe Clock Monitor" for more information). The INTOSC output at 8 MHz may be used directly to clock the device or may be divided down by the postscaler. The INTOSC output is disabled if the clock is provided directly from the INTRC output. The INTOSC output is also enabled for Two-Speed Start-up at 1 MHz after a Reset.

If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support a Real-Time Clock. Other features may be operating that do not require a device clock source (i.e., MSSP slave, PSP, INTx pins and others). Peripherals that may add significant current consumption are listed in **Section 27.2 "DC Characteristics".**

3.9 Power-up Delays

Power-up delays are controlled by two or three timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 5.5 "Device Reset Timers"**.

The first timer is the Power-up Timer (PWRT) which provides a fixed delay on power-up (parameter 33, Table 27-10). It is enabled by clearing (= 0) the PWRTEN Configuration bit (CONFIG2L<0>).

3.9.1 DELAYS FOR POWER-UP AND RETURN TO PRIMARY CLOCK

The second timer is the Oscillator Start-up Timer (OST), intended to delay execution until the crystal oscillator is stable (LP, XT and HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

When the HSPLL Oscillator mode is selected, a third timer delays execution for an additional 2 ms following the HS mode OST delay, so the PLL can lock to the incoming clock frequency. At the end of these delays, the OSTS bit (OSCCON<3>) is set.

There is a delay of interval TCSD (parameter 38, Table 27-10), once execution is allowed to start, when the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the EC, RC or INTIO modes are used as the primary clock source.

OSC Mode	OSC1 Pin	OSC2 Pin
RC, INTIO1	Floating, external resistor pulls high	At logic low (clock/4 output)
RCIO	Floating, external resistor pulls high	Configured as PORTA, bit 6
INTIO2	Configured as PORTA, bit 7	Configured as PORTA, bit 6
ECIO	Floating, driven by external clock	Configured as PORTA, bit 6
EC	Floating, driven by external clock	At logic low (clock/4 output)
LP, XT and HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level

TABLE 3-3:OSC1 AND OSC2 PIN STATES IN SLEEP MODE

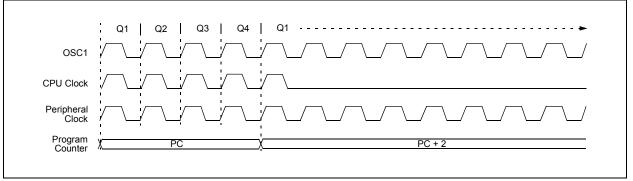
Note: See Table 5-2 in **Section 5.0 "Reset"** for time-outs due to Sleep and MCLR Reset.

4.4.1 PRI_IDLE MODE

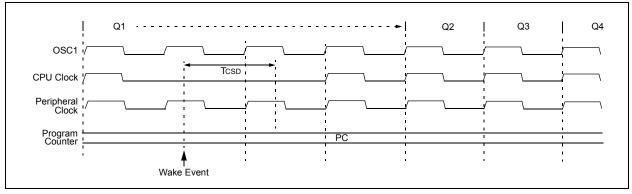
This mode is unique among the three low-power Idle modes, in that it does not disable the primary device clock. For timing sensitive applications, this allows for the fastest resumption of device operation with its more accurate primary clock source, since the clock source does not have to "warm-up" or transition from another oscillator.

PRI_IDLE mode is entered from PRI_RUN mode by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then clear the SCS bits and execute SLEEP. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified by the FOSC<3:0> Configuration bits. The OSTS bit remains set (see Figure 4-7).

When a wake event occurs, the CPU is clocked from the primary clock source. A delay of interval TCSD (parameter 38, Table 27-10) is required between the wake event and when code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wake-up, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 4-8).


4.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the Timer1 oscillator. This mode is entered from SEC_RUN by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set the IDLEN bit first, then set the SCS<1:0> bits to '01' and execute SLEEP. When the clock source is switched to the Timer1 oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the T1RUN bit is set.


When a wake event occurs, the peripherals continue to be clocked from the Timer1 oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the Timer1 oscillator. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run (see Figure 4-8).

Note: The Timer1 oscillator should already be running prior to entering SEC_IDLE mode. If the T1OSCEN bit is not set when writing the SCS<1:0> bits, entry to SEC_IDLE mode will not occur. If the Timer1 oscillator is enabled but not yet running, peripheral clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

FIGURE 4-7: TRANSITION TIMING FOR ENTRY TO IDLE MODE

FIGURE 4-8: TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE

6.1.1 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits; it is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCH register. Updates to the PCU register are performed through the PCLATH register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes PCL. Similarly, the upper two bytes of the program counter are transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 6.1.4.1 "Computed GOTO"**).

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

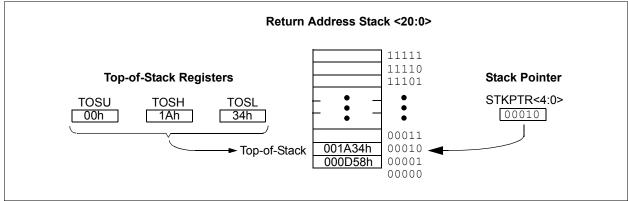
The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

6.1.2 RETURN ADDRESS STACK

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer, STKPTR. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the Top-of-Stack Special Function Registers. Data can also be pushed to, or popped from the stack, using these registers.

A CALL type instruction causes a push onto the stack; the Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.


The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits indicate if the stack is full or has overflowed or has underflowed.

6.1.2.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, hold the contents of the stack location pointed to by the STKPTR register (Figure 6-2). This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user-defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the global interrupt enable bits while accessing the stack to prevent inadvertent stack corruption.

FIGURE 6-2: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

8.5 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 24.0 "Special Features of the CPU" for additional information.

8.6 Protection Against Spurious Write

To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33).

The write initiate sequence and the WREN bit together help prevent an accidental write during Brown-out Reset, power glitch or software malfunction.

8.7 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing data. Such data is typically updated at least one time within the number of writes defined by specification, D124. If any location storing data is not written at least this often, the data EEPROM array must be refreshed. For this reason, values that change infrequently, or not at all, should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 8-3.

Note: If data EEPROM is only used to store constants and/or data that changes often, an array refresh is likely not required. See specification, D124.

EXAMPLE 8-3:	DATA EEPROM REFRESH ROUTINE
--------------	-----------------------------

		DATA EEL KG	
	CLRF	EEADR	; Start at address 0
	BCF	EECON1, CFGS	; Set for memory
	BCF	EECON1, EEPGD	; Set for Data EEPROM
	BCF	INTCON, GIE	; Disable interrupts
	BSF	EECON1, WREN	; Enable writes
LOOP			; Loop to refresh array
	BSF	EECON1, RD	; Read current address
	MOVLW	55h	;
	MOVWF	EECON2	; Write 55h
	MOVLW	0AAh	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete
	BRA	\$-2	
	INCFSZ	EEADR, F	; Increment address
	BRA	LOOP	; Not zero, do it again
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts
1			

Pin	Function	TRIS Setting	I/O	I/O Type	Description
RA0/AN0	RA0	0	0	DIG	LATA<0> data output; not affected by analog input.
		1	I	TTL	PORTA<0> data input; disabled when analog input enabled.
	AN0	1	Ι	ANA	A/D Input Channel 0 and Comparator C1- input. Default input configuration on POR; does not affect digital output.
RA1/AN1	RA1	0	O DIG LATA<1> data output; not affected by analog input. I TTL PORTA<1> data input; disabled when analog input enabled.		
		1		TTL	PORTA<1> data input; disabled when analog input enabled.
	AN1	1	-	ANA	A/D Input Channel 1 and Comparator C2- input. Default input configuration on POR; does not affect digital output.
RA2/AN2/ Vref-/CVref	RA2	0	0	DIG	LATA<2> data output; not affected by analog input. Disabled when CVREF output enabled.
		1	Ι	TTL	PORTA<2> data input. Disabled when analog functions enabled; disabled when CVREF output enabled.
	AN2	1	Ι	ANA	A/D Input Channel 2 and Comparator C2+ input. Default input configuration on POR; not affected by analog output.
	VREF-	1	Ι	ANA	A/D and comparator voltage reference low input.
	CVREF	х	0	ANA	Comparator voltage reference output. Enabling this feature disables digital I/O.
RA3/AN3/VREF+	RA3	0	0	DIG	LATA<3> data output; not affected by analog input.
		1	Ι	TTL	PORTA<3> data input; disabled when analog input enabled.
	AN3	1	Ι	ANA	A/D Input Channel 3 and Comparator C1+ input. Default input configuration on POR.
	VREF+	1	Ι	ANA	A/D and comparator voltage reference high input.
RA4/T0CKI/C1OUT	RA4	0	0	DIG	LATA<4> data output.
		1		ST	PORTA<4> data input; default configuration on POR.
	TOCKI	1	-	ST	Timer0 clock input.
	C10UT	0	0	DIG	Comparator 1 output; takes priority over port data.
RA5/AN4/SS/	RA5	0	0	DIG	LATA<5> data output; not affected by analog input.
HLVDIN/C2OUT		1	Ι	TTL	PORTA<5> data input; disabled when analog input enabled.
	AN4	1	Ι	ANA	A/D Input Channel 4. Default configuration on POR.
	SS	1	Ι	TTL	Slave Select input for MSSP (MSSP module).
	HLVDIN	1	Ι	ANA	High/Low-Voltage Detect external trip point input.
	C2OUT	0	0	DIG	Comparator 2 output; takes priority over port data.
OSC2/CLKO/RA6	RA6	0	0	DIG	LATA<6> data output. Enabled in RCIO, INTIO2 and ECIO modes only.
		1	Ι	TTL	PORTA<6> data input. Enabled in RCIO, INTIO2 and ECIO modes only.
	OSC2	x	0	ANA	Main oscillator feedback output connection (XT, HS and LP modes).
	CLKO	x	0	DIG	System cycle clock output (Fosc/4) in RC, INTIO1 and EC Oscillator modes.
OSC1/CLKI/RA7 RA7 0 O DIG LATA<7> data output. Disabled in extern		LATA<7> data output. Disabled in external oscillator modes.			
		1	Ι	TTL	PORTA<7> data input. Disabled in external oscillator modes.
	OSC1	х	Ι	ANA	Main oscillator input connection.
	CLKI	х	Ι	ANA	Main clock input connection.

TABLE 11-1: PORTA I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 11-4:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	58	
LATB	PORTB Dat	PORTB Data Latch Register (Read and Write to Data Latch)								
TRISB	PORTB Dat	a Direction R	Register						58	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	55	
INTCON2	RBPU INTEDGO INTEDG1 INTEDG2 — TMR0IP — RBIP								55	
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	55	
ADCON1		_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	57	

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTB.

11.5 PORTE, TRISE and LATE Registers

Depending on the particular PIC18F2221/2321/4221/ 4321 family device selected, PORTE is implemented in two different ways.

For 40/44-pin devices, PORTE is a 4-bit wide port. Three pins (RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/ AN7) are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers. When selected as analog inputs, these pins will read as '0'.

The corresponding Data Direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., put the contents of the output latch on the selected pin).

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note:	On	а	Power-on	Reset,	RE<2:0>	are
	con	figu	red as anal	og input	5.	

The upper four bits of the TRISE register also control the operation of the Parallel Slave Port. Their operation is explained in Register 11-1.

The Data Latch register (LATE) is also memory mapped. Read-modify-write operations on the LATE register, read and write the latched output value for PORTE.

The fourth pin of PORTE ($\overline{\text{MCLR}}/\text{VPP}/\text{RE3}$) is an input only pin. Its operation is controlled by the MCLRE Configuration bit. When selected as a port pin (MCLRE = 0), it functions as a digital input only pin; as such, it does not have TRIS or LAT bits associated with its operation. Otherwise, it functions as the device's Master Clear input. In either configuration, RE3 also functions as the programming voltage input during programming.

Note:	On a Power-on Reset, RE3 is enabled as									
	a digital input only if Master Clear									
	functionality is disabled.									

EXAMPLE 11-5: INITIALIZING PORTE

	-		
CLRF	PORTE		Initialize PORTE by clearing output
		;	data latches
CLRF	LATE	;	Alternate method
		;	to clear output
		;	data latches
MOVLW	OFh	;	Configure A/D
MOVWF	ADCON1	;	for digital inputs
MOVLW	03h	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISE	;	Set RE<0> as inputs
		;	RE<1> as outputs
		;	RE<2> as inputs

11.5.1 PORTE IN 28-PIN DEVICES

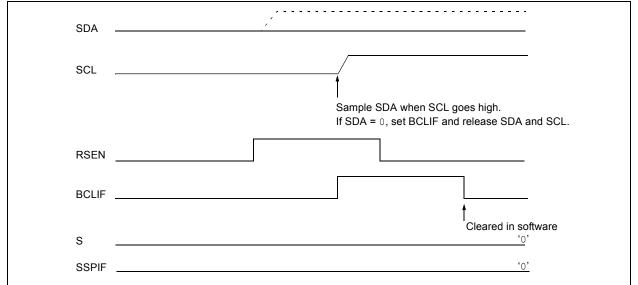
For 28-pin devices, PORTE is only available when Master Clear functionality is disabled (MCLRE = 0). In these cases, PORTE is a single bit, input only port comprised of RE3 only. The pin operates as previously described.

REGISTER 17-3:	ECCP1AS			JRE/COMP	PARE/PW	M AUTO-	SHUTDOW	N
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽¹⁾	PSSBD0 ⁽¹⁾
	bit 7							bit 0
bit 7	ECCPASE:	ECCP Auto	-Shutdown	Event Status	bit			
	1 = A shuto 0 = ECCP			d; ECCP out	puts are in	shutdown	state	
bit 6-4	ECCPAS<2	:0>: ECCP	Auto-Shutdo	own Source	Select bits			
	111 = FLT0 110 = FLT0 101 = FLT0 011 = Eithe 010 = Com 001 = Com 000 = Auto	or Compara or Comparate r Comparate parator 2 ou parator 1 ou	ator 2 ator 1 or 1 or 2 tput tput	mparator 2				
bit 3-2	 1x = Pins A and C are tri-state (40/44-pin devices); PWM output is tri-state (28-pin devices) 01 = Drive Pins A and C to '1' 00 = Drive Pins A and C to '0' 							
bit 1-0								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

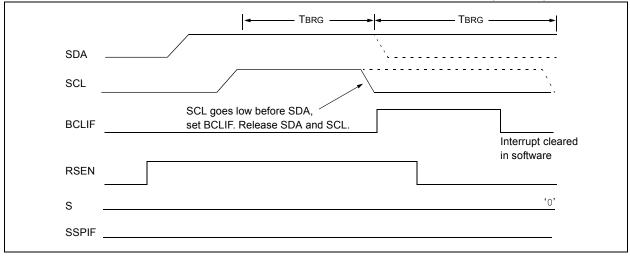
18.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:


- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

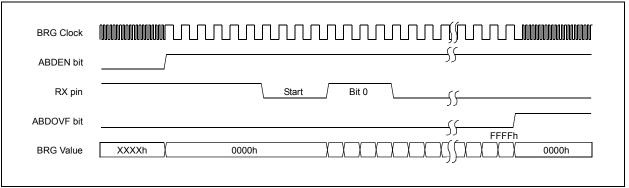
When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 18-31). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 18-32.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 18-31: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)


FIGURE 18-32: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

PIC18F2221/2321/4221/4321 FAMILY

		·		
BRG Value	XXXXh	0000h	<u> </u>	001Ch
RX pin		Start	-Edge #1 -Edge #2 -Edge #3 Edge #4 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7	– Edge #5 Stop Bit
BRG Clock				
ABDEN bit	Set by User			Auto-Cleared
RCIF bit (Interrupt)		1 1 1 1		
Read RCREG		, , , , ,		
SPBRG		ı	XXXXh	1Ch
SPBRGH			XXXXh	00h

FIGURE 19-2: BRG OVERFLOW SEQUENCE

19.2.5 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN/J2602 bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The Frame Break character is sent whenever the SENDB and TXEN bits (TXSTA<3> and TXSTA<5>) are set while the Transmit Shift register is loaded with data. Note that the value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN/J2602 specification).

Note that the data value written to the TXREG for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 19-10 for the timing of the Break character sequence.

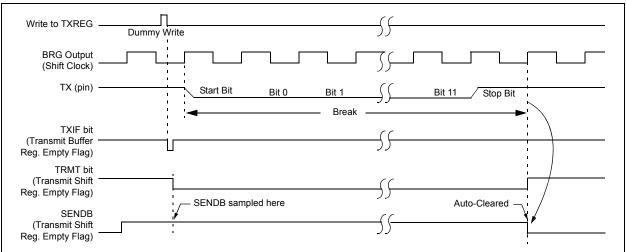
19.2.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN/J2602 bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

19.2.6 RECEIVING A BREAK CHARACTER


The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in **Section 19.2.4 "Auto-Wake-up on Sync Break Character"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit once the TXIF interrupt is observed.

FIGURE 19-10: SEND BREAK CHARACTER SEQUENCE

21.0 COMPARATOR MODULE

The analog comparator module contains two comparators that can be configured in a variety of ways. The inputs can be selected from the analog inputs multiplexed with pins RA0 through RA5, as well as the on-chip voltage reference (see Section 22.0 "Comparator Voltage Reference Module"). The digital outputs (normal or inverted) are available at the pin level and can also be read through the control register.

The CMCON register (Register 21-1) selects the comparator input and output configuration. Block diagrams of the various comparator configurations are shown in Figure 21-1.

REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0
bit 7							bit 0

bit 7 C2OUT: Comparator 2 Output bit When C2INV = 0: 1 = C2 VIN+ > C2 VIN-0 = C2 VIN + < C2 VIN -When C2INV = 1: 1 = C2 VIN + < C2 VIN -0 = C2 VIN+ > C2 VINbit 6 C1OUT: Comparator 1 Output bit When C1INV = 0: 1 = C1 VIN+ > C1 VIN-0 = C1 VIN + < C1 VIN -When C1INV = 1: 1 = C1 VIN + < C1 VIN -0 = C1 VIN + > C1 VIN bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 output inverted 0 = C2 output not inverted bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 output inverted 0 = C1 output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0> = 110: 1 = C1 VIN- connects to RA3/AN3/VREF+ C2 VIN- connects to RA2/AN2/VREF-/CVREF 0 = C1 VIN- connects to RA0/AN0 C2 VIN- connects to RA1/AN1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 21-1 shows the Comparator modes and the CM<2:0> bit settings. I agand

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC18F2221/2321/4221/4321 FAMILY

NOTES:

27.2 DC Characteristics: Power-Down and Supply Current PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial) (Continued)

PIC18LF2 (Indus	221/2321/4221/4321 trial)			rating C perature		ess otherwise state $A \le +85^{\circ}C$ for indust	
	21/2321/4221/4321 trial, Extended)			rating C perature	-40°C ≤ T	ess otherwise state $A \le +85^{\circ}C$ for indus $A \le +125^{\circ}C$ for extended	strial
Param No.	Device	Тур	Max	Units		Conditio	ns
	Supply Current (IDD) ⁽²⁾						
	PIC18LF2X21/4X21	51	75	μA	-40°C		
		54	75	μA	+25°C	VDD = 2.0V	
		60	75	μA	+85°C		
	PIC18LF2X21/4X21	83	123	μA	-40°C		
		88	123	μΑ	+25°C	VDD = 3.0V	Fosc = 1 MHz
		93	123	μΑ	+85°C		(PRI_IDLE mode, EC oscillator)
	All Devices	180	260	μA	-40°C		
		180	260	μA	+25°C	VDD = 5.0V	
		180	260	μA	+85°C	VDD - 5.0V	
	Extended Devices Only	190	260	μA	+125°C		
	PIC18LF2X21/4X21	210	290	μA	-40°C		
		220	290	μA	+25°C	VDD = 2.0V	
		230	290	μA	+85°C		
	PIC18LF2X21/4X21	350	480	μA	-40°C		
		360	480	μA	+25°C	VDD = 3.0V	Fosc = 4 MHz (PRI IDLE mode,
		370	480	μA	+85°C		EC oscillator)
	All Devices	0.69	1	mA	-40°C		,
		0.70	1	mA	+25°C	VDD = 5.0V	
		0.72	1	mA	+85°C	VDD - 5.0V	
	Extended Devices Only	0.74	1	mA	+125°C		
	Extended Devices Only	3.7	4.0	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz
		4.6	5.0	mA	+125°C	VDD = 5.0V	(PRI_IDLE mode, EC oscillator)
	All Devices	6.0	7.3	mA	-40°C		
		6.2	7.3	mA	+25°C	VDD = 4.2V	
		6.6	7.3	mA	+85°C		Fosc = 40 MHz (PRI_IDLE mode,
	All Devices	6.8	9.2	mA	-40°C		EC oscillator)
		7.0	9.2	mA	+25°C	VDD = 5.0V	
		7.1	9.2	mA	+85°C		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

- 2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;
 - MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Low-power, Timer1 oscillator is selected unless otherwise indicated, where LPT1OSC (CONFIG3H<2>) = 1.
- **4:** BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.
- 5: When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0.

27.3 DC Characteristics: PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial) (Continued)

DC CH4	ARACTEI	RISTICS		perature -4	$0^{\circ}C \le T$	(unless otherwise stated) $A \le +85^{\circ}C$ for industrial $A \le +125^{\circ}C$ for extended
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
	IPU	Weak Pull-up Current				
D070	IPURB	PORTB Weak Pull-up Current	50	400	μA	VDD = 5V, VPIN = VSS
	Vol	Output Low Voltage				
D080		I/O Ports	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D083		OSC2/CLKO (RC, RCIO, EC, ECIO modes)	_	0.6	V	Io∟ = 1.6 mA, VDD = 4.5V, -40°C to +85°C
	Vон	Output High Voltage ⁽³⁾				
D090		I/O Ports	Vdd - 0.7	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C
D092		OSC2/CLKO (RC, RCIO, EC, ECIO modes)	Vdd - 0.7	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С
		Capacitive Loading Specs on Output Pins				
D100	COSC2	OSC2 Pin	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101	Сю	All I/O Pins and OSC2 (in RC mode)	_	50	pF	Maximum that allows the AC Timing Specifications to be met
D102	Св	SCL, SDA	—	400	pF	Maximum bus capacitance permitted by I ² C™ Specification

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the $PIC^{\mathbb{R}}$ device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

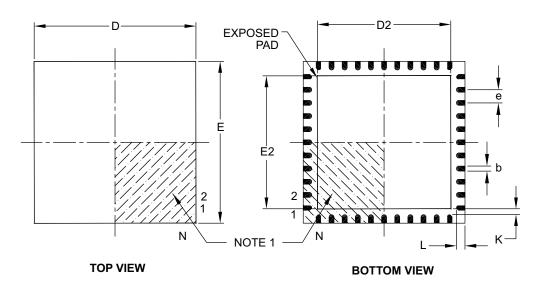
3: Negative current is defined as current sourced by the pin.

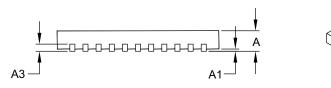
27.4.2 TIMING CONDITIONS

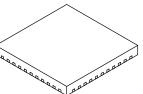
The temperature and voltages specified in Table 27-5 apply to all timing specifications unless otherwise noted. Figure 27-5 specifies the load conditions for the timing specifications.

Note: Because of space limitations, the generic terms "PIC18FXXXX" and "PIC18LFXXXX" are used throughout this section to refer to the PIC18F2221/2321/4221/4321 and PIC18LF2221/2321/4221/4321 families of devices specifically and only those devices.

TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC


	Standard Operating Conditions (unless otherwise stated)	
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial	
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended	
AC CHARACTERISTICS	Operating voltage VDD range as described in DC spec Section 27.1 and	
	Section 27.3.	
	LF parts operate for industrial temperatures only.	


FIGURE 27-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS



44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	3
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		44	
Pitch	e		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		8.00 BSC	
Exposed Pad Width	E2	6.30	6.45	6.80
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.30	6.45	6.80
Contact Width	b	0.25	0.30	0.38
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

RA2/AN2/VREF-/CVREF	
RA3/AN3/VREF+	
RA4/T0CKI/C1OUT	15, 19
RA5/AN4/SS/HLVDIN/C2OUT	15, 19
RB0/INT0/FLT0/AN12	16, 20
RB1/INT1/AN10	16, 20
RB2/INT2/AN8	16, 20
RB3/AN9/CCP2	16, 20
RB4/KBI0/AN11	16, 20
RB5/KBI1/PGM	16, 20
RB6/KBI2/PGC	16, 20
RB7/KBI3/PGD	
RC0/T10S0/T13CKI	17, 21
RC1/T1OSI/CCP2	17. 21
RC2/CCP1	
RC2/CCP1/P1A	
RC3/SCK/SCL	
RC4/SDI/SDA	,
RC5/SDO	-
RC6/TX/CK	,
RC7/RX/DT	,
RD0/PSP0	,
RD1/PSP1	
RD2/PSP2	
RD3/PSP3	
RD4/PSP4	
RD5/PSP5/P1B	
RD6/PSP6/P1C	
RD7/PSP7/P1D	
RE0/RD/AN5	
RE1/WR/AN6	
RE2/CS/AN7	
VDD	,
Vss	17, 23
Pinout I/O Descriptions	
PIC18F2221/2321	
PIC18F4221/4321	
PIR Registers	
PLL Frequency Multiplier	
HSPLL Oscillator Mode	
Use with INTOSC	31
POP	308
POR. See Power-on Reset.	
PORTA	
Associated Registers	113
LATA Register	111
PORTA Register	111
TRISA Register	111
PORTB	
Associated Registers	116
LATB Register	
PORTB Register	
TRISB Register	
PORTC	
Associated Registers	119
LATC Register	
PORTC Register	
RC3/SCK/SCL Pin	
	183
TRISC Register	183
TRISC Register	183 117
TRISC Register PORTD Associated Registers	183 117 122
TRISC Register PORTD Associated Registers LATD Register	183 117 122 120
TRISC Register PORTD Associated Registers LATD Register Parallel Slave Port (PSP) Function	183 117 122 120 120
TRISC Register PORTD Associated Registers LATD Register	183 117 122 120 120 120

Associated Registers 125
LATE Register
PORTE Register 123
PSP Mode Select (PSPMODE Bit) 120
TRISE Register
Power-Managed Modes
and A/D Operation
and EUSART Operation
and PWM Operation165
and SPI Operation
Clock Sources
Clock Transitions and Status Indicators
Effects on Clock Sources
Entering
Exiting Idle and Sleep Modes
By Interrupt
By Reset
By WDT Time-out
Without an Oscillator Start-up Delay
Idle Modes
PRI IDLE
RC IDLE
-
SEC_IDLE
Run Modes
PRI_RUN
RC_RUN
SEC_RUN
Sleep Mode
Summary (table)
Power-on Reset (POR)
Power-up Timer (PWRT)51
Time-out Sequence
Power-up Delays
Power-up Timer (PWRT)
Prescaler
Timer2 156
Timer2
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151 PRI_IDLE Mode 44
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151 PRI_IDLE Mode 44
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151 PRI_IDLE Mode 44 PRI_RUN Mode 40
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151 PRI_IDLE Mode 44 PRI_RUN Mode 40 Program Counter 60
Timer2 156 Prescaler, Timer0 131 Prescaler, Timer2 151 PRI_IDLE Mode 44 PRI_RUN Mode 40 Program Counter 60 PCL, PCH and PCU Registers 60
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memory60
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memory77
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Set77Instructions64
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Program Verification274
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Verification274Programming, Device Instructions279PSP. See Parallel Slave Port.131
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Verification274Programming, Device Instructions279PSP. See Parallel Slave Port.Pulse-Width Modulation. See PWM (CCP Module) and
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Verification274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUIse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module).
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Meming, Device Instructions274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUSH308
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Verification274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUSH308PUSH308PUSH308PUSH308
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Werification274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUSH308PUSH308PUSH308PUSH324
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Werification274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUSH308PUSH308PUSH308PUSH304PWM (CCP Module).324PWM (CCP Module)324
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Werification274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUSH308PUSH and POP Instructions61PUSHL324PWM (CCP Module)324PWM (CCP Module)352
Timer2156Prescaler, Timer0131Prescaler, Timer2151PRI_IDLE Mode44PRI_RUN Mode40Program Counter60PCL, PCH and PCU Registers60PCLATH and PCLATU Registers60Program Memoryand Extended Instruction Setand Extended Instruction Set77Instructions64Two-Word64Interrupt Vector59Look-up Tables62Map and Stack (diagram)59Reset Vector59Program Werification274Programming, Device Instructions279PSP. See Parallel Slave Port.279PUSH308PUSH308PUSH308PUSH304PWM (CCP Module).324PWM (CCP Module)324

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/26/09