

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

-XF

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0+                                                           |
| Core Size                  | 32-Bit Single-Core                                                         |
| Speed                      | 48MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, SCI, SPI, UART/USART, USB                                |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT               |
| Number of I/O              | 38                                                                         |
| Program Memory Size        | 32KB (32K x 8)                                                             |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 4K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 3.63V                                                               |
| Data Converters            | A/D 14x12b; D/A 1x10b                                                      |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 48-VFQFN Exposed Pad                                                       |
| Supplier Device Package    | 48-QFN (7x7)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/atsamda1g15b-mbt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 3.1.2 SAM DA1G

| Ordering<br>Code                    | Flash<br>(Bytes) | SRAM<br>(Bytes) | Package | Carrier Type     | Temp.Grade         | PTC, USB,<br>I <sup>2</sup> S |
|-------------------------------------|------------------|-----------------|---------|------------------|--------------------|-------------------------------|
| ATSAMDA1<br>G14A-ABT <sup>(1)</sup> | 16K              | 4K              | TQFP48  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1<br>G14A-MBT <sup>(1)</sup> | 16K              | 4K              | QFN48   | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1<br>G15A-ABT <sup>(1)</sup> | 32K              | 4K              | TQFP48  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1<br>G15A-MBT <sup>(1)</sup> | 32K              | 4K              | QFN48   | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1<br>G16A-ABT <sup>(1)</sup> | 64K              | 8K              | TQFP48  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1<br>G16A-MBT <sup>(1)</sup> | 64K              | 8K              | QFN48   | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |

1. Contact your local sales representative for availability.

# 3.1.3 SAM DA1J

| Ordering<br>Code                    | Flash<br>(Bytes) | SRAM<br>(Bytes) | Package | Carrier Type     | Temp.Grade         | PTC, USB,<br>I <sup>2</sup> S |
|-------------------------------------|------------------|-----------------|---------|------------------|--------------------|-------------------------------|
| ATSAMDA1J<br>14A-ABT <sup>(1)</sup> | 16K              | 4K              | TQFP64  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1J<br>15A-ABT <sup>(1)</sup> | 32K              | 4K              | TQFP64  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1J<br>16A-ABT <sup>(1)</sup> | 64K              | 8K              | TQFP64  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |

1. Contact your local sales representative for availability.

# 3.2 Device Variant B

# 3.2.1 SAM DA1E

| Ordering<br>Code                    | Flash<br>(Bytes) | SRAM<br>(Bytes) | Package | Carrier Type     | Temp.Grade         | PTC, USB,<br>I <sup>2</sup> S |
|-------------------------------------|------------------|-----------------|---------|------------------|--------------------|-------------------------------|
| ATSAMDA1E<br>14B-ABT <sup>(1)</sup> | 16K              | 4K              | TQFP32  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1E<br>14B-MBT <sup>(1)</sup> | 16K              | 4K              | QFN32   | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1E<br>15B-ABT <sup>(1)</sup> | 32K              | 4K              | TQFP32  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |

| Ordering<br>Code                    | Flash<br>(Bytes) | SRAM<br>(Bytes) | Package | Carrier Type     | Temp.Grade         | PTC, USB,<br>I <sup>2</sup> S |
|-------------------------------------|------------------|-----------------|---------|------------------|--------------------|-------------------------------|
| ATSAMDA1E<br>15B-MBT <sup>(1)</sup> | 32K              | 4K              | QFN32   | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1E<br>16B-ABT <sup>(1)</sup> | 64K              | 8K              | TQFP32  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1E<br>16B-MBT <sup>(1)</sup> | 64K              | 8K              | QFN32   | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |

1. Contact your local sales representative for availability.

# 3.2.2 SAM DA1G

| Ordering<br>Code                    | Flash<br>(Bytes) | SRAM<br>(Bytes) | Package | Carrier Type     | Temp.Grade         | PTC, USB,<br>I <sup>2</sup> S |
|-------------------------------------|------------------|-----------------|---------|------------------|--------------------|-------------------------------|
| ATSAMDA1<br>G14B-ABT <sup>(1)</sup> | 16K              | 4K              | TQFP48  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1<br>G14B-MBT <sup>(1)</sup> | 16K              | 4K              | QFN48   | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1<br>G15B-ABT <sup>(1)</sup> | 32K              | 4K              | TQFP48  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1<br>G15B-MBT <sup>(1)</sup> | 32K              | 4K              | QFN48   | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1<br>G16B-ABT <sup>(1)</sup> | 64K              | 8K              | TQFP48  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1<br>G16B-MBT <sup>(1)</sup> | 64K              | 8K              | QFN48   | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |

1. Contact your local sales representative for availability.

# 3.2.3 SAM DA1J

| Ordering<br>Code                    | Flash<br>(Bytes) | SRAM<br>(Bytes) | Package | Carrier Type     | Temp.Grade         | PTC, USB,<br>I <sup>2</sup> S |
|-------------------------------------|------------------|-----------------|---------|------------------|--------------------|-------------------------------|
| ATSAMDA1J<br>14B-ABT <sup>(1)</sup> | 16K              | 4K              | TQFP64  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1J<br>15B-ABT <sup>(1)</sup> | 32K              | 4K              | TQFP64  | Tape and Reel    | -40°C to<br>+105°C | Yes                           |
| ATSAMDA1J<br>16B-ABT <sup>(1)</sup> | 64K              | 8K              | TQFP64  | Tape and<br>Reel | -40°C to<br>+105°C | Yes                           |

1. Contact your local sales representative for availability.

#### **Related Links**

PM – Power Manager

# 13.6.2 Register Description

Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32bit register, and the 8-bit halves of a 16-bit register can be accessed directly. Refer to the Product Mapping for PAC locations.

#### 13.6.2.1 PAC0 Register Description

Write Protect Clear

 Name:
 WPCLR

 Offset:
 0x00 [ID-00000a18]

 Reset:
 0x000000

 Property:
 –

| Bit    | 31 | 30  | 29  | 28  | 27   | 26      | 25  | 24 |
|--------|----|-----|-----|-----|------|---------|-----|----|
|        |    |     |     |     |      |         |     |    |
| Access |    |     |     |     |      |         |     |    |
| Reset  |    |     |     |     |      |         |     |    |
|        |    |     |     |     |      |         |     |    |
| Bit    | 23 | 22  | 21  | 20  | 19   | 18      | 17  | 16 |
|        |    |     |     |     |      |         |     |    |
| Access |    |     |     |     |      |         |     |    |
| Reset  |    |     |     |     |      |         |     |    |
|        |    |     |     |     |      |         |     |    |
| Bit    | 15 | 14  | 13  | 12  | 11   | 10      | 9   | 8  |
|        |    |     |     |     |      |         |     |    |
| Access |    |     |     |     |      |         |     |    |
| Reset  |    |     |     |     |      |         |     |    |
|        |    |     |     |     |      |         |     |    |
| Bit    | 7  | 6   | 5   | 4   | 3    | 2       | 1   | 0  |
|        |    | EIC | RTC | WDT | GCLK | SYSCTRL | PM  |    |
| Access |    | R/W | R/W | R/W | R/W  | R/W     | R/W |    |
| Reset  |    | 0   | 0   | 0   | 0    | 0       | 0   |    |

# Bit 6 – EIC

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

| Value | Description                   |
|-------|-------------------------------|
| 0     | Write-protection is disabled. |
| 1     | Write-protection is enabled.  |

# Bit 5 – RTC

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

| Value | Description                   |
|-------|-------------------------------|
| 0     | Write-protection is disabled. |
| 1     | Write-protection is enabled.  |

# Bit 5 – USB

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

| Value | Description                   |
|-------|-------------------------------|
| 0     | Write-protection is disabled. |
| 1     | Write-protection is enabled.  |

# Bit 4 – DMAC:

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

| Value | Description                   |
|-------|-------------------------------|
| 0     | Write-protection is disabled. |
| 1     | Write-protection is enabled.  |

# Bit 3 – PORT

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

| Value | Description                   |
|-------|-------------------------------|
| 0     | Write-protection is disabled. |
| 1     | Write-protection is enabled.  |

# Bit 2 – NVMCTRL

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

| Value | Description                   |
|-------|-------------------------------|
| 0     | Write-protection is disabled. |
| 1     | Write-protection is enabled.  |

# Bit 1 – DSU

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

| Value | Description                   |
|-------|-------------------------------|
| 0     | Write-protection is disabled. |
| 1     | Write-protection is enabled.  |

#### 13.6.2.3 PAC2 Register Description

#### Write Protect Clear

| Bit    | 31          | 30  | 29  | 28     | 27      | 26  | 25  | 24  |  |  |  |  |
|--------|-------------|-----|-----|--------|---------|-----|-----|-----|--|--|--|--|
| Γ      | ADDR[29:22] |     |     |        |         |     |     |     |  |  |  |  |
| Access | R/W         | R/W | R/W | R/W    | R/W     | R/W | R/W | R/W |  |  |  |  |
| Reset  | 0           | 0   | 0   | 0      | 0       | 0   | 0   | 0   |  |  |  |  |
| Bit    | 23          | 22  | 21  | 20     | 19      | 18  | 17  | 16  |  |  |  |  |
| Γ      |             |     |     | ADDR   | [21:14] |     |     |     |  |  |  |  |
| Access | R/W         | R/W | R/W | R/W    | R/W     | R/W | R/W | R/W |  |  |  |  |
| Reset  | 0           | 0   | 0   | 0      | 0       | 0   | 0   | 0   |  |  |  |  |
| Bit    | 15          | 14  | 13  | 12     | 11      | 10  | 9   | 8   |  |  |  |  |
| Γ      |             |     |     | ADDF   | R[13:6] |     |     |     |  |  |  |  |
| Access | R/W         | R/W | R/W | R/W    | R/W     | R/W | R/W | R/W |  |  |  |  |
| Reset  | 0           | 0   | 0   | 0      | 0       | 0   | 0   | 0   |  |  |  |  |
| Bit    | 7           | 6   | 5   | 4      | 3       | 2   | 1   | 0   |  |  |  |  |
| Γ      |             |     | AMO | D[1:0] |         |     |     |     |  |  |  |  |
| Access | R/W         | R/W | R/W | R/W    | R/W     | R/W | R/W | R/W |  |  |  |  |
| Reset  | 0           | 0   | 0   | 0      | 0       | 0   | 0   | 0   |  |  |  |  |

#### Bits 31:2 - ADDR[29:0]: Address

Initial word start address needed for memory operations.

# Bits 1:0 – AMOD[1:0]: Access Mode

The functionality of these bits is dependent on the operation mode.

Bit description when operating CRC32: refer to 32-bit Cyclic Redundancy Check CRC32

Bit description when testing onboard memories (MBIST): refer to Testing of On-Board Memories MBIST

#### 15.13.5 Length

Name:LENGTHOffset:0x0008 [ID-00001c14]Reset:0x00000000Property:PAC Write-Protection

according to the Output Off Value bit. If the Output Off Value bit in GENCTRL (GENCTRL.OOV) is zero, the output clock will be low when generic clock generator is turned off. If GENCTRL.OOV=1, the output clock will be high when Generator is turned off.

In standby mode, if the clock is output (GENCTRL.OE=1), the clock on the GCLK\_IO pin is frozen to the OOV value if the Run In Standby bit in GENCTRL (GENCTRL.RUNSTDBY) is zero. If GENCTRL.RUNSTDBY=1, the GCLKGEN clock is kept running and output to GCLK\_IO.

# 17.6.3 Generic Clock

# Figure 17-4. Generic Clock Multiplexer



# 17.6.3.1 Enabling a Generic Clock

Before a generic clock is enabled, one of the Generators must be selected as the source for the generic clock by writing to CLKCTRL.GEN. The clock source selection is individually set for each generic clock.

When a Generator has been selected, the generic clock is enabled by setting the Clock Enable bit in CLKCTRL (CLKCTRL.CLKEN=1). The CLKCTRL.CLKEN bit must be synchronized to the generic clock domain. CLKCTRL.CLKEN will continue to read as its previous state until the synchronization is complete.

# 17.6.3.2 Disabling a Generic Clock

A generic clock is disabled by writing CLKCTRL.CLKEN=0. The SYNCBUSY bit will be cleared when this write-synchronization is complete. CLKCTRL.CLKEN will stay in its previous state until the synchronization is complete. The generic clock is gated when disabled.

# 17.6.3.3 Selecting a Clock Source for the Generic Clock

When changing a generic clock source by writing to CLKCTRL.GEN, the generic clock must be disabled before being re-enabled it with the new clock source setting. This prevents glitches during the transition:

- 1. Write CLKCTRL.CLKEN=0
- 2. Assert that CLKCTRL.CLKEN reads '0'
- 3. Change the source of the generic clock by writing CLKCTRL.GEN
- 4. Re-enable the generic clock by writing CLKCTRL.CLKEN=1

# 17.6.3.4 Configuration Lock

The generic clock configuration can be locked for further write accesses by setting the Write Lock bit in the CLKCTRL register (CLKCTRL.WRTLOCK). All writes to the CLKCTRL register will be ignored. It can only be unlocked by a Power Reset.

The Generator source of a locked generic clock are also locked, too: The corresponding GENCTRL and GENDIV are locked, and can be unlocked only by a Power Reset.

# 19.7 Register Summary

| Offset           | Name      | Bit Pos. |          |          |         |         |            |            |                |          |
|------------------|-----------|----------|----------|----------|---------|---------|------------|------------|----------------|----------|
| 0x00             |           | 7:0      | DFLLLCKC | DFLLLCKF | DFLLOOB | DFLLRDY | OSC8MRDY   | OSC32KRDY  | XOSC32KRD<br>Y | XOSCRDY  |
| 0x01             | INTENCLR  | 15:8     | DPLLLCKR |          |         |         | B33SRDY    | BOD33DET   | BOD33RDY       | DFLLRCS  |
| 0x02             |           | 23:16    |          |          |         |         |            |            | DPLLLTO        | DPLLLCKF |
| 0x03             |           | 31:24    |          |          |         |         |            |            |                |          |
| 0x04             |           | 7:0      | DFLLLCKC | DFLLLCKF | DFLLOOB | DFLLRDY | OSC8MRDY   | OSC32KRDY  | XOSC32KRD<br>Y | XOSCRDY  |
| 0x05             | INTENSET  | 15:8     | DPLLLCKR |          |         |         | B33SRDY    | BOD33DET   | BOD33RDY       | DFLLRCS  |
| 0x06             |           | 23:16    |          |          |         |         |            |            | DPLLLTO        | DPLLLCKF |
| 0x07             |           | 31:24    |          |          |         |         |            |            |                |          |
| 0x08             |           | 7:0      | DFLLLCKC | DFLLLCKF | DFLLOOB | DFLLRDY | OSC8MRDY   | OSC32KRDY  | XOSC32KRD<br>Y | XOSCRDY  |
| 0x09             | INTFLAG   | 15:8     | DPLLLCKR |          |         |         | B33SRDY    | BOD33DET   | BOD33RDY       | DFLLRCS  |
| 0x0A             |           | 23:16    |          |          |         |         |            |            | DPLLLTO        | DPLLLCKF |
| 0x0B             |           | 31:24    |          |          |         |         |            |            |                |          |
| 0x0C             |           | 7:0      | DFLLLCKC | DFLLLCKF | DFLLOOB | DFLLRDY | OSC8MRDY   | OSC32KRDY  | XOSC32KRD<br>Y | XOSCRDY  |
| 0x0D             | PCLKSR    | 15:8     | DPLLLCKR |          |         |         | B33SRDY    | BOD33DET   | BOD33RDY       | DFLLRCS  |
| 0x0E             |           | 23:16    |          |          |         |         |            |            | DPLLLTO        | DPLLLCKF |
| 0x0F             |           | 31:24    |          |          |         |         |            |            |                |          |
| 0x10             | XOSC      | 7:0      | ONDEMAND | RUNSTDBY |         |         |            | XTALEN     | ENABLE         |          |
| 0x11             |           | 15:8     |          | START    | UP[3:0] |         | AMPGC      |            | GAIN[2:0]      |          |
| 0x12             |           |          |          |          |         |         |            |            |                |          |
|                  | Reserved  |          |          |          |         |         |            |            |                |          |
| 0x13             |           |          |          |          |         |         |            |            |                |          |
| 0x14             | XOSC32K   | 7:0      | ONDEMAND | RUNSTDBY | AAMPEN  |         | EN32K      | XTALEN     | ENABLE         |          |
| 0x15             |           | 15:8     |          |          |         | WRILOCK |            |            | STARTUP[2:0]   |          |
| 0x16<br><br>0x17 | Reserved  |          |          |          |         |         |            |            |                |          |
| 0x18             |           | 7:0      | ONDEMAND | RUNSTDBY |         |         |            | EN32K      | ENABLE         |          |
| 0x19             |           | 15:8     |          |          |         | WRTLOCK |            |            | STARTUP[2:0]   |          |
| 0x1A             | OSC32K    | 23:16    |          |          |         |         | CALIB[6:0] |            |                |          |
| 0x1B             |           | 31:24    |          |          |         |         |            |            |                |          |
| 0x1C             | OSCULP32K | 7:0      | WRTLOCK  |          |         |         |            | CALIB[4:0] |                |          |
| 0x1D             |           |          |          |          |         |         |            |            |                |          |
| <br>0x1F         | Reserved  |          |          |          |         |         |            |            |                |          |
| 0x20             |           | 7:0      | ONDEMAND | RUNSTDBY |         |         |            |            | ENABLE         |          |
| 0x21             | OSCRM     | 15:8     |          |          |         |         |            |            | PRES           | C[1:0]   |
| 0x22             | USUOIVI   | 23:16    |          |          |         | CALI    | B[7:0]     |            |                |          |
| 0x23             |           | 31:24    | FRANC    | GE[1:0]  |         |         |            | CALIE      | B[11:8]        |          |
| 0x24             |           | 7:0      | ONDEMAND | RUNSTDBY | USBCRM  | LLAW    | STABLE     | MODE       | ENABLE         |          |
| 0x25             | DILLOTINE | 15:8     |          |          |         |         | WAITLOCK   | BPLCKC     | QLDIS          | CCDIS    |
| 0x26             | Reserved  |          |          |          |         |         |            |            |                |          |

| Bit    | 31          | 30       | 29  | 28   | 27          | 26  | 25     | 24     |
|--------|-------------|----------|-----|------|-------------|-----|--------|--------|
|        | FRANGE[1:0] |          |     |      | CALIB[11:8] |     |        |        |
| Access | R/W         | R/W      |     |      | R/W         | R/W | R/W    | R/W    |
| Reset  | х           | х        |     |      | 0           | 0   | 0      | 0      |
|        |             |          |     |      |             |     |        |        |
| Bit    | 23          | 22       | 21  | 20   | 19          | 18  | 17     | 16     |
|        |             |          |     | CALI | 3[7:0]      |     |        |        |
| Access | R/W         | R/W      | R/W | R/W  | R/W         | R/W | R/W    | R/W    |
| Reset  | 0           | 0        | 0   | 0    | 0           | 0   | 0      | x      |
|        |             |          |     |      |             |     |        |        |
| Bit    | 15          | 14       | 13  | 12   | 11          | 10  | 9      | 8      |
|        |             |          |     |      |             |     | PRES   | C[1:0] |
| Access |             |          |     |      |             |     | R/W    | R/W    |
| Reset  |             |          |     |      |             |     | 1      | 1      |
|        |             |          |     |      |             |     |        |        |
| Bit    | 7           | 6        | 5   | 4    | 3           | 2   | 1      | 0      |
|        | ONDEMAND    | RUNSTDBY |     |      |             |     | ENABLE |        |
| Access | R/W         | R/W      |     |      |             |     | R/W    |        |
| Reset  | 1           | 0        |     |      |             |     | 1      |        |

#### Bits 31:30 – FRANGE[1:0]: Oscillator Frequency Range

These bits control the oscillator frequency range according to the table below. These bits are loaded from Flash Calibration at startup.

| FRANGE[1:0] | Description |
|-------------|-------------|
| 0x0         | 4 to 6MHz   |
| 0x1         | 6 to 8MHz   |
| 0x2         | 8 to 11MHz  |
| 0x3         | 11 to 15MHz |

# Bits 27:16 – CALIB[11:0]: Oscillator Calibration

These bits control the oscillator calibration. The calibration field is split in two:

CALIB[11:6] is for temperature calibration

CALIB[5:0] is for overall process calibration

These bits are loaded from Flash Calibration at startup.

#### Bits 9:8 – PRESC[1:0]: Oscillator Prescaler

These bits select the oscillator prescaler factor setting according to the table below.

| PRESC[1:0] | Description |
|------------|-------------|
| 0x0        | 1           |
| 0x1        | 2           |
| 0x2        | 4           |
| 0x3        | 8           |

| Value | Description                                                                           |
|-------|---------------------------------------------------------------------------------------|
| 0     | The DPLL is always on when enabled.                                                   |
| 1     | The DPLL is activated only when a peripheral request the DPLL as a source clock. The  |
|       | DPLLCTRLA.ENABLE bit must be one to validate that operation, otherwise the peripheral |
|       | request has no effect.                                                                |

#### Bit 6 – RUNSTDBY: Run in Standby

| Value | Description                                    |
|-------|------------------------------------------------|
| 0     | The DPLL is disabled in standby sleep mode.    |
| 1     | The DPLL is not stopped in standby sleep mode. |

#### Bit 1 – ENABLE: DPLL Enable

The software operation of enabling or disabling the DPLL takes a few clock cycles, so check the DPLLSTATUS.ENABLE status bit to identify when the DPLL is successfully activated or disabled.

| Value | Description           |
|-------|-----------------------|
| 0     | The DPLL is disabled. |
| 1     | The DPLL is enabled.  |

#### 19.8.18 DPLL Ratio Control

Name:DPLLRATIOOffset:0x48 [ID-00003d5d]Reset:0x0000000Property:Write-Protected

| Bit    | 31  | 30  | 29  | 28  | 27    | 26    | 25      | 24  |
|--------|-----|-----|-----|-----|-------|-------|---------|-----|
|        |     |     |     |     |       |       |         |     |
| Access |     | •   | •   |     |       |       | •       |     |
| Reset  |     |     |     |     |       |       |         |     |
| Dit    | 22  | 22  | 01  | 20  | 10    | 10    | 17      | 16  |
| ы      | 23  | 22  | Z I | 20  | 19    | 10    | 17      | 10  |
|        |     |     |     |     |       | LDRFR | AC[3:0] |     |
| Access |     |     |     |     | R/W   | R/W   | R/W     | R/W |
| Reset  |     |     |     |     | 0     | 0     | 0       | 0   |
|        |     |     |     |     |       |       |         |     |
| Bit    | 15  | 14  | 13  | 12  | 11    | 10    | 9       | 8   |
|        |     |     |     |     |       | LDR   | [11:8]  |     |
| Access |     |     |     |     | R/W   | R/W   | R/W     | R/W |
| Reset  |     |     |     |     | 0     | 0     | 0       | 0   |
|        |     |     |     |     |       |       |         |     |
| Bit    | 7   | 6   | 5   | 4   | 3     | 2     | 1       | 0   |
|        |     |     |     | LDR | [7:0] |       |         |     |
| Access | R/W | R/W | R/W | R/W | R/W   | R/W   | R/W     | R/W |
| Reset  | 0   | 0   | 0   | 0   | 0     | 0     | 0       | 0   |

# Bits 19:16 – LDRFRAC[3:0]: Loop Divider Ratio Fractional Part

Write this field with the fractional part of the frequency multiplier.

#### 20.6.5 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

When executing an operation that requires synchronization, the Synchronization Busy bit in the Status register (STATUS.SYNCBUSY) will be set immediately, and cleared when synchronization is complete. The Synchronization Ready interrupt can be used to signal when synchronization is complete. This can be accessed via the Synchronization Ready Interrupt Flag in the Interrupt Flag Status and Clear register (INTFLAG.SYNCRDY).

If an operation that requires synchronization is executed while STATUS.SYNCBUSY='1', the bus will be stalled. All operations will complete successfully, but the CPU will be stalled and interrupts will be pending as long as the bus is stalled.

The following registers are synchronized when written:

- Control register (CTRL)
- Clear register (CLEAR)

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

#### **Related Links**

**Register Synchronization** 

# 20.7 Register Summary

Register summary

| Offset | Name     | Bit  |          |       |         |      |        |       |          |    |
|--------|----------|------|----------|-------|---------|------|--------|-------|----------|----|
|        |          | Pos. |          |       |         |      |        |       |          |    |
| 0x0    | CTRL     | 7:0  | ALWAYSON |       |         |      |        | WEN   | ENABLE   |    |
| 0x1    | CONFIG   | 7:0  |          | WINDO | DW[3:0] |      |        | PER   | [3:0]    |    |
| 0x2    | EWCTRL   | 7:0  |          |       |         |      |        | EWOFF | SET[3:0] |    |
| 0x3    | Reserved |      |          |       |         |      |        |       |          |    |
| 0x4    | INTENCLR | 7:0  |          |       |         |      |        |       |          | EW |
| 0x5    | INTENSET | 7:0  |          |       |         |      |        |       |          | EW |
| 0x6    | INTFLAG  | 7:0  |          |       |         |      |        |       |          | EW |
| 0x7    | STATUS   | 7:0  | SYNCBUSY |       |         |      |        |       |          |    |
| 0x8    | CLEAR    | 7:0  |          |       | :       | CLEA | R[7:0] | :     |          |    |

# 20.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

© 2017 Microchip Technology Inc.

#### Figure 22-15. Event Output Generation

#### **Beat Event Output**

| Data Transfer      | Block Transfer<br>BEAT BEAT | Block Transfer BEAT BEAT BEAT |
|--------------------|-----------------------------|-------------------------------|
| Event Output       |                             |                               |
| Block Event Output |                             |                               |
| Data Transfer      | Block Transfer<br>BEAT BEAT | Block Transfer<br>BEAT BEAT   |
| Event Output       | $\frown$                    |                               |

#### 22.6.3.6 Aborting Transfers

Transfers on any channel can be aborted gracefully by software by disabling the corresponding DMA channel. It is also possible to abort all ongoing or pending transfers by disabling the DMAC.

When a DMA channel disable request or DMAC disable request is detected:

- Ongoing transfers of the active channel will be disabled when the ongoing beat transfer is completed and the write-back memory section is updated. This prevents transfer corruption before the channel is disabled.
- All other enabled channels will be disabled in the next clock cycle.

The corresponding Channel Enable bit in the Channel Control A register is cleared (CHCTRLA.ENABLE=0) when the channel is disabled.

The corresponding DMAC Enable bit in the Control register is cleared (CTRL.DMAENABLE=0) when the entire DMAC module is disabled.

#### 22.6.3.7 CRC Operation

A cyclic redundancy check (CRC) is an error detection technique used to find errors in data. It is commonly used to determine whether the data during a transmission, or data present in data and program memories has been corrupted or not. A CRC takes a data stream or a block of data as input and generates a 16- or 32-bit output that can be appended to the data and used as a checksum.

When the data is received, the device or application repeats the calculation: If the new CRC result does not match the one calculated earlier, the block contains a data error. The application will then detect this and may take a corrective action, such as requesting the data to be sent again or simply not using the incorrect data.

The CRC engine in DMAC supports two commonly used CRC polynomials: CRC-16 (CRC-CCITT) and CRC-32 (IEEE 802.3). Typically, applying CRC-n (CRC-16 or CRC-32) to a data block of arbitrary length will detect any single alteration that is  $\leq$ n bits in length, and will detect the fraction 1-2-n of all longer error bursts.

| Value | Name       | Description                  |
|-------|------------|------------------------------|
| 0x00  | DISABLE    | Only software/event triggers |
| 0x01  | SERCOM0 RX | SERCOM0 RX Trigger           |
| 0x02  | SERCOM0 TX | SERCOM0 TX Trigger           |
| 0x03  | SERCOM1 RX | SERCOM1 RX Trigger           |
| 0x04  | SERCOM1 TX | SERCOM1 TX Trigger           |
| 0x05  | SERCOM2 RX | SERCOM2 RX Trigger           |
| 0x06  | SERCOM2 TX | SERCOM2 TX Trigger           |
| 0x07  | SERCOM3 RX | SERCOM3 RX Trigger           |
| 0x08  | SERCOM3 TX | SERCOM3 TX Trigger           |
| 0x09  | SERCOM4 RX | SERCOM4 RX Trigger           |
| 0x0A  | SERCOM4 TX | SERCOM4 TX Trigger           |
| 0x0B  | SERCOM5 RX | SERCOM5 RX Trigger           |
| 0x0C  | SERCOM5 TX | SERCOM5 TX Trigger           |
| 0x0D  | TCC0 OVF   | TCC0 Overflow Trigger        |
| 0x0E  | TCC0 MC0   | TCC0 Match/Compare 0 Trigger |
| 0x0F  | TCC0 MC1   | TCC0 Match/Compare 1 Trigger |
| 0x10  | TCC0 MC2   | TCC0 Match/Compare 2 Trigger |
| 0x11  | TCC0 MC3   | TCC0 Match/Compare 3 Trigger |
| 0x12  | TCC1 OVF   | TCC1 Overflow Trigger        |
| 0x13  | TCC1 MC0   | TCC1 Match/Compare 0 Trigger |
| 0x14  | TCC1 MC1   | TCC1 Match/Compare 1 Trigger |
| 0x15  | TCC2 OVF   | TCC2 Overflow Trigger        |
| 0x16  | TCC2 MC0   | TCC2 Match/Compare 0 Trigger |
| 0x17  | TCC2 MC1   | TCC2 Match/Compare 1 Trigger |
| 0x18  | TC0 OVF    | TC0 Overflow Trigger         |
| 0x19  | TC0 MC0    | TC0 Match/Compare 0 Trigger  |
| 0x1A  | TC0 MC1    | TC0 Match/Compare 1 Trigger  |
| 0x1B  | TC1 OVF    | TC1 Overflow Trigger         |
| 0x1C  | TC1 MC0    | TC1 Match/Compare 0 Trigger  |
| 0x1D  | TC1 MC1    | TC1 Match/Compare 1 Trigger  |
| 0x1E  | TC2 OVF    | TC2 Overflow Trigger         |
| 0x1F  | TC2 MC0    | TC2 Match/Compare 0 Trigger  |
| 0x20  | TC2 MC1    | TC2 Match/Compare 1 Trigger  |
| 0x21  | TC3 OVF    | TC3 Overflow Trigger         |
| 0x22  | TC3 MC0    | TC3 Match/Compare 0 Trigger  |
| 0x23  | TC3 MC1    | TC3 Match/Compare 1 Trigger  |
| 0x24  | TC4 OVF    | TC4 Overflow Trigger         |
| 0x25  | TC4 MC0    | TC4 Match/Compare 0 Trigger  |
| 0x26  | TC4 MC1    | TC4 Match/Compare 1 Trigger  |
| 0x27  | ADC RESRDY | ADC Result Ready Trigger     |
| 0x28  | DAC EMPTY  | DAC Empty Trigger            |
| 0x29  | 12S RX 0   | I2S RX 0 Trigger             |
| 0x2A  | 12S RX 1   | I2S RX 1 Trigger             |
| 0x2B  | 12S TX 0   | I2S TX 0 Trigger             |
| 0x2C  | 12S TX 0   | I2S TX 1 Trigger             |

# Figure 30-6. SCL Timing



The following parameters are timed using the SCL low time period  $T_{LOW}$ . This comes from the Master Baud Rate Low bit group in the Baud Rate register (BAUD.BAUDLOW). When BAUD.BAUDLOW=0, or the Master Baud Rate bit group in the Baud Rate register (BAUD.BAUD) determines it.

- T<sub>LOW</sub> Low period of SCL clock
- T<sub>SU:STO</sub> Set-up time for stop condition
- T<sub>BUF</sub> Bus free time between stop and start conditions
- T<sub>HD:STA</sub> Hold time (repeated) start condition
- T<sub>SU:STA</sub> Set-up time for repeated start condition
- T<sub>HIGH</sub> is timed using the SCL high time count from BAUD.BAUD
- T<sub>RISE</sub> is determined by the bus impedance; for internal pull-ups. Refer to *Electrical Characteristics*.
- T<sub>FALL</sub> is determined by the open-drain current limit and bus impedance; can typically be regarded as zero. Refer to *Electrical Characteristics* for details.

The SCL frequency is given by:

$$f_{\rm SCL} = \frac{1}{T_{\rm LOW} + T_{\rm HIGH} + T_{\rm RISE}}$$

When BAUD.BAUDLOW is zero, the BAUD.BAUD value is used to time both SCL high and SCL low. In this case the following formula will give the SCL frequency:

$$f_{\rm SCL} = \frac{f_{\rm GCLK}}{10 + 2BAUD + f_{\rm GCLK} \cdot T_{\rm RISE}}$$

When BAUD.BAUDLOW is non-zero, the following formula determines the SCL frequency:

$$f_{\rm SCL} = \frac{f_{\rm GCLK}}{10 + BAUD + BAUDLOW + f_{\rm GCLK} \cdot T_{\rm RISE}}$$

The following formulas can determine the SCL  $T_{\text{LOW}}$  and  $T_{\text{HIGH}}$  times:

$$T_{\rm LOW} = \frac{BAUDLOW + 5}{f_{\rm GCLK}}$$
$$T_{\rm HIGH} = \frac{BAUD + 5}{f_{\rm GCLK}}$$

**Note:** The  $I^2C$  standard Fm+ (Fast-mode plus) requires a nominal high to low SCL ratio of 1:2, and BAUD should be set accordingly. At a minimum, BAUD.BAUD and/or BAUD.BAUDLOW must be non-zero.

© 2017 Microchip Technology Inc.

| Condition          | Request |           |       |  |  |  |
|--------------------|---------|-----------|-------|--|--|--|
|                    | DMA     | Interrupt | Event |  |  |  |
| Stop received (SB) |         | Yes       |       |  |  |  |
| Error (ERROR)      |         | Yes       |       |  |  |  |

#### 30.6.4.1 DMA Operation

Smart mode must be enabled for DMA operation in the Control B register by writing CTRLB.SMEN=1.

#### Slave DMA

When using the I<sup>2</sup>C slave with DMA, an address match will cause the address interrupt flag (INTFLAG.ADDRMATCH) to be raised. After the interrupt has been serviced, data transfer will be performed through DMA.

The I<sup>2</sup>C slave generates the following requests:

- Write data received (RX): The request is set when master write data is received. The request is cleared when DATA is read.
- Read data needed for transmit (TX): The request is set when data is needed for a master read operation. The request is cleared when DATA is written.

#### Master DMA

When using the I<sup>2</sup>C master with DMA, the ADDR register must be written with the desired address (ADDR.ADDR), transaction length (ADDR.LEN), and transaction length enable (ADDR.LENEN). When ADDR.LENEN is written to 1 along with ADDR.ADDR, ADDR.LEN determines the number of data bytes in the transaction from 0 to 255. DMA is then used to transfer ADDR.LEN bytes followed by an automatically generated NACK (for master reads) and a STOP.

If a NACK is received by the slave for a master write transaction before ADDR.LEN bytes, a STOP will be automatically generated and the length error (STATUS.LENERR) will be raised along with the INTFLAG.ERROR interrupt.

The I<sup>2</sup>C master generates the following requests:

- Read data received (RX): The request is set when master read data is received. The request is cleared when DATA is read.
- Write data needed for transmit (TX): The request is set when data is needed for a master write operation. The request is cleared when DATA is written.

#### 30.6.4.2 Interrupts

The I<sup>2</sup>C slave has the following interrupt sources. These are asynchronous interrupts. They can wake-up the device from any sleep mode:

- Error (ERROR)
- Data Ready (DRDY)
- Address Match (AMATCH)
- Stop Received (PREC)

The I<sup>2</sup>C master has the following interrupt sources. These are asynchronous interrupts. They can wakeup the device from any sleep mode:

- Error (ERROR)
- Slave on Bus (SB)
- Master on Bus (MB)

# 33.6.2.7 Capture Operations

To enable and use capture operations, the Match or Capture Channel x Event Input Enable bit in the Event Control register (EVCTRL.MCEIx) must be written to '1'. The capture channels to be used must also be enabled in the Capture Channel x Enable bit in the Control A register (CTRLA.CPTENx) before capturing can be performed.

#### Event Capture Action

The compare/capture channels can be used as input capture channels to capture events from the Event System, and give them a timestamp. The following figure shows four capture events for one capture channel.



Figure 33-14. Input Capture Timing

For input capture, the buffer register and the corresponding CCx act like a FIFO. When CCx is empty or read, any content in CCBx is transferred to CCx. The buffer valid flag is passed to set the CCx interrupt flag (IF) and generate the optional interrupt, event or DMA request. CCBx register value can't be read, all captured data must be read from CCx register.





The TCC can detect capture overflow of the input capture channels: When a new capture event is detected while the Capture Buffer Valid flag (STATUS.CCBV) is still set, the new timestamp will not be stored and INTFLAG.ERR will be set.

# Period and Pulse-Width (PPW) Capture Action

Writing a one to this bit will set the Synchronization Ready Interrupt Enable bit, which enables the Synchronization Ready interrupt.

| Value | Description                                      |
|-------|--------------------------------------------------|
| 0     | The Synchronization Ready interrupt is disabled. |
| 1     | The Synchronization Ready interrupt is enabled.  |

#### Bit 2 – WINMON: Window Monitor Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Window Monitor Interrupt bit and enable the Window Monitor interrupt.

| Value | Description                               |
|-------|-------------------------------------------|
| 0     | The Window Monitor interrupt is disabled. |
| 1     | The Window Monitor interrupt is enabled.  |

#### **Bit 1 – OVERRUN: Overrun Interrupt Enable**

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Overrun Interrupt bit and enable the Overrun interrupt.

| Value | Description                        |
|-------|------------------------------------|
| 0     | The Overrun interrupt is disabled. |
| 1     | The Overrun interrupt is enabled.  |

#### Bit 0 – RESRDY: Result Ready Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Result Ready Interrupt bit and enable the Result Ready interrupt.

| Value | Description                             |
|-------|-----------------------------------------|
| 0     | The Result Ready interrupt is disabled. |
| 1     | The Result Ready interrupt is enabled.  |

#### 35.8.12 Interrupt Flag Status and Clear

 Name:
 INTFLAG

 Offset:
 0x18 [ID-00002049]

 Reset:
 0x00

 Property:

| Bit    | 7 | 6 | 5 | 4 | 3       | 2      | 1       | 0      |
|--------|---|---|---|---|---------|--------|---------|--------|
|        |   |   |   |   | SYNCRDY | WINMON | OVERRUN | RESRDY |
| Access |   |   |   |   | R/W     | R/W    | R/W     | R/W    |
| Reset  |   |   |   |   | 0       | 0      | 0       | 0      |

#### Bit 3 – SYNCRDY: Synchronization Ready

This flag is cleared by writing a one to the flag.

This flag is set on a one-to-zero transition of the Synchronization Busy bit in the Status register (STATUS.SYNCBUSY), except when caused by an enable or software reset, and will generate an interrupt request if INTENCLR/SET.SYNCRDY is one.

Writing a zero to this bit has no effect.

| Parameter                            | Condition                                             | Symbol            | Min.                 | Тур. | Max.                | Unit |
|--------------------------------------|-------------------------------------------------------|-------------------|----------------------|------|---------------------|------|
| Pull-up - Pull-down resistance       |                                                       | R <sub>PULL</sub> | 20                   | 40   | 60                  | kΩ   |
| Input low-level voltage              | V <sub>DD</sub> = 2.7V-3.63V                          | V <sub>IL</sub>   | -                    | -    | $0.3 \times V_{DD}$ | V    |
| Input high-level voltage             | V <sub>DD</sub> = 2.7V-3.63V                          | V <sub>IH</sub>   | $0.55 \times V_{DD}$ | -    | -                   | v    |
| Hysteresis of Schmitt trigger inputs |                                                       | V <sub>HYS</sub>  | $0.08 \times V_{DD}$ | -    | -                   |      |
|                                      | $V_{DD}$ > 2.0V,<br>$I_{OL}$ = 3mA                    |                   | -                    | -    | 0.4                 |      |
| Output low-level voltage             | $V_{DD} \le 2.0V$<br>,<br>$I_{OL} = 2mA$              | V <sub>OL</sub>   | -                    | -    | $0.2 \times V_{DD}$ |      |
|                                      | V <sub>OL</sub> = 0.4V<br>Standard, Fast and HS Modes |                   | 3                    |      |                     | mA   |
| Output low-level current             | V <sub>OL</sub> = 0.4V<br>Fast Mode +                 | I <sub>OL</sub>   | 20                   | -    | -                   |      |
|                                      | V <sub>OL</sub> = 0.6V                                |                   | 6                    | -    | -                   |      |
| SCL clock frequency                  |                                                       | f <sub>SCL</sub>  | -                    | -    | 3.4                 | MHz  |

Table 39-12. I<sup>2</sup>C Pins Characteristics in I<sup>2</sup>C Configuration

I<sup>2</sup>C pins timing characteristics can be found in the SERCOM in I<sup>2</sup>C Mode Timing section.

# Table 39-13. I<sup>2</sup>C Pins Characteristics in I/O Configuration

| Parameter                                           | Conditions                   | Symbol            | Min.                 | Тур.                | Max.                | Unit |  |
|-----------------------------------------------------|------------------------------|-------------------|----------------------|---------------------|---------------------|------|--|
| Pull-up - Pull-down resistance                      |                              | R <sub>PULL</sub> | 20                   | 40                  | 60                  | kΩ   |  |
| nput low-level voltage V <sub>DD</sub> = 2.7V-3.63V |                              | V <sub>IL</sub>   | -                    | -                   | $0.3 \times V_{DD}$ |      |  |
| Input high-level voltage                            | V <sub>DD</sub> = 2.7V-3.63V | VIH               | $0.55 \times V_{DD}$ | -                   | -                   | V    |  |
| Output low-level voltage                            | $V_{DD}$ > 2.7V, IOL max     | V <sub>OL</sub>   | -                    | $0.1 \times V_{DD}$ | $0.2 \times V_{DD}$ | V    |  |
| Output high-level voltage                           | $V_{DD}$ > 2.7V, IOH max     | V <sub>OH</sub>   | 0.8*V <sub>DD</sub>  | $0.9 \times V_{DD}$ | -                   |      |  |
|                                                     | V <sub>DD</sub> = 2.7V-3V,   |                   |                      |                     |                     |      |  |
|                                                     | PORT.PINCFG.<br>DRVSTR=0     |                   | -                    | -                   | 1                   |      |  |
|                                                     | V <sub>DD</sub> = 3V-3.63V,  |                   |                      |                     |                     |      |  |
| Output low-level current                            | PORT.PINCFG.<br>DRVSTR=0     | I <sub>OL</sub>   | -                    | -                   | 2.5                 | mA   |  |
|                                                     | V <sub>DD</sub> = 2.7V-3V,   |                   |                      |                     |                     |      |  |
|                                                     | PORT.PINCFG.<br>DRVSTR=1     |                   | -                    | -                   | 3                   |      |  |
|                                                     | V <sub>DD</sub> = 3V-3.63V,  |                   |                      |                     |                     |      |  |

calculating the required sample and hold time. The next figure shows the ADC input channel equivalent circuit.

# Figure 39-5. ADC Input



To achieve n bits of accuracy, the  $C_{\text{SAMPLE}}$  capacitor must be charged at least to a voltage of

 $V_{\text{CSAMPLE}} \ge V_{\text{IN}} \times \left(1 + -2^{-(n+1)}\right)$ 

The minimum sampling time  $t_{\text{SAMPLEHOLD}}$  for a given  $R_{\text{SOURCE}}$  can be found using this formula:

 $t_{\text{SAMPLEHOLD}} \ge \left(R_{\text{SAMPLE}} + R_{\text{SOURCE}}\right) \times \left(C_{\text{SAMPLE}}\right) \times (n+1) \times \ln(2)$ 

for a 12 bits accuracy:  $t_{\text{SAMPLEHOLD}} \ge \left(R_{\text{SAMPLE}} + R_{\text{SOURCE}}\right) \times \left(C_{\text{SAMPLE}}\right) \times 9.02$ 

where

$$t_{\text{SAMPLEHOLD}} = \frac{1}{2 \times f_{\text{ADC}}}$$

# 39.9.5 Digital to Analog Converter (DAC) Characteristics Table 39-27. Operating Conditions<sup>(1)</sup>

| Symbol             | Parameter                        | Conditions            | Min. | Тур.               | Max.               | Unit |
|--------------------|----------------------------------|-----------------------|------|--------------------|--------------------|------|
| V <sub>DDANA</sub> | Analog supply voltage            |                       | 2.7  | -                  | 3.63               | V    |
| $AV_{REF}$         | External reference voltage       |                       | 1.0  | -                  | $V_{DDANA} - 0.6$  | V    |
|                    | Internal reference voltage 1     |                       | -    | 1                  | -                  | V    |
|                    | Internal reference voltage 2     |                       | -    | V <sub>DDANA</sub> | -                  | V    |
|                    | Linear output voltage range      |                       | 0.05 | -                  | $V_{DDANA} - 0.05$ | V    |
|                    | Minimum resistive load           |                       | 5    | -                  | -                  | kΩ   |
|                    | Maximum capacitance load         |                       | -    | -                  | 100                | pF   |
| I <sub>DD</sub>    | DC supply current <sup>(2)</sup> | Voltage pump disabled | -    | 175                | 256                | μA   |

- 1. These values are based on specifications otherwise noted.
- 2. These values are based on characterization. These values are not covered by test limits in production.

# **39.9.6** Analog Comparator Characteristics Table 39-30. Electrical and Timing

| Parameter                      | Conditions                                                             | Symbol  | Min.  | Тур.  | Max.               | Unit |  |
|--------------------------------|------------------------------------------------------------------------|---------|-------|-------|--------------------|------|--|
| Positive input voltage range   |                                                                        |         | 0     | -     | V <sub>DDANA</sub> | V    |  |
| Negative input voltage range   |                                                                        |         | 0     | -     | V <sub>DDANA</sub> | v    |  |
| Offset                         | Hysteresis = 0, Fast mode                                              |         | -26   | 0     | 26                 | mV   |  |
|                                | Hysteresis = 0, Low power mode                                         |         | -28   | 0     | 28                 | mV   |  |
| Hysteresis                     | Hysteresis = 1, Fast mode                                              |         | 8     | 50    | 102                | mV   |  |
|                                | Hysteresis = 1, Low power mode                                         |         | 14    | 50    | 75                 | mV   |  |
| Propagation delay              | Changes for $V_{ACM} = V_{DDANA}/2$<br>100mV overdrive, Fast mode      |         |       | 90    | 180                | ns   |  |
|                                | Changes for $V_{ACM} = V_{DDANA}/2$<br>100mV overdrive, Low power mode |         |       | 302   | 534                | ns   |  |
| Startup time                   | Enable to ready delay<br>Fast mode                                     | +       |       | 1     | 2                  | μs   |  |
|                                | Enable to ready delay<br>Low power mode                                | STARTUP | -     | 14    | 23                 | μs   |  |
| INL <sup>(3)</sup>             |                                                                        |         | -1.4  | 0.201 | 1.4                | LSB  |  |
| DNL <sup>(3)</sup>             |                                                                        | Maaaa   | -0.9  | 0.022 | 0.9                | LSB  |  |
| Offset Error <sup>(1)(2)</sup> |                                                                        | V SCALE | -0.2  | 0.056 | 0.92               | LSB  |  |
| Gain Error <sup>(1)(2)</sup>   |                                                                        |         | -0.89 | 0.079 | 0.89               | LSB  |  |

1. According to the standard equation  $V(X) = V_{LSB} \times (X + 1); V_{LSB} = V_{DDANA}/64$ 

- 2. Data computed with the Best Fit method
- 3. Data computed using histogram

# 39.9.7Internal 1.1V Bandgap Reference CharacteristicsTable 39-31.Bandgap and Internal 1.1V Reference Characteristics

| Parameter                             | Conditions                          | Symbol | Min. | Тур. | Max. | Unit |  |
|---------------------------------------|-------------------------------------|--------|------|------|------|------|--|
| Internal 1.1V<br>Bandgap<br>reference | After<br>calibration at<br>T= 25°C, | INT1V  | 1.07 | 1.1  |      |      |  |
|                                       | over [–40,<br>+105]°C,              |        |      |      | 1.12 | V    |  |
|                                       | V <sub>DD</sub> = 3.3V              |        |      |      |      |      |  |
|                                       | Over voltage at 25°C                |        | 1.08 | 1.1  | 1.11 | V    |  |

| Parameter  | Conditions                               | Symbol | Min.   | Тур.   | Max.   | Unit |
|------------|------------------------------------------|--------|--------|--------|--------|------|
|            | at 25°C,                                 |        |        |        |        |      |
|            | over<br>[–40, +105]°C,                   |        |        |        |        |      |
|            | over [2.7, 3.63]V                        |        |        |        |        |      |
|            | Calibrated against a 32.768kHz reference |        |        |        |        |      |
|            | at 25°C,                                 |        | 31.457 | 32.768 | 34.078 |      |
|            | at VDD = 3.3V                            |        |        |        |        |      |
|            | Calibrated against a 32.768kHz reference |        |        |        |        |      |
|            | at 25°C,                                 |        | 31.293 | 32.768 | 34.570 |      |
|            | over [2.7, 3.63]V                        |        |        |        |        |      |
| Duty Cycle |                                          | Duty   | -      | 50     | -      | %    |

- 1. These values are based on simulation. These values are not covered by test limits in production or characterization.
- 2. This oscillator is always on.

# 39.11.68MHz RC Oscillator (OSC8M) CharacteristicsTable 39-44.Internal 8MHz RC Oscillator Characteristics

| Parameter        | Conditions                                                                                 | Symbol | Min. | Тур. | Max. | Unit |
|------------------|--------------------------------------------------------------------------------------------|--------|------|------|------|------|
| Output frequency | Calibrated against a 8MHz reference<br>at 25°C,<br>over [–10, +70]C,<br>over [2.7, 3.6]V   |        | 7.84 | 8    | 8.16 | MHz  |
|                  | Calibrated against a 8MHz reference<br>at 25°C,<br>over [–10, +105]°C,<br>over [2.7, 3.6]V | fouт   | 7.80 | 8    | 8.20 |      |
|                  | Calibrated against a 8MHz reference<br>at 25°C,<br>over [–40, +105]°C,<br>over [2.7, 3.6]V |        | 7.66 | 8    | 8.34 |      |
|                  | Calibrated against a 8MHz reference at 25°C,                                               |        | 7.88 | 8    | 8.12 |      |