
Microsemi Corporation - A2F060M3E-1CSG288 Datasheet

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The
Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an
integrated circuit that consolidates all the essential
components of a computer system into a single chip. This
includes a microprocessor, memory, and other peripherals,
all packed into one compact and efficient package. SoCs
are designed to provide a complete computing solution,
optimizing both space and power consumption, making
them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a
computer or electronic system onto a single chip. Unlike
traditional multi-chip solutions, SoCs combine a central
processing unit (CPU), memory, input/output (I/O)
interfaces, and other essential components into a single
silicon die. This integration enhances performance,
reduces power consumption, and minimizes the physical
footprint of the system. SoCs are fundamental in
embedded systems where space, efficiency, and cost are
critical.

Applications of Embedded - System On Chip
(SoC)

SoCs are pivotal in a variety of applications due to their
compact design and high integration. In consumer
electronics, SoCs power smartphones, tablets, and
smartwatches, offering robust performance and extended
battery life. Automotive industries leverage SoCs for
advanced driver-assistance systems (ADAS), infotainment,
and vehicle-to-everything (V2X) communication. In
industrial automation, SoCs drive sophisticated
machinery control systems, data acquisition, and real-time
monitoring. Additionally, medical devices use SoCs for
portable diagnostic tools, imaging systems, and patient
monitoring equipment, where space and power efficiency
are crucial.

Common Subcategories of Embedded -
System On Chip (SoC)

System On Chip (SoC) products can be categorized into
several subtypes based on their applications and
functionalities. General-purpose SoCs are designed for a
wide range of applications, offering versatile processing
capabilities. Application-specific SoCs are tailored for
particular uses, such as multimedia processing or
automotive control, incorporating specialized features to
meet the demands of specific tasks. Real-time SoCs focus
on handling tasks with stringent timing requirements,
suitable for applications like robotics and industrial control.
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SmartFusion Customizable System-on-Chip (cSoC)
1 – SmartFusion Family Overview

Introduction
The SmartFusion® family of cSoCs builds on the technology first introduced with the Fusion mixed signal
FPGAs. SmartFusion cSoCs are made possible by integrating FPGA technology with programmable
high-performance analog and hardened ARM Cortex-M3 microcontroller blocks on a flash semiconductor
process. The SmartFusion cSoC takes its name from the fact that these three discrete technologies are
integrated on a single chip, enabling the lowest cost of ownership and smallest footprint solution to you. 

General Description

Microcontroller Subsystem (MSS)
The MSS is composed of a 100 MHz Cortex-M3 processor and integrated peripherals, which are
interconnected via a multi-layer AHB bus matrix (ABM). This matrix allows the Cortex-M3 processor,
FPGA fabric master, Ethernet media access controller (MAC), when available, and peripheral DMA
(PDMA) controller to act as masters to the integrated peripherals, FPGA fabric, embedded nonvolatile
memory (eNVM), embedded synchronous RAM (eSRAM), external memory controller (EMC), and
analog compute engine (ACE) blocks.

SmartFusion cSoCs of different densities offer various sets of integrated peripherals. Available
peripherals include SPI, I2C, and UART serial ports, embedded FlashROM (EFROM), 10/100 Ethernet
MAC, timers, phase-locked loops (PLLs), oscillators, real-time counters (RTC), and peripheral DMA
controller (PDMA).

Programmable Analog

Analog Front-End (AFE)
SmartFusion cSoCs offer an enhanced analog front-end compared to Fusion devices. The successive
approximation register analog-to-digital converters (SAR ADC) are similar to those found on Fusion
devices. SmartFusion cSoC also adds first order sigma-delta digital-to-analog converters (SDD DAC). 

SmartFusion cSoCs can handle multiple analog signals simultaneously with its signal conditioning blocks
(SCBs). SCBs are made of a combination of active bipolar prescalers (ABPS), comparators, current
monitors and temperature monitors. ABPS modules allow larger bipolar voltages to be fed to the ADC.
Current monitors take the voltage across an external sense resistor and convert it to a voltage suitable
for the ADC input range. Similarly, the temperature monitor reads the current through an external PN-
junction (diode or transistor) and converts it internally for the ADC. The SCB also includes comparators
to monitor fast signal thresholds without using the ADC. The output of the comparators can be fed to the
analog compute engine or the ADC.

Analog Compute Engine (ACE)
The mixed signal blocks found in SmartFusion cSoCs are controlled and connected to the rest of the
system via a dedicated processor called the analog compute engine (ACE). The role of the ACE is to
offload control of the analog blocks from the Cortex-M3, thus offering faster throughput or better power
consumption compared to a system where the main processor is in charge of monitoring the analog
resources. The ACE is built to handle sampling, sequencing, and post-processing of the ADCs, DACs,
and SCBs. 
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SmartFusion Customizable System-on-Chip (cSoC)
This enables reduction or complete removal of expensive voltage monitor and brownout detection
devices from the PCB design. Flash-based SmartFusion cSoCs simplify total system design and reduce
cost and design risk, while increasing system reliability.

Immunity to Firm Errors
Firm errors occur most commonly when high-energy neutrons, generated in the atmosphere, strike a
configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O configuration behavior in an unpredictable
way.

Another source of radiation-induced firm errors is alpha particles. For alpha radiation to cause a soft or
firm error, its source must be in very close proximity to the affected circuit. The alpha source must be in
the package molding compound or in the die itself. While low-alpha molding compounds are being used
increasingly, this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not occur in SmartFusion cSoCs. Once it is programmed, the
flash cell configuration element of SmartFusion cSoCs cannot be altered by high energy neutrons and is
therefore immune to errors from them. Recoverable (or soft) errors occur in the user data SRAMs of all
FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry
built into the FPGA fabric.

Specifying I/O States During Programming
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for
PDB files generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information.

Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have
limited display of Pin Numbers only.

The I/Os are controlled by the JTAG Boundary Scan register during programming, except for the analog
pins (AC, AT and AV). The Boundary Scan register of the AG pin can be used to enable/disable the gate
driver in software v9.0.

1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during
programming.

2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator
window appears.

3. Click the Specify I/O States During Programming button to display the Specify I/O States During
Programming dialog box.

4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.
Select the I/Os you wish to modify (Figure 1-1 on page 1-4).

5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings
for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state
settings: 

1 – I/O is set to drive out logic High

0 – I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated
Revision 13 1-3
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SmartFusion DC and Switching Characteristics
Theta-JA
Junction-to-ambient thermal resistance (�TJA) is determined under standard conditions specified by
JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with
caution but is useful for comparing the thermal performance of one package to another.

A sample calculation showing the maximum power dissipation allowed for the A2F200-FG484 package
under forced convection of 1.0 m/s and 75°C ambient temperature is as follows:

EQ 4

where  

EQ 5

The power consumption of a device can be calculated using the Microsemi SoC Products Group power
calculator. The device's power consumption must be lower than the calculated maximum power
dissipation by the package. If the power consumption is higher than the device's maximum allowable
power dissipation, a heat sink can be attached on top of the case, or the airflow inside the system must
be increased.

Theta-JB
Junction-to-board thermal resistance (�TJB) measures the ability of the package to dissipate heat from the
surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance
from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a
means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a
JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.

Theta-JC
Junction-to-case thermal resistance (�TJC) measures the ability of a device to dissipate heat from the
surface of the chip to the top or bottom surface of the package. It is applicable for packages used with
external heat sinks. Constant temperature is applied to the surface in consideration and acts as a
boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through
the surface in consideration. 

Calculation for Heat Sink 
For example, in a design implemented in an A2F200-FG484 package with 2.5 m/s airflow, the power
consumption value using the power calculator is 3.00 W. The user-dependent Ta and Tj are given as
follows:

From the datasheet:  

�TJA = 19.00°C/W (taken from Table 2-6 on page 2-7). 

TA = 75.00°C 

TJ = 100.00°C

TA = 70.00°C

�TJA = 17.00°C/W

�TJC = 8.28°C/W

Maximum Power Allowed
TJ(MAX) TA(MAX)–

�TJA
---------------------------------------------=

Maximum Power Allowed 100.00°C 75.00°C–
19.00°C/W

---------------------------------------------------- 1.3 W= =
2-8 Revision 13



SmartFusion Customizable System-on-Chip (cSoC)
EQ 6

The 1.76 W power is less than the required 3.00 W. The design therefore requires a heat sink, or the
airflow where the device is mounted should be increased. The design's total junction-to-air thermal
resistance requirement can be estimated by EQ 7:

EQ 7

Determining the heat sink's thermal performance proceeds as follows:

EQ 8

where

EQ 9

A heat sink with a thermal resistance of 5.01°C/W or better should be used. Thermal resistance of heat
sinks is a function of airflow. The heat sink performance can be significantly improved with increased
airflow. 

Carefully estimating thermal resistance is important in the long-term reliability of an FPGA. Design
engineers should always correlate the power consumption of the device with the maximum allowable
power dissipation of the package selected for that device.

Note: The junction-to-air and junction-to-board thermal resistances are based on JEDEC standard
(JESD-51) and assumptions made in building the model. It may not be realized in actual
application and therefore should be used with a degree of caution. Junction-to-case thermal
resistance assumes that all power is dissipated through the case.

Temperature and Voltage Derating Factors 

�TJA = 0.37°C/W

= Thermal resistance of the interface material between
the case and the heat sink, usually provided by the
thermal interface manufacturer

�TSA = Thermal resistance of the heat sink in °C/W

Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 85°C, worst-case VCC = 1.425 V)

Array 
Voltage VCC 
(V)

Junction Temperature (°C)

–40°C 0°C 25°C 70°C 85°C 100°C

1.425  0.86 0.91 0.93 0.98 1.00 1.02

1.500 0.81 0.86 0.88 0.93 0.95 0.96

1.575 0.78 0.83 0.85 0.90 0.91 0.93

P
TJ TA–

�TJA
------------------- 100°C 70°C–

17.00 W
------------------------------------ 1.76 W= = =

�TJA(total)

TJ TA–

P
------------------- 100°C 70°C–

3.00 W
------------------------------------ 10.00°C/W= = =

�TJA(TOTAL) �TJC �TCS �TSA+ +=

�TSA �TJA(TOTAL) �TJC– �TCS–=

�TSA 13.33°C/W 8.28°C/W– 0.37°C/W– 5.01°C/W= =
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SmartFusion Customizable System-on-Chip (cSoC)
PAC24 Current Monitor Power Contribution See Table 2-93 on 
page 2-78

– 1.03 mW

PAC25 ABPS Power Contribution See Table 2-96 on 
page 2-82

– 0.70 mW

PAC26 Sigma-Delta DAC Power 
Contribution2

See Table 2-98 on 
page 2-85

– 0.58 mW

PAC27 Comparator Power Contribution See Table 2-97 on 
page 2-84

– 1.02 mW

PAC28 Voltage Regulator Power 
Contribution3

See Table 2-99 on 
page 2-87

– 36.30 mW

Notes:

1. For a different use of MSS peripherals and resources, refer to SmartPower.
2. Assumes Input = Half Scale Operation mode.

3. Assumes 100 mA load on 1.5 V domain.

Table 2-15 • Different Components Contributing to the Static Power Consumption in SmartFusion cSoCs

Parameter Definition

Power Supply Device

UnitsName Domain A2F060 A2F200 A2F200

PDC1 Core static power contribution in
SoC mode

VCC 1.5 V 11.10 23.70 37.95 mW

PDC2 Device static power contribution in
Standby Mode

See Table 2-8 on 
page 2-10

– 11.10 23.70 37.95 mW

PDC3 Device static power contribution in
Time Keeping mode

See Table 2-8 on 
page 2-10

3.3 V 33.00 33.00 33.00 µW

PDC7 Static contribution per input pin
(standard dependent contribution)

VCCxxxxIOBx/VCC See Table 2-10 and Table 2-11 on page 2-11.

PDC8 Static contribution per output pin
(standard dependent contribution)

VCCxxxxIOBx/VCC See Table 2-12 and Table 2-13 on page 2-11.

PDC9 Static contribution per PLL VCC 1.5 V 2.55 2.55 2.55 mW

Table 2-16 • eNVM Dynamic Power Consumption

Parameter  Description  Condition  Min.  Typ.  Max.  Units 

eNVM System eNVM array operating power  Idle  795 µA 

 Read operation  See Table 2-14 on page 2-12.

 Erase   900 µA 

 Write   900 µA 

 PNVMCTRL eNVM controller operating power    20 µW/MHz 

Table 2-14 • Different Components Contributing to Dynamic Power Consumption in SmartFusion cSoCs 

Parameter Definition

Power Supply Device

UnitsName Domain A2F060 A2F200 A2F500
Revision 13 2-13



SmartFusion Customizable System-on-Chip (cSoC)
PPLL = 0 W

Embedded Nonvolatile Memory Dynamic Contribution—P eNVM

SoC Mode

The eNVM dynamic power consumption is a piecewise linear function of frequency.

PeNVM = NeNVM-BLOCKS * �E4 * PAC15 * FREAD-eNVM when FREAD-eNVM �d��33 MHz,

PeNVM = NeNVM-BLOCKS * �E4 *(PAC16 + PAC17 * FREAD-eNVM) when FREAD-eNVM > 33 MHz

Where:

NeNVM-BLOCKS is the number of eNVM blocks used in the design.

�E4 is the eNVM enable rate for read operations. Default is 0 (eNVM mainly in idle state).

FREAD-eNVM is the eNVM read clock frequency.

Standby Mode and Time Keeping Mode

PeNVM = 0 W

Main Crystal Oscillator Dynamic Contribution—P XTL-OSC

SoC Mode

PXTL-OSC = PAC18

Standby Mode

PXTL-OSC = 0 W

Time Keeping Mode

PXTL-OSC = 0 W

Low Power Oscillator Crystal Dynamic Contribution—P LPXTAL-OSC

Operating, Standby, and Time Keeping Mode

PLPXTAL-OSC = PAC21

RC Oscillator Dynamic Contribution—P RC-OSC

SoC Mode

PRC-OSC = PAC19A + PAC19B

Standby Mode and Time Keeping Mode

PRC-OSC = 0 W

Analog System Dynamic Contribution—P AB

SoC Mode

PAB = PAC23 * NTM + PAC24 * NCM + PAC25 * NABPS + PAC26 * NSDD + PAC27 * NCOMP + PADC * NADC 
+ PVR

Where:

NCM is the number of current monitor blocks

NTM is the number of temperature monitor blocks

NSDD is the number of sigma-delta DAC blocks

NABPS is the number of ABPS blocks

NADC is the number of ADC blocks

NCOMP is the number of comparator blocks

PVR= PAC28 

PADC= PAC20A + PAC20B
Revision 13 2-17



SmartFusion Customizable System-on-Chip (cSoC)
Figure 2-4 • Output Buffer Model and Delays (example)
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SmartFusion DC and Switching Characteristics
1.8 V LVCMOS
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

Table 2-47 • Minimum and Maximum DC Input and Output Levels
Applicable to FPGA I/O Banks

1.8 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive 
Strength

Min. 
V

Max.
V

Min.
V

Max. 
V

Max. 
V

Min.
V mA mA

Max.
mA1

Max.
mA1 µA2 µA2

2 mA –0.3  0.35 * 
VCCxxxxIOBx

 0.65 * 
VCCxxxxIOBx

1.9  0.45 VCCxxxxIOBx 
– 0.45 

 2  2 11 9  15  15

4 mA  –0.3  0.35 * 
VCCxxxxIOBx

 0.65 * 
VCCxxxxIOBx

1.9  0.45 VCCxxxxIOBx 
– 0.45 

 4  4 22 17  15  15 

6 mA  –0.3  0.35 * 
VCCxxxxIOBx

 0.65 * 
VCCxxxxIOBx

1.9  0.45 VCCxxxxIOBx 
– 0.45 

6 6 44 35  15  15 

8 mA  –0.3  0.35 * 
VCCxxxxIOBx

 0.65 * 
VCCxxxxIOBx

1.9  0.45 VCCxxxxIOBx 
– 0.45 

 8  8 51 45  15  15 

12 mA  –0.3  0.35 * 
VCCxxxxIOBx

 0.65 * 
VCCxxxxIOBx

1.9  0.45 VCCxxxxIOBx 
– 0.45 

12 12 74 91  15  15 

16 mA  –0.3  0.35 * 
VCCxxxxIOBx

 0.65 * 
VCCxxxxIOBx

1.9  0.45 VCCxxxxIOBx 
– 0.45 

16 16 74 91  15  15

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 
2. Currents are measured at 85°C junction temperature.

3. Software default selection highlighted in gray.

Table 2-48 • Minimum and Maximum DC Input and Output Levels
Applicable to MSS I/O Banks

1.8 V
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL IIH
Drive
Strength

Min. 
V

Max.
V

Min.
V

Max. 
V

Max. 
V

Min.
V mA mA

Max. 
mA1

Max. 
mA1 µA2 µA2

4 mA  –0.3  0.35 * 
VCCxxxxIOBx

 0.65 * 
VCCxxxxIOBx

 3.6  0.45 VCCxxxxIOBx 
– 0.45

 4  4 22 17 15 15

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 
2. Currents are measured at 85°C junction temperature.

3. Software default selection highlighted in gray.

Figure 2-8 • AC Loading

Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 1.8 0.9 – 35

* Measuring point = Vtrip. See Table 2-22 on page 2-24 for a complete table of trip points.

Test Point
Test Point

Enable PathDatapath 35 pF

R = 1 K
R to GND for tHZ / tZH / tZHS

R to VCCxxxxIOBx for tLZ / tZL / tZLS

35 pF for tZH / tZHS / tZL / tZLS

35 pF for tHZ / tLZ
2-34 Revision 13



SmartFusion DC and Switching Characteristics
Input Register

Timing Characteristics

Figure 2-16 • Input Register Timing Diagram
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Table 2-71 • Input Data Register Propagation Delays
Worst Commercial-Case Conditions: TJ = 85°C, Worst-Case VCC = 1.425 V

Parameter Description –1 Std. Units

tICLKQ Clock-to-Q of the Input Data Register 0.24 0.29 ns

tISUD Data Setup Time for the Input Data Register 0.27 0.32 ns

tIHD Data Hold Time for the Input Data Register 0.00 0.00 ns

tISUE Enable Setup Time for the Input Data Register 0.38 0.45 ns

tIHE Enable Hold Time for the Input Data Register 0.00 0.00 ns

tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.46 0.55 ns

tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.46 0.55 ns

tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 ns

tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.23 0.27 ns

tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 ns

tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.23 0.27 ns

tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.22 0.22 ns

tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.22 0.22 ns

tICKMPWH Clock Minimum Pulse Width High for the Input Data Register 0.36 0.36 ns

tICKMPWL Clock Minimum Pulse Width Low for the Input Data Register 0.32 0.32 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9
for derating values.
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SmartFusion Customizable System-on-Chip (cSoC)
DDR Module Specifications

Input DDR Module

Figure 2-19 • Input DDR Timing Model

Table 2-74 • Parameter Definitions

Parameter Name Parameter Definition Measuring Nodes (from, to)

tDDRICLKQ1 Clock-to-Out Out_QR B, D

tDDRICLKQ2 Clock-to-Out Out_QF B, E

tDDRISUD Data Setup Time of DDR input A, B

tDDRIHD Data Hold Time of DDR input A, B

tDDRICLR2Q1 Clear-to-Out Out_QR C, D

tDDRICLR2Q2 Clear-to-Out Out_QF C, E

tDDRIREMCLR Clear Removal C, B

tDDRIRECCLR Clear Recovery C, B

Input DDR

Data

CLK

CLKBUF

INBUF
Out_QF
(to core)

FF2

FF1

INBUF

CLR

DDR_IN

E

A

B

C

D

Out_QR
(to core)
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SmartFusion Customizable System-on-Chip (cSoC)
Global Resource Characteristics

A2F200 Clock Tree Topology
Clock delays are device-specific. Figure 2-27 is an example of a global tree used for clock routing. The
global tree presented in Figure 2-27 is driven by a CCC located on the west side of the A2F200 device. It
is used to drive all D-flip-flops in the device. 

Global Tree Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven
and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer
to the "Clock Conditioning Circuits" section on page 2-63. Table 2-80 through Table 2-82 on page 2-61
present minimum and maximum global clock delays for the SmartFusion cSoCs. Minimum and maximum
delays are measured with minimum and maximum loading.

Figure 2-27 • Example of Global Tree Use in an A2F200 Device for Clock Routing
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SmartFusion Customizable System-on-Chip (cSoC)
Figure 2-38 • FIFO Reset

Figure 2-39 • FIFO EMPTY Flag and AEMPTY Flag Assertion
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SmartFusion DC and Switching Characteristics
Figure 2-43 • Temperature Error Versus External Capacitance

-7

-6

-5

-4

-3

-2

-1

0

1

1.00E -06 1.00E -05 1.00E -04 1.00E -03 1.00E -02 1.00E -01 1.00E+00

T
em

pe
ra

tu
re

 E
rr

or
 (

°C
)

Capacitance (μF)
2-80 Revision 13



SmartFusion DC and Switching Characteristics
sp6 Data from master (SPI_x_DO) setup time 2 1 1 1 pclk cycles

sp7 Data from master (SPI_x_DO) hold time 2 1 1 1 pclk cycles

sp8 SPI_x_DI setup time 2 1 1 1 pclk cycles

sp9 SPI_x_DI hold time 2 1 1 1 pclk cycles

Figure 2-47 • SPI Timing for a Single Frame Transfer in Motorola Mode (SPH = 1)

Table 2-100 • SPI Characteristics
Commercial Case Conditions: TJ = 85ºC, VDD = 1.425 V, –1 Speed Grade  (continued)

Symbol Description and Condition A2F060 A2F200 A2F500 Unit

Notes:

1. These values are provided for a load of 35 pF. For board design considerations and detailed output buffer resistances,
use the corresponding IBIS models located on the Microsemi SoC Products Group website:
http://www.microsemi.com/index.php?option=com_microsemi&Itemid=489&lang=en&view=salescontact.

2. For allowable pclk configurations, refer to the Serial Peripheral Interface Controller section in the SmartFusion
Microcontroller Subsystem User’s Guide. 

SPI_x_CLK
SPO = 0

SPI_x_DO

SP6 SP7

50%50% MSB

50% 50% 50%

SP2

SP1

90%

10% 10%

SP4 SP5

SP8 SP9

50%50% MSBSPI_x_DI

10%

90%

SP5

90%

10%

SP4

90%

10%10%

SP4SP5

90%

SPI_x_SS

SPI_x_CLK
SPO = 1

SP3
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SmartFusion Development Tools
Compile and Debug
Microsemi's SoftConsole is a free Eclipse-based IDE that enables the rapid production of C and C++
executables for Microsemi FPGA and cSoCs using Cortex-M3, Cortex-M1 and Core8051s. For
SmartFusion support, SoftConsole includes the GNU C/C++ compiler and GDB debugger. Additional
examples can be found on the SoftConsole page:

• Using UART with SmartFusion: SoftConsole Standalone Flow Tutorial

– Design Files

• Displaying POT Level with LEDs: Libero SoC and SoftConsole Flow Tutorial for SmartFusion

– Design Files

IAR Embedded Workbench® for ARM/Cortex is an integrated development environment for building and
debugging embedded ARM applications using assembler, C and C++. It includes a project manager,
editor, build and debugger tools with support for RTOS-aware debugging on hardware or in a simulator.

• Designing SmartFusion cSoC with IAR Systems

• IAR Embedded Workbench IDE User Guide for ARM

• Download Evaluation or Kickstart version of IAR Embedded Workbench for ARM

Keil's Microcontroller Development Kit comes in two editions: MDK-ARM and MDK Basic. Both editions
feature µVision®, the ARM Compiler, MicroLib, and RTX, but the MDK Basic edition is limited to 256K so
that small applications are more affordable.

• Designing SmartFusion cSoC with Keil

• Using Keil µVision and Microsemi SmartFusion cSoC

–  Programming file for use with this tutorial

• Keil Microcontroller Development Kit for ARM Product Manuals

• Download Evaluation version of Keil MDK-ARM

Operating Systems 
FreeRTOS™ is a portable, open source, royalty free, mini real-time kernel (a free-to-download and free-
to-deploy RTOS that can be used in commercial applications without any requirement to expose your
proprietary source code). FreeRTOS is scalable and designed specifically for small embedded systems.
This FreeRTOS version ported by Microsemi is 6.0.1. For more information, visit the FreeRTOS website:
www.freertos.org

• SmartFusion Webserver Demo Using uIP and FreeRTOS

• SmartFusion cSoC: Running Webserver, TFTP on IwIP TCP/IP Stack Application Note

Software IDE SoftConsole Vision IDE Embedded Workbench

Website www.microsemi.com/soc www.keil.com www.iar.com

Free versions from SoC 
Products Group

Free with Libero SoC 32 K code limited 32 K code limited

Available from Vendor N/A Full version Full version 

Compiler GNU GCC RealView C/C++ IAR ARM Compiler

Debugger GDB debug Vision Debugger C-SPY Debugger

Instruction Set Simulator No Vision Simulator Yes

Debug Hardware FlashPro4 ULINK2 or ULINK-ME J-LINK or J-LINK Lite
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SmartFusion Customizable System-on-Chip (cSoC)
NCAP 1 Negative capacitor connection.

This is the negative terminal of the charge pump. A capacitor, with a
2.2 µF recommended value, is required to connect between PCAP and
NCAP. Analog charge pump capacitors are not needed if none of the
analog SCB features are used and none of the SDDs are used. In that
case it should be left unconnected.

PCAP 1 Positive Capacitor connection.

This is the positive terminal of the charge pump. A capacitor, with a 2.2
µF recommended value, is required to connect between PCAP and
NCAP. If this pin is not used, it must be left unconnected/floating. In this
case, no capacitor is needed. Analog charge pump capacitors are not
needed if none of the analog SCB features are used, and none of the
SDDs are used.

PTBASE 1 Pass transistor base connection

This is the control signal of the voltage regulator. This pin should be
connected to the base of an external pass transistor used with the
1.5 V internal voltage regulator and can be floating if not used.

PTEM 1 Pass transistor emitter connection.

This is the feedback input of the voltage regulator.

This pin should be connected to the emitter of an external pass
transistor used with the 1.5 V internal voltage regulator and can be
floating if not used.

MSS_RESET_N Low Low Reset signal which can be used as an external reset and can also
be used as a system level reset under control of the Cortex-M3
processor. MSS_RESET_N is an output asserted low after power-on
reset. The direction of MSS_RESET_N changes during the execution
of the Microsemi System Boot when chip-level reset is enabled. The
Microsemi System Boot reconfigures MSS_RESET_N to become a
reset input signal when chip-level reset is enabled. It has an internal
pull-up so it can be left floating. In the current software, the
MSS_RESET_N is modeled as an external input signal only.

PU_N In Low Push-button is the connection for the external momentary switch used
to turn on the 1.5 V voltage regulator and can be floating if not used.

Name Type Polarity/Bus Size Description
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Pin Descriptions
H19 VCCFPGAIOB1 VCCFPGAIOB1 VCCFPGAIOB1

H21 NC GDB2/IO33PDB1V0 GDB2/IO42PDB1V0

J1 EMC_DB[4]/IO38NPB5V0 EMC_DB[4]/GEA0/IO61NPB5V0 EMC_DB[4]/GEA0/IO78NPB5V0

J3 EMC_DB[8]/IO40NPB5V0 EMC_DB[8]/GEC0/IO63NPB5V0 EMC_DB[8]/GEC0/IO80NPB5V0

J5 EMC_DB[1]/IO36PDB5V0 EMC_DB[1]/GEB2/IO59PDB5V0 EMC_DB[1]/GEB2/IO76PDB5V0

J6 EMC_DB[6]/IO39NDB5V0 EMC_DB[6]/GEB0/IO62NDB5V0 EMC_DB[6]/GEB0/IO79NDB5V0

J7 VCCFPGAIOB5 VCCFPGAIOB5 VCCFPGAIOB5

J8 VCC VCC VCC

J9 GND GND GND

J10 VCC VCC VCC

J11 GND GND GND

J12 VCC VCC VCC

J13 GND GND GND

J14 VCC VCC VCC

J15 VPP VPP VPP

J16 NC IO32NPB1V0 IO41NPB1V0

J17 NC GNDQ GNDQ

J19 VCCMAINXTAL VCCMAINXTAL VCCMAINXTAL

J21 NC GDA2/IO33NDB1V0 GDA2/IO42NDB1V0

K1 GND GND GND

K3 EMC_DB[5]/IO38PPB5V0 EMC_DB[5]/GEA1/IO61PPB5V0 EMC_DB[5]/GEA1/IO78PPB5V0

K5 EMC_DB[0]/IO36NDB5V0 EMC_DB[0]/GEA2/IO59NDB5V0 EMC_DB[0]/GEA2/IO76NDB5V0

K6 EMC_DB[3]/IO37PPB5V0 EMC_DB[3]/GEC2/IO60PPB5V0 EMC_DB[3]/GEC2/IO77PPB5V0

K8 GND GND GND

K9 VCC VCC VCC

K10 GND GND GND

K11 VCC VCC VCC

K12 GND GND GND

K13 VCC VCC VCC

K14 GND GND GND

K16 LPXOUT LPXOUT LPXOUT

Pin 
No.

CS288

A2F060 Function A2F200 Function A2F500 Function

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank
assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a
glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to
the ’Glitchless MUX’ section in the SmartFusion Microcontroller Subsystem User’s Guide for more details.
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SmartFusion Customizable System-on-Chip (cSoC)
Pin Number

PQ208

A2F200 A2F500

1 VCCPLL VCCPLL0

2 VCOMPLA VCOMPLA0

3 GNDQ GNDQ

4 EMC_DB[15]/GAA2/IO71PDB5V0 GAA2/IO88PDB5V0

5 EMC_DB[14]/GAB2/IO71NDB5V0 GAB2/IO88NDB5V0

6 EMC_DB[13]/GAC2/IO70PDB5V0 GAC2/IO87PDB5V0

7 EMC_DB[12]/IO70NDB5V0 IO87NDB5V0

8 VCC VCC

9 GND GND

10 VCCFPGAIOB5 VCCFPGAIOB5

11 EMC_DB[11]/IO69PDB5V0 IO86PDB5V0

12 EMC_DB[10]/IO69NDB5V0 IO86NDB5V0

13 GFA2/IO68PSB5V0 GFA2/IO85PSB5V0

14 GFA1/IO64PDB5V0 GFA1/IO81PDB5V0

15 GFA0/IO64NDB5V0 GFA0/IO81NDB5V0

16 EMC_DB[9]/GEC1/IO63PDB5V0 GEC1/IO80PDB5V0

17 EMC_DB[8]/GEC0/IO63NDB5V0 GEC0/IO80NDB5V0

18 EMC_DB[7]/GEB1/IO62PDB5V0 GEB1/IO79PDB5V0

19 EMC_DB[6]/GEB0/IO62NDB5V0 GEB0/IO79NDB5V0

20 EMC_DB[5]/GEA1/IO61PDB5V0 GEA1/IO78PDB5V0

21 EMC_DB[4]/GEA0/IO61NDB5V0 GEA0/IO78NDB5V0

22 VCC VCC

23 GND GND

24 VCCFPGAIOB5 VCCFPGAIOB5

25 EMC_DB[3]/GEC2/IO60PDB5V0 GEC2/IO77PDB5V0

26 EMC_DB[2]/IO60NDB5V0 IO77NDB5V0

27 EMC_DB[1]/GEB2/IO59PDB5V0 GEB2/IO76PDB5V0

28 EMC_DB[0]/GEA2/IO59NDB5V0 GEA2/IO76NDB5V0

29 VCC VCC

30 GND GND

31 GNDRCOSC GNDRCOSC

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank
assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a
glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer
to the ’Glitchless MUX’ section in the SmartFusion Microcontroller Subsystem User’s Guide for more details.
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Pin Descriptions
156 GNDQ GNDQ

157 GNDQ GNDQ

158 VCCFPGAIOB0 VCCFPGAIOB0

159 GBA1/IO19PDB0V0 GBA1/IO23PDB0V0

160 GBA0/IO19NDB0V0 GBA0/IO23NDB0V0

161 VCCFPGAIOB0 VCCFPGAIOB0

162 GND GND

163 VCC VCC

164 EMC_AB[25]/IO16PDB0V0 IO21PDB0V0

165 EMC_AB[24]/IO16NDB0V0 IO21NDB0V0

166 EMC_AB[23]/IO15PDB0V0 IO20PDB0V0

167 EMC_AB[22]/IO15NDB0V0 IO20NDB0V0

168 EMC_AB[21]/IO14PDB0V0 IO19PDB0V0

169 EMC_AB[20]/IO14NDB0V0 IO19NDB0V0

170 EMC_AB[19]/IO13PDB0V0 IO18PDB0V0

171 EMC_AB[18]/IO13NDB0V0 IO18NDB0V0

172 EMC_AB[17]/IO12PDB0V0 IO17PDB0V0

173 EMC_AB[16]/IO12NDB0V0 IO17NDB0V0

174 VCCFPGAIOB0 VCCFPGAIOB0

175 GND GND

176 VCC VCC

177 EMC_AB[15]/IO11PDB0V0 IO14PDB0V0

178 EMC_AB[14]/IO11NDB0V0 IO14NDB0V0

179 EMC_AB[13]/IO10PDB0V0 IO13PDB0V0

180 EMC_AB[12]/IO10NDB0V0 IO13NDB0V0

181 EMC_AB[11]/IO09PDB0V0 IO12PDB0V0

182 EMC_AB[10]/IO09NDB0V0 IO12NDB0V0

183 EMC_AB[9]/IO08PDB0V0 IO11PDB0V0

184 EMC_AB[8]/IO08NDB0V0 IO11NDB0V0

185 EMC_AB[7]/IO07PDB0V0 IO10PDB0V0

186 EMC_AB[6]/IO07NDB0V0 IO10NDB0V0

Pin Number

PQ208

A2F200 A2F500

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank
assignment can be different for an I/O, or the function might be available only on a larger density device.

2. *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a
glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer
to the ’Glitchless MUX’ section in the SmartFusion Microcontroller Subsystem User’s Guide for more details.
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