

Welcome to E-XFL.COM

#### Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

**Embedded - System On Chip (SoC)** refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

#### What are Embedded - System On Chip (SoC)?

**System On Chip (SoC)** integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

#### Details

E·XFI

| Product Status          | Obsolete                                                        |
|-------------------------|-----------------------------------------------------------------|
| Architecture            | MCU, FPGA                                                       |
| Core Processor          | ARM® Cortex®-M3                                                 |
| Flash Size              | 128KB                                                           |
| RAM Size                | 16KB                                                            |
| Peripherals             | DMA, POR, WDT                                                   |
| Connectivity            | EBI/EMI, I <sup>2</sup> C, SPI, UART/USART                      |
| Speed                   | 100MHz                                                          |
| Primary Attributes      | ProASIC®3 FPGA, 60K Gates, 1536D-Flip-Flops                     |
| Operating Temperature   | 0°C ~ 85°C (TJ)                                                 |
| Package / Case          | 144-LQFP                                                        |
| Supplier Device Package | 144-TQFP (20x20)                                                |
| Purchase URL            | https://www.e-xfl.com/product-detail/microsemi/a2f060m3e-1tq144 |
|                         |                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1 – SmartFusion Family Overview

## Introduction

The SmartFusion<sup>®</sup> family of cSoCs builds on the technology first introduced with the Fusion mixed signal FPGAs. SmartFusion cSoCs are made possible by integrating FPGA technology with programmable high-performance analog and hardened ARM Cortex-M3 microcontroller blocks on a flash semiconductor process. The SmartFusion cSoC takes its name from the fact that these three discrete technologies are integrated on a single chip, enabling the lowest cost of ownership and smallest footprint solution to you.

# **General Description**

### Microcontroller Subsystem (MSS)

The MSS is composed of a 100 MHz Cortex-M3 processor and integrated peripherals, which are interconnected via a multi-layer AHB bus matrix (ABM). This matrix allows the Cortex-M3 processor, FPGA fabric master, Ethernet media access controller (MAC), when available, and peripheral DMA (PDMA) controller to act as masters to the integrated peripherals, FPGA fabric, embedded nonvolatile memory (eNVM), embedded synchronous RAM (eSRAM), external memory controller (EMC), and analog compute engine (ACE) blocks.

SmartFusion cSoCs of different densities offer various sets of integrated peripherals. Available peripherals include SPI, I<sup>2</sup>C, and UART serial ports, embedded FlashROM (EFROM), 10/100 Ethernet MAC, timers, phase-locked loops (PLLs), oscillators, real-time counters (RTC), and peripheral DMA controller (PDMA).

### **Programmable Analog**

### Analog Front-End (AFE)

SmartFusion cSoCs offer an enhanced analog front-end compared to Fusion devices. The successive approximation register analog-to-digital converters (SAR ADC) are similar to those found on Fusion devices. SmartFusion cSoC also adds first order sigma-delta digital-to-analog converters (SDD DAC).

SmartFusion cSoCs can handle multiple analog signals simultaneously with its signal conditioning blocks (SCBs). SCBs are made of a combination of active bipolar prescalers (ABPS), comparators, current monitors and temperature monitors. ABPS modules allow larger bipolar voltages to be fed to the ADC. Current monitors take the voltage across an external sense resistor and convert it to a voltage suitable for the ADC input range. Similarly, the temperature monitor reads the current through an external PN-junction (diode or transistor) and converts it internally for the ADC. The SCB also includes comparators to monitor fast signal thresholds without using the ADC. The output of the comparators can be fed to the analog compute engine or the ADC.

### Analog Compute Engine (ACE)

The mixed signal blocks found in SmartFusion cSoCs are controlled and connected to the rest of the system via a dedicated processor called the analog compute engine (ACE). The role of the ACE is to offload control of the analog blocks from the Cortex-M3, thus offering faster throughput or better power consumption compared to a system where the main processor is in charge of monitoring the analog resources. The ACE is built to handle sampling, sequencing, and post-processing of the ADCs, DACs, and SCBs.

This enables reduction or complete removal of expensive voltage monitor and brownout detection devices from the PCB design. Flash-based SmartFusion cSoCs simplify total system design and reduce cost and design risk, while increasing system reliability.

### Immunity to Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O configuration behavior in an unpredictable way.

Another source of radiation-induced firm errors is alpha particles. For alpha radiation to cause a soft or firm error, its source must be in very close proximity to the affected circuit. The alpha source must be in the package molding compound or in the die itself. While low-alpha molding compounds are being used increasingly, this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not occur in SmartFusion cSoCs. Once it is programmed, the flash cell configuration element of SmartFusion cSoCs cannot be altered by high energy neutrons and is therefore immune to errors from them. Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

### Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.

The I/Os are controlled by the JTAG Boundary Scan register during programming, except for the analog pins (AC, AT and AV). The Boundary Scan register of the AG pin can be used to enable/disable the gate driver in software v9.0.

- 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
- 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
- 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
- 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-1 on page 1-4).
- Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 - I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated



SmartFusion DC and Switching Characteristics

### Microcontroller Subsystem Dynamic Contribution—P<sub>MSS</sub>

#### SoC Mode

 $P_{MSS} = P_{AC22}$ 

### Guidelines

### Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
  - Bit 0 (LSB) = 100%
  - Bit 1 = 50%
  - Bit 2 = 25%
  - ...
  - Bit 7 (MSB) = 0.78125%
  - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.

#### Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When non-tristate output buffers are used, the enable rate should be 100%.

| Table 2-17 • Toggle Rate Guidelines R | Recommended for Power Calculation |
|---------------------------------------|-----------------------------------|
|---------------------------------------|-----------------------------------|

| Component      | Definition                       | Guideline |
|----------------|----------------------------------|-----------|
| α <sub>1</sub> | Toggle rate of VersaTile outputs | 10%       |
| α <sub>2</sub> | I/O buffer toggle rate           | 10%       |

#### Table 2-18 • Enable Rate Guidelines Recommended for Power Calculation

| Component      | Definition                                        | Guideline                                          |
|----------------|---------------------------------------------------|----------------------------------------------------|
| β <sub>1</sub> | I/O output buffer enable rate                     | Toggle rate of the logic driving the output buffer |
| β <sub>2</sub> | FPGA fabric SRAM enable rate for read operations  | 12.5%                                              |
| β <sub>3</sub> | FPGA fabric SRAM enable rate for write operations | 12.5%                                              |
| β <sub>4</sub> | eNVM enable rate for read operations              | < 5%                                               |

### Table 2-24 • Summary of I/O Timing Characteristics—Software Default Settings

-1 Speed Grade, Worst Commercial-Case Conditions:  $T_J = 85^{\circ}C$ , Worst Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx (per standard)

| Applicable to FPGA I/O Banks, Assigned to EMC I/O Pins |
|--------------------------------------------------------|
|--------------------------------------------------------|

| I/O Standard                  | Drive Strength    | Slew Rate | Capacitive Load (pF) | External Resistor ( $\Omega$ ) | t <sub>bout</sub> (ns) | t <sub>DP</sub> (ns) | t <sub>DIN</sub> (ns) | t <sub>PY</sub> (ns) | t <sub>EOUT</sub> (ns) | t <sub>ZL</sub> (ns) | t <sub>ZH</sub> (ns) | t <sub>LZ</sub> (ns) | t <sub>HZ</sub> (ns) | t <sub>ZLS</sub> (ns) | t <sub>ZHS</sub> (ns) | Units |
|-------------------------------|-------------------|-----------|----------------------|--------------------------------|------------------------|----------------------|-----------------------|----------------------|------------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-------|
| 3.3 V LVTTL /<br>3.3 V LVCMOS | 12 mA             | High      | 35                   | -                              | 0.50                   | 2.81                 | 0.03                  | 0.81                 | 0.32                   | 2.86                 | 2.23                 | 2.55                 | 2.82                 | 4.58                  | 3.94                  | ns    |
| 2.5 V LVCMOS                  | 12 mA             | High      | 35                   | -                              | 0.50                   | 2.73                 | 0.03                  | 1.03                 | 0.32                   | 2.88                 | 2.69                 | 2.62                 | 2.70                 | 4.60                  | 4.41                  | ns    |
| 1.8 V LVCMOS                  | 12 mA             | High      | 35                   | -                              | 0.50                   | 2.81                 | 0.03                  | 0.95                 | 0.32                   | 2.87                 | 2.38                 | 2.92                 | 3.18                 | 4.58                  | 4.10                  | ns    |
| 1.5 V LVCMOS                  | 12 mA             | High      | 35                   | _                              | 0.50                   | 3.24                 | 0.03                  | 1.12                 | 0.32                   | 3.30                 | 2.79                 | 3.10                 | 3.27                 | 5.02                  | 4.50                  | ns    |
| 3.3 V PCI                     | Per PCI spec      | High      | 10                   | 25 <sup>1</sup>                | 0.50                   | 2.11                 | 0.03                  | 0.68                 | 0.32                   | 2.15                 | 1.57                 | 2.55                 | 2.82                 | 3.87                  | 3.28                  | ns    |
| 3.3 V PCI-X                   | Per PCI-X<br>spec | High      | 10                   | 25 <sup>1</sup>                | 0.50                   | 2.11                 | 0.03                  | 0.64                 | 0.32                   | 2.15                 | 1.57                 | 2.55                 | 2.82                 | 3.87                  | 3.28                  | ns    |
| LVDS                          | 24 mA             | High      | -                    | _                              | 0.50                   | 1.53                 | 0.03                  | 1.55                 | _                      | -                    | -                    | _                    | -                    | _                     | -                     | ns    |
| LVPECL                        | 24 mA             | High      | -                    | -                              | 0.50                   | 1.46                 | 0.03                  | 1.46                 | _                      | _                    | _                    | -                    | _                    | -                     | -                     | ns    |

Notes:

1. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-10 on page 2-39 for connectivity. This resistor is not required during normal operation.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

#### Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings

-1 Speed Grade, Worst Commercial-Case Conditions: T<sub>J</sub> = 85°C, Worst Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx (per standard)

| I/O Standard                  | Drive Strength | Slew Rate | Capacitive Load (pF) | External Resistor | t <sub>bouт</sub> (ns) | t <sub>DP</sub> (ns) | t <sub>DIN</sub> (ns) | t <sub>pY</sub> (ns) | t <sub>pYS</sub> (ns) | t <sub>EOUT</sub> (ns) | t <sub>zL</sub> (ns) | t <sub>zH</sub> (ns) | t <sub>LZ</sub> (ns) | t <sub>HZ</sub> (ns) | Units |
|-------------------------------|----------------|-----------|----------------------|-------------------|------------------------|----------------------|-----------------------|----------------------|-----------------------|------------------------|----------------------|----------------------|----------------------|----------------------|-------|
| 3.3 V LVTTL /<br>3.3 V LVCMOS | 8 mA           | High      | 10                   | -                 | 0.18                   | 1.92                 | 0.07                  | 0.78                 | 1.09                  | 0.18                   | 1.96                 | 1.55                 | 1.83                 | 2.04                 | ns    |
| 2.5 V LVCMOS                  | 8 mA           | High      | 10                   | -                 | 0.18                   | 1.96                 | 0.07                  | 0.99                 | 1.16                  | 0.18                   | 2.00                 | 1.82                 | 1.82                 | 1.93                 | ns    |
| 1.8 V LVCMOS                  | 4 mA           | High      | 10                   | _                 | 0.18                   | 2.31                 | 0.07                  | 0.91                 | 1.37                  | 0.18                   | 2.35                 | 2.27                 | 1.84                 | 1.87                 | ns    |
| 1.5 V LVCMOS                  | 2 mA           | High      | 10                   | -                 | 0.18                   | 2.70                 | 0.07                  | 1.07                 | 1.55                  | 0.18                   | 2.75                 | 2.67                 | 1.87                 | 1.85                 | ns    |

Notes:

1. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-10 on page 2-39 for connectivity. This resistor is not required during normal operation.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

### Table 2-82 • A2F060 Global Resource Worst Commercial-Case Conditions: T<sub>J</sub> = 85°C, VCC = 1.425 V

|                      |                                           | -                 | ·1                | S                 |                   |       |
|----------------------|-------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------|
| Parameter            | Description                               | Min. <sup>1</sup> | Max. <sup>2</sup> | Min. <sup>1</sup> | Max. <sup>2</sup> | Units |
| t <sub>RCKL</sub>    | Input Low Delay for Global Clock          | 0.75              | 0.96              | 0.90              | 1.15              | ns    |
| t <sub>RCKH</sub>    | Input High Delay for Global Clock         | 0.72              | 0.98              | 0.86              | 1.17              | ns    |
| t <sub>RCKMPWH</sub> | Minimum Pulse Width High for Global Clock | 0.85              |                   | 1.00              |                   | ns    |
| t <sub>RCKMPWL</sub> | Minimum Pulse Width Low for Global Clock  | 0.85              |                   | 1.00              |                   | ns    |
| t <sub>RCKSW</sub>   | Maximum Skew for Global Clock             |                   | 0.26              |                   | 0.31              | ns    |

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage-supply levels, refer to Table 2-7 on page 2-9 for derating values.

# **RC Oscillator**

The table below describes the electrical characteristics of the RC oscillator.

### **RC Oscillator Characteristics**

### Table 2-83 • Electrical Characteristics of the RC Oscillator

| Parameter | Description            | Condition                                                                                          | Min. | Тур. | Max. | Units  |
|-----------|------------------------|----------------------------------------------------------------------------------------------------|------|------|------|--------|
| FRC       | Operating<br>frequency |                                                                                                    |      | 100  |      | MHz    |
|           | Accuracy               | Temperature: –40°C to 100°C<br>Voltage: 3.3 V ± 5%                                                 |      | 1    |      | %      |
|           | Output jitter          | Period jitter (at 5 K cycles)                                                                      |      | 100  |      | ps RMS |
|           |                        | Cycle-to-cycle jitter (at 5 K cycles)                                                              |      | 100  |      | ps RMS |
|           |                        | Period jitter (at 5 K cycles) with 1 KHz / 300<br>mV peak-to-peak noise on power supply            |      | 150  |      | ps RMS |
|           |                        | Cycle-to-cycle jitter (at 5 K cycles) with 1 KHz<br>/ 300 mV peak-to-peak noise on power<br>supply |      | 150  |      | ps RMS |
|           | Output duty cycle      |                                                                                                    |      | 50   |      | %      |
| IDYNRC    | Operating current      | 3.3 V domain                                                                                       |      | 1    |      | mA     |
|           |                        | 1.5 V domain                                                                                       |      | 2    |      | mA     |



SmartFusion DC and Switching Characteristics



*Note:* Peak-to-peak jitter measurements are defined by  $T_{peak-to-peak} = T_{period_max} - T_{period_min}$ . *Figure 2-28* • Peak-to-Peak Jitter Definition

# Embedded Nonvolatile Memory Block (eNVM)

### **Electrical Characteristics**

Table 2-90 describes the eNVM maximum performance.

### *Table 2-90* • eNVM Block Timing, Worst Commercial Case Conditions: T<sub>J</sub> = 85°C, VCC = 1.425 V

|                          |                                                                         | A2F | A2F060 |     | A2F200 |     | A2F500 |       |
|--------------------------|-------------------------------------------------------------------------|-----|--------|-----|--------|-----|--------|-------|
| Parameter                | Description                                                             | -1  | Std.   | -1  | Std.   | -1  | Std.   | Units |
| t <sub>FMAXCLKeNVM</sub> | Maximum frequency for clock for the control logic – 5 cycles (5:1:1:1*) | 50  | 50     | 50  | 50     | 50  | 50     | MHz   |
| t <sub>FMAXCLKeNVM</sub> | Maximum frequency for clock for the control logic – 6 cycles (6:1:1:1*) | 100 | 80     | 100 | 80     | 100 | 80     | MHz   |

*Note:* \*6:1:1:1 indicates 6 cycles for the first access and 1 each for the next three accesses. 5:1:1:1 indicates 5 cycles for the first access and 1 each for the next three accesses.

Note: \*Moving from 5:1:1:1 mode to 6:1:1:1 mode results in throughput change that is dependent on the system functionality. When the Cortex-M3 code is executed from eNVM - with sequential firmware (sequential address reads), the throughput reduction can be around 10%.

# **Embedded FlashROM (eFROM)**

### **Electrical Characteristics**

Table 2-91 describes the eFROM maximum performance

| Table 2-91 • FlashROM Access Time, Worse Commercial Case Conditions: T <sub>1</sub> = 85°C, VCC = 1.42 | Time, Worse Commercial Case Conditions: T <sub>1</sub> = 85°C, VC | C = 1.425 V |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------|
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------|

| Parameter         | Description                     | -1    | Std.  | Units |
|-------------------|---------------------------------|-------|-------|-------|
| t <sub>CK2Q</sub> | Clock to out per configuration* | 28.68 | 32.98 | ns    |
| F <sub>max</sub>  | Maximum Clock frequency         | 15.00 | 15.00 | MHz   |

## **JTAG 1532 Characteristics**

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-19 for more details.

### **Timing Characteristics**

### Table 2-92 • JTAG 1532

Worst Commercial-Case Conditions: T<sub>J</sub> = 85°C, Worst-Case VCC = 1.425 V

| Parameter          | Description                 | -1   | Std. | Units |
|--------------------|-----------------------------|------|------|-------|
| t <sub>DISU</sub>  | Test Data Input Setup Time  | 0.67 | 0.77 | ns    |
| t <sub>DIHD</sub>  | Test Data Input Hold Time   | 1.33 | 1.53 | ns    |
| t <sub>TMSSU</sub> | Test Mode Select Setup Time | 0.67 | 0.77 | ns    |
| t <sub>TMDHD</sub> | Test Mode Select Hold Time  | 1.33 | 1.53 | ns    |
| t <sub>TCK2Q</sub> | Clock to Q (data out)       | 8.00 | 9.20 | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

| Parameter            | Description           | -1    | Std.  | Units |  |  |
|----------------------|-----------------------|-------|-------|-------|--|--|
| t <sub>RSTB2Q</sub>  | Reset to Q (data out) | 26.67 | 30.67 | ns    |  |  |
| F <sub>TCKMAX</sub>  | TCK Maximum Frequency | 19.00 | 21.85 | MHz   |  |  |
| t <sub>TRSTREM</sub> | ResetB Removal Time   | 0.00  | 0.00  | ns    |  |  |
| t <sub>TRSTREC</sub> | ResetB Recovery Time  | 0.27  | 0.31  | ns    |  |  |
| t <sub>TRSTMPW</sub> | ResetB Minimum Pulse  | TBD   | TBD   | ns    |  |  |

### Table 2-92 • JTAG 1532 Worst Commercial-Case Conditions: T<sub>J</sub> = 85°C, Worst-Case VCC = 1.425 V

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

### **Temperature Monitor**

Unless otherwise noted, temperature monitor performance is specified with a 2N3904 diode-connected bipolar transistor from National Semiconductor or Infineon Technologies, nominal power supply voltages, with the output measured using the internal voltage reference with the internal ADC in 12-bit mode and 62.5 Ksps. After digital compensation. Unless otherwise noted, the specifications pertain to conditions where the SmartFusion cSoC and the sensing diode are at the same temperature.

| Table 2-94 • Temperature Monitor | Performance Specifications |
|----------------------------------|----------------------------|
|----------------------------------|----------------------------|

| Specification                                                  | Test Conditions                                                                                         | Min.  | Typical | Max.   | Units  |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------|---------|--------|--------|
| Input diode temperature range                                  |                                                                                                         | -55   |         | 150    | °C     |
|                                                                |                                                                                                         | 233.2 |         | 378.15 | K      |
| Temperature sensitivity                                        |                                                                                                         |       | 2.5     |        | mV/K   |
| Intercept                                                      | Extrapolated to 0K                                                                                      |       | 0       |        | V      |
| Input referred temperature offset error                        | At 25°C (298.15K)                                                                                       |       | ±1      | 1.5    | °C     |
| Gain error                                                     | Slope of BFSL vs. 2.5 mV/K                                                                              |       | ±1      | 2.5    | % nom. |
| Overall accuracy                                               | Peak error from ideal transfer function                                                                 |       | ±2      | ±3     | °C     |
| Input referred noise                                           | At 25°C (298.15K) – no output averaging                                                                 |       | 4       |        | °C rms |
| Output current                                                 | Idle mode                                                                                               |       | 100     |        | μA     |
|                                                                | Final measurement phases                                                                                |       | 10      |        | μA     |
| Analog settling time                                           | Measured to 0.1% of final value, (with ADC load)                                                        |       |         |        |        |
|                                                                | From TM_STB (High)                                                                                      | 5     |         |        | μs     |
|                                                                | From ADC_START (High)                                                                                   | 5     |         | 105    | μs     |
| AT parasitic capacitance                                       |                                                                                                         |       |         | 500    | pF     |
| Power supply rejection ratio                                   | DC (0–10 KHz)                                                                                           | 1.2   | 0.7     |        | °C/V   |
| Input referred temperature sensitivity error                   | Variation due to device temperature<br>(-40°C to +100°C). External temperature<br>sensor held constant. |       | 0.005   | 0.008  | °C/°C  |
| Temperature monitor (TM)                                       | VCC33A                                                                                                  |       | 200     |        | μA     |
| operational power supply current requirements (per temperature | VCC33AP                                                                                                 |       | 150     |        | μA     |
| monitor instance, not including ADC or VAREFx)                 | VCC15A                                                                                                  |       | 50      |        | μA     |

Note: All results are based on averaging over 64 samples.

# static Microsemi.

SmartFusion DC and Switching Characteristics

### Table 2-100 • SPI Characteristics

### Commercial Case Conditions: T<sub>J</sub> = 85°C, VDD = 1.425 V, -1 Speed Grade (continued)

| Symbol | Description and Condition                           | A2F060 | A2F200 | A2F500 | Unit        |
|--------|-----------------------------------------------------|--------|--------|--------|-------------|
| sp6    | Data from master (SPI_x_DO) setup time <sup>2</sup> | 1      | 1      | 1      | pclk cycles |
| sp7    | Data from master (SPI_x_DO) hold time <sup>2</sup>  | 1      | 1      | 1      | pclk cycles |
| sp8    | SPI_x_DI setup time <sup>2</sup>                    | 1      | 1      | 1      | pclk cycles |
| sp9    | SPI_x_DI hold time <sup>2</sup>                     | 1      | 1      | 1      | pclk cycles |

Notes:

1. These values are provided for a load of 35 pF. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/index.php?option=com\_microsemi&Itemid=489&Iang=en&view=salescontact.

 For allowable pclk configurations, refer to the Serial Peripheral Interface Controller section in the SmartFusion Microcontroller Subsystem User's Guide.





# Inter-Integrated Circuit (I<sup>2</sup>C) Characteristics

This section describes the DC and switching of the  $I^2C$  interface. Unless otherwise noted, all output characteristics given are for a 100 pF load on the pins. For timing parameter definitions, refer to Figure 2-48 on page 2-92.

| Parameter              | Definition                                                  | Condition                                    | Value                       | Unit        |
|------------------------|-------------------------------------------------------------|----------------------------------------------|-----------------------------|-------------|
|                        |                                                             |                                              |                             | Onic        |
| vIL                    | winimum input low voltage                                   | _                                            | page 2-30 of                | _           |
|                        | Maximum input low voltage                                   | _                                            | See Table 2-36              | -           |
| V <sub>IH</sub>        | Minimum input high voltage                                  | _                                            | See Table 2-36              | -           |
|                        | Maximum input high voltage                                  | _                                            | See Table 2-36              | -           |
| V <sub>OL</sub>        | Maximum output voltage low                                  | I <sub>OL</sub> = 8 mA                       | See Table 2-36              | -           |
| I <sub>IL</sub>        | Input current high                                          | _                                            | See Table 2-36              | -           |
| I <sub>IH</sub>        | Input current low                                           | _                                            | See Table 2-36              | -           |
| V <sub>hyst</sub>      | Hysteresis of Schmitt trigger inputs                        | _                                            | See Table 2-33 on page 2-29 | V           |
| T <sub>FALL</sub>      | Fall time <sup>2</sup>                                      | VIHmin to VILMax, C <sub>load</sub> = 400 pF | 15.0                        | ns          |
|                        |                                                             | VIHmin to VILMax, C <sub>load</sub> = 100 pF | 4.0                         | ns          |
| T <sub>RISE</sub>      | Rise time <sup>2</sup>                                      | VILMax to VIHmin, C <sub>load</sub> = 400pF  | 19.5                        | ns          |
|                        |                                                             | VILMax to VIHmin, C <sub>load</sub> = 100pF  | 5.2                         | ns          |
| Cin                    | Pin capacitance                                             | VIN = 0, f = 1.0 MHz                         | 8.0                         | pF          |
| R <sub>pull-up</sub>   | Output buffer maximum pull-<br>down Resistance <sup>1</sup> | _                                            | 50                          | Ω           |
| R <sub>pull-down</sub> | Output buffer maximum pull-up Resistance <sup>1</sup>       | _                                            | 150                         | Ω           |
| D <sub>max</sub>       | Maximum data rate                                           | Fast mode                                    | 400                         | Kbps        |
| t <sub>LOW</sub>       | Low period of I2C_x_SCL <sup>3</sup>                        | _                                            | 1                           | pclk cycles |
| t <sub>HIGH</sub>      | High period of I2C_x_SCL <sup>3</sup>                       | _                                            | 1                           | pclk cycles |
| t <sub>HD;STA</sub>    | START hold time <sup>3</sup>                                | _                                            | 1                           | pclk cycles |
| t <sub>SU;STA</sub>    | START setup time <sup>3</sup>                               | -                                            | 1                           | pclk cycles |
| t <sub>HD;DAT</sub>    | DATA hold time <sup>3</sup>                                 | _                                            | 1                           | pclk cycles |
| t <sub>SU;DAT</sub>    | DATA setup time <sup>3</sup>                                | _                                            | 1                           | pclk cycles |

### Table 2-101 • I<sup>2</sup>C Characteristics

### Commercial Case Conditions: T<sub>J</sub> = 85°C, V<sub>DD</sub> = 1.425 V, -1 Speed Grade

Notes:

1. These maximum values are provided for information only. Minimum output buffer resistance values depend on VCCxxxxIOBx, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the SoC Products Group website at http://www.microsemi.com/index.php?option=com\_microsemi&ltemid=489&lang=en&view=salescontact.

 These values are provided for a load of 100 pF and 400 pF. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the SoC Products Group website at http://www.microsemi.com/index.php?option=com\_microsemi&Itemid=489&Iang=en&view=salescontact.

3. For allowable Pclk configurations, refer to the Inter-Integrated Circuit (I<sup>2</sup>C) Peripherals section in the SmartFusion Microcontroller Subsystem User's Guide.



# **Global I/O Naming Conventions**

Gmn (Gxxx) refers to Global I/Os. These Global I/Os are used to connect the input to global networks. Global networks have high fanout and low skew. The naming convention for Global I/Os is as follows:

G = Global

m = Global pin location associated with each CCC on the device:

- A (northwest corner)
- B (northeast corner)
- C (east middle)
- D (southeast corner)
- E (southwest corner)
- F (west middle)

n = Global input MUX and pin number of the associated Global location m—A0, A1, A2, B0, B1, B2, C0, C1, or C2.

Global (GL) I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities.

Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the clocking resources chapter of the *SmartFusion FPGA Fabric User's Guide* and the clock conditioning circuitry chapter of the *SmartFusion Microcontroller Subsystem User's Guide*.

All inputs other than GC/GF are direct inputs into the quadrant clocks. The inputs to the global network are multiplexed, and only one input can be used as a global input. For example, if GAA0 is used as a quadrant global input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs other than GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. For more details, refer to the Global Input Selections section of the SmartFusion Fabric User Guide.

| Name   | Туре   | Polarity/B<br>us Size | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|--------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPIO_x | In/out | 32                    | Microcontroller Subsystem (MSS) General Purpose I/O (GPIO). The MSS GPIO pin<br>functions as an input, output, tristate, or bidirectional buffer with configurable interrupt<br>generation and Schmitt trigger support. Input and output signal levels are compatible<br>with the I/O standard selected.                                                                                                                                                                                                                      |
|        |        |                       | Unused GPIO pins are tristated and do not include pull-up or pull-down resistors.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |        |                       | During power-up, the used GPIO pins are tristated with no pull-up or pull-down resistors until Sys boot configures them.                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |        |                       | Some of these pins are also multiplexed with integrated peripherals in the MSS (SPI, I <sup>2</sup> C, and UART). These pins are located in Bank-2 (GPIO_16 to GPIO_31) for A2F060, A2F200, and A2F500 devices.                                                                                                                                                                                                                                                                                                               |
|        |        |                       | GPIOs can be routed to dedicated I/O buffers (MSSIOBUF) or in some cases to the FPGA fabric interface through an IOMUX. This allows GPIO pins to be multiplexed as either I/Os for the FPGA fabric, the ARM <sup>®</sup> Cortex-M3 or for given integrated MSS peripherals. The MSS peripherals are not multiplexed with each other; they are multiplexed only with the GPIO block. For more information, see the General Purpose I/O Block (GPIO) section in the <i>SmartFusion Microcontroller Subsystem User's Guide</i> . |
| IO     | In/out |                       | FPGA user I/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# **User Pins**



# **JTAG Pins**

SmartFusion cSoCs have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the SmartFusion cSoC part must be supplied to allow JTAG signals to transition the SmartFusion cSoC. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility with supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used, the VJTAG pin together with the TRSTB pin could be tied to GND.

| Name    | Туре | Polarity/<br>Bus Size | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JTAGSEL | In   | 1                     | JTAG controller selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |      |                       | Depending on the state of the JTAGSEL pin, an external JTAG controller will either see the FPGA fabric TAP/auxiliary TAP (High) or the Cortex-M3 JTAG debug interface (Low).                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |      |                       | The JTAGSEL pin should be connected to an external pull-up resistor such that the default configuration selects the FPGA fabric TAP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ТСК     | In   | 1                     | Test clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |      |                       | Serial input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, it is recommended to tie off TCK to GND or $V_{JTAG}$ through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.                                                                                                                                                                                                                                                                                                                                 |
|         |      |                       | Note that to operate at all V <sub>JTAG</sub> voltages, 500 $\Omega$ to 1 k $\Omega$ will satisfy the requirements.<br>Refer to Table 5-1 on page 5-11 for more information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |      |                       | Can be left floating when unused.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TDI     | In   | 1                     | Test data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |      |                       | Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TDO     | Out  | 1                     | Test data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |      |                       | Serial output for JTAG boundary scan, ISP, and UJTAG usage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TMS     | In   | HIGH                  | Test mode select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |      |                       | The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |      |                       | Can be left floating when unused.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TRSTB   | In   | HIGH                  | Boundary scan reset pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |      |                       | The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be chosen from Table 5-1 on page 5-11 and must satisfy the parallel resistance value requirement. The values in Table 5-1 on page 5-11 correspond to the resistor recommended when a single device is used. The values correspond to the equivalent parallel resistor when multiple devices are connected via a JTAG chain. |
|         |      |                       | In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such cases, it is recommended that you tie off TRST to GND through a resistor placed close to the FPGA pin.                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |      |                       | The TRSTB pin also resets the serial wire JTAG – debug port (SWJ-DP) circuitry within the Cortex-M3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |      |                       | Can be left floating when unused.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

**CS288** Pin A2F060 Function A2F200 Function A2E500 Eunction No. IO17NDB0V0 GBA2/IO20PDB1V0 GBA2/IO27PDB1V0 C21 EMC DB[14]/IO45NDB5V0 EMC DB[14]/GAB2/IO71NDB5V0 EMC DB[14]/GAB2/IO88NDB5V0 D1 D3 VCCFPGAIOB5 VCCFPGAIOB5 VCCFPGAIOB5 D19 GND GND GND VCCFPGAIOB1 D21 VCCFPGAIOB1 VCCFPGAIOB1 EMC DB[13]/GAC2/IO70PDB5V0 EMC DB[13]/GAC2/IO87PDB5V0 E1 EMC DB[13]/IO44PDB5V0 EMC DB[12]/IO44NDB5V0 EMC DB[12]/IO70NDB5V0 EMC DB[12]/IO87NDB5V0 E3 E5 GNDQ GNDQ GNDQ EMC BYTEN[0]/IO02NDB0V0 EMC BYTEN[0]/GAC0/IO02NDB0V0 EMC BYTEN[0]/GAC0/IO07NDB0V0 E6 EMC BYTEN[1]/IO02PDB0V0 EMC BYTEN[1]/GAC1/IO02PDB0V0 EMC BYTEN[1]/GAC1/IO07PDB0V0 E7 EMC OEN1 N/IO03PDB0V0 EMC OEN1 N/IO03PDB0V0 EMC OEN1 N/IO08PDB0V0 F8 EMC AB[3]/IO05PDB0V0 EMC AB[3]/IO05PDB0V0 EMC AB[3]/IO09PDB0V0 E9 E10 EMC AB[10]/IO09NDB0V0 EMC AB[10]/IO09NDB0V0 EMC AB[10]/IO11NDB0V0 EMC AB[7]/IO07PDB0V0 EMC AB[7]/IO07PDB0V0 EMC AB[7]/IO12PDB0V0 F11 E12 EMC AB[13]/IO10PDB0V0 EMC AB[13]/IO10PDB0V0 EMC AB[13]/IO14PDB0V0 E13 EMC AB[16]/IO12NDB0V0 EMC AB[16]/IO12NDB0V0 EMC AB[16]/IO17NDB0V0 E14 EMC AB[17]/IO12PDB0V0 EMC AB[17]/IO12PDB0V0 EMC AB[17]/IO17PDB0V0 E15 GCC0/IO18NPB0V0 GCB0/IO27NDB1V0 GCB0/IO34NDB1V0 E16 GCA1/IO20PPB0V0 GCB1/IO27PDB1V0 GCB1/IO34PDB1V0 E17 GCC1/IO18PPB0V0 GCB2/IO24PDB1V0 GCB2/IO33PDB1V0 GCA0/IO36NDB1V0 \* E19 GCB2/IO22PPB1V0 GCA0/IO28NDB1V0 E21 IO21NDB1V0 GCA1/IO28PDB1V0 GCA1/IO36PDB1V0 \* VCCFPGAIOB5 F1 VCCFPGAIOB5 VCCFPGAIOB5 F3 GFB2/IO42NDB5V0 GFB2/IO68NDB5V0 GFB2/IO85NDB5V0 F5 GFA2/IO42PDB5V0 GFA2/IO68PDB5V0 GFA2/IO85PDB5V0 F6 EMC DB[11]/IO43PDB5V0 EMC DB[11]/IO69PDB5V0 EMC DB[11]/IO86PDB5V0 F7 GND GND GND NC GFC1/IO66PPB5V0 GFC1/IO83PPB5V0 F8 F9 VCCFPGAIOB0 VCCFPGAIOB0 VCCFPGAIOB0 EMC AB[11]/IO09PDB0V0 F10 EMC AB[11]/IO09PDB0V0 EMC AB[11]/IO11PDB0V0 F11 EMC AB[6]/IO07NDB0V0 EMC AB[6]/IO07NDB0V0 EMC AB[6]/IO12NDB0V0

#### Notes:

🔨 🤄 Microsemi

Pin Descriptions

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

 \*: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF\_LVPECL/CLKBUF\_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

🌜 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

| Pin | CS288            |                  |                  |  |  |  |
|-----|------------------|------------------|------------------|--|--|--|
| No. | A2F060 Function  | A2F200 Function  | A2F500 Function  |  |  |  |
| W14 | ADC5             | CM2              | CM2              |  |  |  |
| W15 | NC               | ABPS5            | ABPS5            |  |  |  |
| W16 | GNDAQ            | GNDAQ            | GNDAQ            |  |  |  |
| W17 | NC               | VCC33SDD1        | VCC33SDD1        |  |  |  |
| W18 | NC               | GNDSDD1          | GNDSDD1          |  |  |  |
| W19 | PTBASE           | PTBASE           | PTBASE           |  |  |  |
| W21 | SPI_0_DI/GPIO_17 | SPI_0_DI/GPIO_17 | SPI_0_DI/GPIO_17 |  |  |  |
| Y1  | VCC33AP          | VCC33AP          | VCC33AP          |  |  |  |
| Y21 | SPI_0_DO/GPIO_16 | SPI_0_DO/GPIO_16 | SPI_0_DO/GPIO_16 |  |  |  |

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. \*: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF\_LVPECL/CLKBUF\_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

🌜 Microsemi.

SmartFusion Customizable System-on-Chip (cSoC)

|            | FG484                        |                              |  |
|------------|------------------------------|------------------------------|--|
| Pin Number | A2F200 Function              | A2F500 Function              |  |
| B3         | NC                           | NC                           |  |
| B4         | NC                           | NC                           |  |
| B5         | VCCFPGAIOB0                  | VCCFPGAIOB0                  |  |
| B6         | EMC_RW_N/GAA1/IO00PDB0V0     | EMC_RW_N/GAA1/IO02PDB0V0     |  |
| B7         | NC                           | IO04PPB0V0                   |  |
| B8         | VCCFPGAIOB0                  | VCCFPGAIOB0                  |  |
| B9         | EMC_BYTEN[0]/GAC0/IO02NDB0V0 | EMC_BYTEN[0]/GAC0/IO07NDB0V0 |  |
| B10        | EMC_AB[2]/IO05NDB0V0         | EMC_AB[2]/IO09NDB0V0         |  |
| B11        | EMC_AB[3]/IO05PDB0V0         | EMC_AB[3]/IO09PDB0V0         |  |
| B12        | EMC_AB[6]/IO07NDB0V0         | EMC_AB[6]/IO12NDB0V0         |  |
| B13        | EMC_AB[14]/IO11NDB0V0        | EMC_AB[14]/IO15NDB0V0        |  |
| B14        | EMC_AB[15]/IO11PDB0V0        | EMC_AB[15]/IO15PDB0V0        |  |
| B15        | VCCFPGAIOB0                  | VCCFPGAIOB0                  |  |
| B16        | EMC_AB[18]/IO13NDB0V0        | EMC_AB[18]/IO18NDB0V0        |  |
| B17        | EMC_AB[19]/IO13PDB0V0        | EMC_AB[19]/IO18PDB0V0        |  |
| B18        | VCCFPGAIOB0                  | VCCFPGAIOB0                  |  |
| B19        | GBB0/IO18NDB0V0              | GBB0/IO24NDB0V0              |  |
| B20        | GBB1/IO18PDB0V0              | GBB1/IO24PDB0V0              |  |
| B21        | GND                          | GND                          |  |
| B22        | GBA2/IO20PDB1V0              | GBA2/IO27PDB1V0              |  |
| C1         | EMC_DB[14]/GAB2/IO71NDB5V0   | EMC_DB[14]/GAB2/IO88NDB5V0   |  |
| C2         | NC                           | NC                           |  |
| C3         | NC                           | NC                           |  |
| C4         | NC                           | IO01NDB0V0                   |  |
| C5         | NC                           | IO01PDB0V0                   |  |
| C6         | EMC_CLK/GAA0/IO00NDB0V0      | EMC_CLK/GAA0/IO02NDB0V0      |  |
| C7         | NC                           | IO03PPB0V0                   |  |
| C8         | NC                           | IO04NPB0V0                   |  |
| C9         | EMC_BYTEN[1]/GAC1/IO02PDB0V0 | EMC_BYTEN[1]/GAC1/IO07PDB0V0 |  |
| C10        | EMC_OEN1_N/IO03PDB0V0        | EMC_OEN1_N/IO08PDB0V0        |  |
| C11        | GND                          | GND                          |  |
| C12        | VCCFPGAIOB0                  | VCCFPGAIOB0                  |  |
| C13        | EMC_AB[8]/IO08NDB0V0         | EMC_AB[8]/IO13NDB0V0         |  |
| C14        | EMC_AB[16]/IO12NDB0V0        | EMC_AB[16]/IO17NDB0V0        |  |

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

2. \*: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF\_LVPECL/CLKBUF\_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.



|            | FG484                      |                            |  |
|------------|----------------------------|----------------------------|--|
| Pin Number | A2F200 Function            | A2F500 Function            |  |
| C15        | EMC_AB[17]/IO12PDB0V0      | EMC_AB[17]/IO17PDB0V0      |  |
| C16        | EMC_AB[24]/IO16NDB0V0      | EMC_AB[24]/IO20NDB0V0      |  |
| C17        | EMC_AB[22]/IO15NDB0V0      | EMC_AB[22]/IO19NDB0V0      |  |
| C18        | EMC_AB[23]/IO15PDB0V0      | EMC_AB[23]/IO19PDB0V0      |  |
| C19        | GBA0/IO19NPB0V0            | GBA0/IO23NPB0V0            |  |
| C20        | NC                         | NC                         |  |
| C21        | GBC2/IO21PDB1V0            | GBC2/IO30PDB1V0            |  |
| C22        | GBB2/IO20NDB1V0            | GBB2/IO27NDB1V0            |  |
| D1         | GND                        | GND                        |  |
| D2         | EMC_DB[12]/IO70NDB5V0      | EMC_DB[12]/IO87NDB5V0      |  |
| D3         | EMC_DB[13]/GAC2/IO70PDB5V0 | EMC_DB[13]/GAC2/IO87PDB5V0 |  |
| D4         | NC                         | NC                         |  |
| D5         | NC                         | NC                         |  |
| D6         | GND                        | GND                        |  |
| D7         | NC                         | IO00NPB0V0                 |  |
| D8         | NC                         | IO03NPB0V0                 |  |
| D9         | GND                        | GND                        |  |
| D10        | EMC_OEN0_N/IO03NDB0V0      | EMC_OEN0_N/IO08NDB0V0      |  |
| D11        | EMC_AB[10]/IO09NDB0V0      | EMC_AB[10]/IO11NDB0V0      |  |
| D12        | EMC_AB[11]/IO09PDB0V0      | EMC_AB[11]/IO11PDB0V0      |  |
| D13        | EMC_AB[9]/IO08PDB0V0       | EMC_AB[9]/IO13PDB0V0       |  |
| D14        | GND                        | GND                        |  |
| D15        | GBC1/IO17PPB0V0            | GBC1/IO22PPB0V0            |  |
| D16        | EMC_AB[25]/IO16PDB0V0      | EMC_AB[25]/IO20PDB0V0      |  |
| D17        | GND                        | GND                        |  |
| D18        | GBA1/IO19PPB0V0            | GBA1/IO23PPB0V0            |  |
| D19        | NC                         | NC                         |  |
| D20        | NC                         | NC                         |  |
| D21        | IO21NDB1V0                 | IO30NDB1V0                 |  |
| D22        | GND                        | GND                        |  |
| E1         | GFC2/IO67PPB5V0            | GFC2/IO84PPB5V0            |  |
| E2         | VCCFPGAIOB5                | VCCFPGAIOB5                |  |
| E3         | GFA2/IO68PDB5V0            | GFA2/IO85PDB5V0            |  |
| E4         | GND                        | GND                        |  |

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

 \*: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF\_LVPECL/CLKBUF\_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

# 6 – Datasheet Information

# **List of Changes**

The following table shows important changes made in this document for each revision.

| Revision                       | Changes                                                                                                                                                                                                                                                                                                                        | Page  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Revision 13<br>(March 2015)    | Updated Unused MSS I/O Configuration information in "User I/O Naming Conventions" (SAR 62994).                                                                                                                                                                                                                                 | 5-7   |
|                                | Updated Table 2-90: "eNVM Block Timing, Worst Commercial Case Conditions: $T_J = 85^{\circ}$ C, VCC = 1.425 V".                                                                                                                                                                                                                | 2-76  |
|                                | Changed the maximum clock frequency for the control logic – 5 cycles to 50 MHz for A2F060 and A2F200 devices (SAR 63920).                                                                                                                                                                                                      |       |
|                                | Added the following Note:                                                                                                                                                                                                                                                                                                      |       |
|                                | "Moving from 5:1:1:1 mode to 6:1:1:1 mode results in throughput change that is dependent on the system functionality. When the Cortex-M3 code is executed from eNVM - with sequential firmware (sequential address reads), the throughput reduction can be around 10%" (SAR 63920).                                            |       |
| Revision 12<br>(November 2013) | CS288 package dimensions added to "SmartFusion cSoC Package Sizes Dimensions" table (SAR 43730).                                                                                                                                                                                                                               | 1-111 |
|                                | Added "Typical Programming and Erase Times" table (SAR 43732).                                                                                                                                                                                                                                                                 | 4-9   |
|                                | Definition of Ethernet MAC clarified in the "General Description" section (SAR 50083).                                                                                                                                                                                                                                         | 1-1   |
|                                | Clarified GC and GF global inputs in "Global I/O Naming Conventions" section and link to SF Fabric UG added (SAR 42802).                                                                                                                                                                                                       | 5-6   |
| Revision 11                    | Modified the description for VAREF0 in the "User-Defined Supply Pins"(SAR 30204).                                                                                                                                                                                                                                              | 5-5   |
| (September 2013)               | Updated the "Pin Assignment Tables" section with a note for A2F500, all packages with GCAx saying: "Signal assigned to those pins as a CLKBUF or CLKBUF_LVPECL or CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal (SAR 45985). | 5-18  |

# **Microsemi**.

SmartFusion Customizable System-on-Chip (cSoC)

| Revision                       | Changes                                                                                                                                                                                                                                                                                           | Page            |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Revision 5<br>(continued)      | Available values for the Std. speed were added to the timing tables from Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew to Table 2-92 • JTAG 1532 (SAR 29331).                                                                                                                                 | 2-31 to<br>2-76 |
|                                | One or more values changed for the –1 speed in tables covering 3.3 V LVCMOS, 2.5 V LVCMOS, 1.8 V LVCMOS, 1.5 V LVCMOS, Combinatorial Cell Propagation Delays, and A2F200 Global Resources.                                                                                                        |                 |
|                                | Table 2-80 • A2F500 Global Resource is new.                                                                                                                                                                                                                                                       | 2-60            |
|                                | Table 2-90 • eNVM Block Timing, Worst Commercial Case Conditions: $T_J = 85^{\circ}C$ , VCC = 1.425 V was revised (SAR 27585).                                                                                                                                                                    | 2-76            |
|                                | The programmable analog specifications tables were revised with updated information.                                                                                                                                                                                                              | 2-78 to<br>2-87 |
|                                | Table 4-1 • Supported JTAG Programming Hardware was revised by adding a note to indicate "planned support" for several of the items in the table.                                                                                                                                                 | 4-7             |
|                                | The note on JTAGSEL in the "In-System Programming" section was revised to state that SoftConsole selects the appropriate TAP controller using the CTXSELECT JTAG command. When using SoftConsole, the state of JTAGSEL is a "don't care" (SAR 29261).                                             | 4-7             |
|                                | The "CS288" and "FG256" pin tables for A2F060 are new, comparing the A2F060 function with the A2F200 function (SAR 29353).                                                                                                                                                                        | 5-24            |
|                                | The "Handling When Unused" column was removed from the "FG256" pin table for A2F200 and A2F500 (SAR 29691).                                                                                                                                                                                       | 5-42            |
| Revision 4<br>(September 2010) | Table 2-8 • Power Supplies Configuration was revised. VCCRCOSC was moved to a column of its own with new values. VCCENVM was added to the table. Standby mode for VJTAG and VPP was changed from 0 V to N/A. "Disable" was changed to "Off" in the eNVM column. The column for RCOSC was deleted. | 2-10            |
|                                | The "Power-Down and Sleep Mode Implementation" section was revised to include VCCROSC.                                                                                                                                                                                                            | 2-11            |
| Revision 3<br>(September 2010) | The "I/Os and Operating Voltage" section was revised to list "single 3.3 V power supply with on-chip 1.5 V regulator" and "external 1.5 V is allowed" (SAR 27663).                                                                                                                                | I               |
|                                | The CS288 package was added to the "Package I/Os: MSS + FPGA I/Os" table (SAR 27101), "Product Ordering Codes" table, and "Temperature Grade Offerings" table (SAR 27044). The number of direct analog inputs for the FG256 package in A2F060 was changed from 8 to 6.                            | III, VI, VI     |
|                                | Two notes were added to the "SmartFusion cSoC Family Product Table" indicating limitations for features of the A2F500 device:                                                                                                                                                                     | П               |
|                                | Two PLLs are available in CS288 and FG484 (one PLL in FG256).                                                                                                                                                                                                                                     |                 |
|                                | [ADCs, DACs, SCBs, comparators, current monitors, and bipolar high voltage<br>monitors are] Available on FG484 only. FG256 and CS288 packages offer the same<br>programmable analog capabilities as A2F200.                                                                                       |                 |
|                                | Table cells were merged in rows containing the same values for easier reading (SAR 24748).                                                                                                                                                                                                        |                 |
|                                | The security feature option was added to the "Product Ordering Codes" table.                                                                                                                                                                                                                      | VI              |



Datasheet Information

| Revision                  | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Revision 3<br>(continued) | In Table 2-3 • Recommended Operating Conditions <sup>5,6</sup> , the VDDBAT recommended<br>operating range was changed from "2.97 to 3.63" to "2.7 to 3.63" (SAR 25246).<br>Recommended operating range was changed to "3.15 to 3.45" for the following<br>voltages:<br>VCC33A<br>VCC33ADCx<br>VCC33ADCx<br>VCC33AP<br>VCC33SDDx<br>VCCMAINXTAL<br>VCCLPXTAL<br>Two notes were added to the table (SAR 27109):<br>1. The following 3.3 V supplies should be connected together while following proper<br>noise filtering practices: VCC33A, VCC33ADCx, VCC33AP, VCC33SDDx,<br>VCCMAINXTAL, and VCCLPXTAL. | 2-3  |
|                           | 2. The following 1.5 V supplies should be connected together while following proper noise filtering practices: VCC, VCC15A, and VCC15ADCx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                           | In Table 2-3 • Recommended Operating Conditions <sup>5,6</sup> , the description for VCCLPXTAL was corrected to change "32 Hz" to "32 KHz" (SAR 27110).                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-3  |
|                           | The "Power Supply Sequencing Requirement" section is new (SAR 27178).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-4  |
|                           | Table 2-8 • Power Supplies Configuration was revised to change most on/off entries to voltages. Note 5 was added, stating that "on" means proper voltage is applied. The values of 6 $\mu$ A and 16 $\mu$ A were removed for IDC1 and IDC2 for 3.3 V. A note was added for IDC1 and IDC2: "Power mode and Sleep mode are consuming higher current than expected in the current version of silicon. These specifications will be updated when new version of the silicon is available" (SAR 27926).                                                                                                        | 2-10 |
|                           | The "Power-Down and Sleep Mode Implementation" section is new (SAR 27178).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-11 |
|                           | A note was added to Table 2-86 • SmartFusion CCC/PLL Specification, pertaining to $f_{out\_CCC}$ , stating that "one of the CCC outputs (GLA0) is used as an MSS clock and is limited to 100 MHz (maximum) by software" (SAR 26388).                                                                                                                                                                                                                                                                                                                                                                      | 2-63 |
|                           | Table 2-90 • eNVM Block Timing, Worst Commercial Case Conditions: $T_J = 85^{\circ}C$ , VCC = 1.425 V was revised. Values were included for A2F200 and A2F500, for –1 and Std. speed grades. A note was added to define 6:1:1:1 and 5:1:1:1 (SAR 26166).                                                                                                                                                                                                                                                                                                                                                  | 2-76 |
|                           | The units were corrected (mV instead of V) for input referred offset voltage, GDEC[1:0] = 00 in Table 2-96 • ABPS Performance Specifications (SAR 25381).                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-82 |
|                           | The test condition values for operating current (ICC33A, typical) were changed in Table 2-99 • Voltage Regulator (SAR 26465).                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-87 |
|                           | Figure 2-45 • Typical Output Voltage was revised to add legends for the three curves, stating the load represented by each (SAR 25247).                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-88 |
|                           | The "SmartFusion Programming" chapter was moved to this document from the SmartFusion Subsystem Microcontroller User's Guide (SAR 26542). The "Typical Programming and Erase Times" section was added to this chapter.                                                                                                                                                                                                                                                                                                                                                                                    | 4-7  |
|                           | Figure 4-1 • TRSTB Logic was revised to change 1.5 V to "VJTAG (1.5 V to 3.3 V nominal)" (SAR 24694).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-8  |