

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

E·XFI

Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	128KB
RAM Size	16KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Speed	80MHz
Primary Attributes	ProASIC®3 FPGA, 60K Gates, 1536D-Flip-Flops
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a2f060m3e-tqg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Datasheet Categories
Microsemi SoC Products Group Safety Critical, Life Support, and High-Reliability Applications Policy

🌜 Microsemi.

SmartFusion DC and Switching Characteristics

Standby Mode and Time Keeping Mode

 $P_{NET} = 0 W$

I/O Input Buffer Dynamic Contribution—PINPUTS

SoC Mode

 $\mathsf{P}_{\mathsf{INPUTS}}$ = $\mathsf{N}_{\mathsf{INPUTS}}$ * $(\alpha_2$ / 2) * $\mathsf{P}_{\mathsf{AC9}}$ * $\mathsf{F}_{\mathsf{CLK}}$ Where:

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-17 on page 2-18.

F_{CLK} is the global clock signal frequency.

Standby Mode and Time Keeping Mode

P_{INPUTS} = 0 W

I/O Output Buffer Dynamic Contribution—POUTPUTS

SoC Mode

 $\mathsf{P}_{OUTPUTS} = \mathsf{N}_{OUTPUTS} * (\alpha_2 / 2) * \beta_1 * \mathsf{P}_{AC10} * \mathsf{F}_{CLK}$ Where:

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-17 on page 2-18.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-18 on page 2-18.

F_{CLK} is the global clock signal frequency.

Standby Mode and Time Keeping Mode

P_{OUTPUTS} = 0 W

FPGA Fabric SRAM Dynamic Contribution—P_{MEMORY}

SoC Mode

 $P_{MEMORY} = (N_{BLOCKS} * P_{AC11} * \beta_2 * F_{READ-CLOCK}) + (N_{BLOCKS} * P_{AC12} * \beta_3 * F_{WRITE-CLOCK})$ Where:

N_{BLOCKS} is the number of RAM blocks used in the design.

 $F_{READ-CLOCK}$ is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations—guidelines are provided in Table 2-18 on page 2-18.

 β_3 the RAM enable rate for write operations—guidelines are provided in Table 2-18 on page 2-18. F_{WRITE-CLOCK} is the memory write clock frequency.

Standby Mode and Time Keeping Mode

P_{MEMORY} = 0 W

PLL/CCC Dynamic Contribution—P_{PLL}

SoC Mode

P_{PLL} = P_{AC13} * F_{CLKOUT}

F_{CLKIN} is the input clock frequency.

F_{CLKOUT} is the output clock frequency.¹

Standby Mode and Time Keeping Mode

^{1.} The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula output clock by adding its corresponding contribution (P_{AC14} * F_{CLKOUT} product) to the total PLL contribution.

User I/O Characteristics

Timing Model

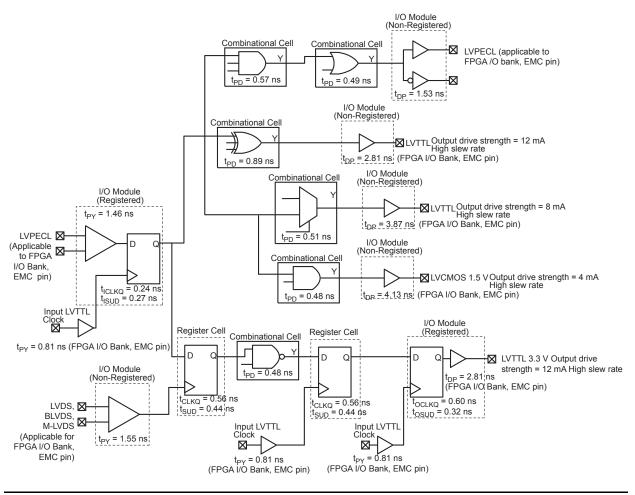


Figure 2-2 • Timing Model Operating Conditions: –1 Speed, Commercial Temperature Range (T_J = 85°C), Worst Case VCC = 1.425 V

SmartFusion DC and Switching Characteristics

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by SoC Products Group Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-11. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, SmartFusion cSoCs also support bus LVDS structure and multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

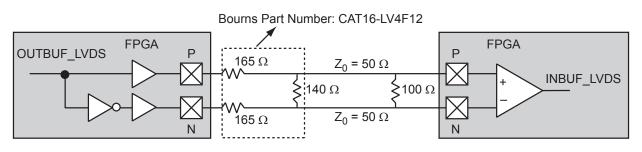


Figure 2-11 • LVDS Circuit Diagram and Board-Level Implementation

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCFPGAIOBx	Supply voltage	2.375	2.5	2.625	V
VOL	Output low voltage	0.9	1.075	1.25	V
VOH	Output high voltage	1.25	1.425	1.6	V
I _{OL} ¹	Output lower current	0.65	0.91	1.16	mA
I _{OH} ¹	Output high current	0.65	0.91	1.16	mA
VI	Input voltage	0		2.925	V
I _{IH} ²	Input high leakage current			15	μΑ
I _{IL} ²	Input low leakage current			15	μA
V _{ODIFF}	Differential output voltage	250	350	450	mV
V _{OCM}	Output common mode voltage	1.125	1.25	1.375	V
V _{ICM}	Input common mode voltage	0.05	1.25	2.35	V
V _{IDIFF}	Input differential voltage	100	350		mV

Notes:

1. I_{OL}/I_{OH} defined by V_{ODIFF} (resistor network).

2. Currents are measured at 85°C junction temperature.

Table 2-64 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	V _{REF} (typ.) (V)
1.075	1.325	Cross point	-

* Measuring point = $V_{trip.}$ See Table 2-22 on page 2-24 for a complete table of trip points.

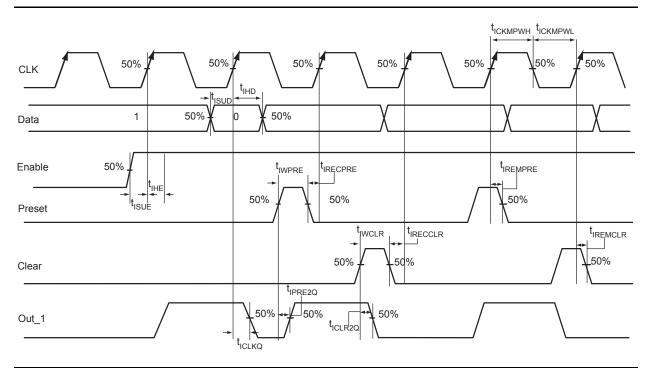
Timing Characteristics

Table 2-65 • LVDS

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V, Worst-Case VCCFPGAIOBx = 2.3 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.60	1.83	0.04	1.87	ns
-1	0.50	1.53	0.03	1.55	ns

Notes:


1. For the derating values at specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

2. The above mentioned timing parameters correspond to 24mA drive strength.

🌜 Microsemi.

SmartFusion DC and Switching Characteristics

Input Register

Timing Characteristics

Table 2-71 • Input Data Register Propagation DelaysWorst Commercial-Case Conditions: TJ = 85°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.29	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.27	0.32	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.38	0.45	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.46	0.55	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.46	0.55	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.23	0.27	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.23	0.27	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.22	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.22	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.36	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.32	0.32	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Timing Characteristics

Table 2-80 • A2F500 Global Resource

Worst Commercial-Case Conditions: T_J = 85°C, VCC = 1.425 V

		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.54	1.73	1.84	2.08	ns
t _{RCKH}	Input High Delay for Global Clock	1.53	1.76	1.84	2.12	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		1.00		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.23		0.28	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-81 • A2F200 Global Resource

Worst Commercial-Case Conditions: T_J = 85°C, VCC = 1.425 V

		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.74	0.99	0.88	1.19	ns
t _{RCKH}	Input High Delay for Global Clock	0.76	1.05	0.91	1.26	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	0.85		1.00		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	0.85		1.00		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.29		0.35	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-7 on page 2-9 for derating values.

Timing Characteristics

Table 2-87 • RAM4K9

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.30	ns
t _{AH}	Address hold time	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.15	0.17	ns
t _{ENH}	REN, WEN hold time	0.10	0.12	ns
t _{BKS}	BLK setup time	0.24	0.28	ns
t _{BKH}	BLK hold time	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.19	0.22	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	1.81	2.18	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	2.39	2.87	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.91	1.09	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—applicable to rising edge		0.26	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—applicable to opening edge	0.34	0.38	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— applicable to opening edge	0.37	0.42	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	0.94	1.12	ns
	RESET Low to Data Out Low on DOUT (pipelined)	0.94	1.12	ns
t _{REMRSTB}	RESET removal	0.29	0.35	ns
t _{RECRSTB}	RESET recovery	1.52	1.83	ns
t _{MPWRSTB}	RESET minimum pulse width	0.22	0.22	ns
t _{CYC}	Clock cycle time	3.28	3.28	ns
F _{MAX}	Maximum clock frequency	305	305	MHz

Notes:

1. For more information, refer to the Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs application note.

2. For the derating values at specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Timing Characteristics

Table 2-89 • FIFO

Parameter	Description	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.40	1.68	ns
t _{ENH}	REN, WEN Hold Time	0.02	0.02	ns
t _{BKS}	BLK Setup Time	0.19	0.19	ns
t _{BKH}	BLK Hold Time	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.19	0.22	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.39	2.87	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.91	1.09	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.74	2.09	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.66	1.99	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	6.29	7.54	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.72	2.06	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.22	7.47	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.94	1.12	ns
	RESET Low to Data Out Low on RD (pipelined)	0.94	1.12	ns
t _{REMRSTB}	RESET Removal	0.29	0.35	ns
t _{RECRSTB}	RESET Recovery	1.52	1.83	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.22	0.22	ns
t _{CYC}	Clock Cycle Time	3.28	3.28	ns
F _{MAX}	Maximum Frequency for FIFO	305	305	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Embedded Nonvolatile Memory Block (eNVM)

Electrical Characteristics

Table 2-90 describes the eNVM maximum performance.

Table 2-90 • eNVM Block Timing, Worst Commercial Case Conditions: T_J = 85°C, VCC = 1.425 V

		A2F060		A2F200		A2F500		
Parameter	Description	-1	Std.	-1	Std.	-1	Std.	Units
	Maximum frequency for clock for the control logic – 5 cycles (5:1:1:1*)	50	50	50	50	50	50	MHz
	Maximum frequency for clock for the control logic – 6 cycles (6:1:1:1*)	100	80	100	80	100	80	MHz

Note: *6:1:1:1 indicates 6 cycles for the first access and 1 each for the next three accesses. 5:1:1:1 indicates 5 cycles for the first access and 1 each for the next three accesses.

Note: *Moving from 5:1:1:1 mode to 6:1:1:1 mode results in throughput change that is dependent on the system functionality. When the Cortex-M3 code is executed from eNVM - with sequential firmware (sequential address reads), the throughput reduction can be around 10%.

Embedded FlashROM (eFROM)

Electrical Characteristics

Table 2-91 describes the eFROM maximum performance

Parameter	Description	-1	Std.	Units
t _{CK2Q}	Clock to out per configuration*	28.68	32.98	ns
F _{max}	Maximum Clock frequency	15.00	15.00	MHz

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-19 for more details.

Timing Characteristics

Table 2-92 • JTAG 1532

Worst Commercial-Case Conditions: T_J = 85°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{DISU}	Test Data Input Setup Time	0.67	0.77	ns
t _{DIHD}	Test Data Input Hold Time	1.33	1.53	ns
t _{TMSSU}	Test Mode Select Setup Time	0.67	0.77	ns
t _{TMDHD}	Test Mode Select Hold Time	1.33	1.53	ns
t _{TCK2Q}	Clock to Q (data out)	8.00	9.20	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Temperature Monitor

Unless otherwise noted, temperature monitor performance is specified with a 2N3904 diode-connected bipolar transistor from National Semiconductor or Infineon Technologies, nominal power supply voltages, with the output measured using the internal voltage reference with the internal ADC in 12-bit mode and 62.5 Ksps. After digital compensation. Unless otherwise noted, the specifications pertain to conditions where the SmartFusion cSoC and the sensing diode are at the same temperature.

Table 2-94 • Temperature Monitor Performance Specifications

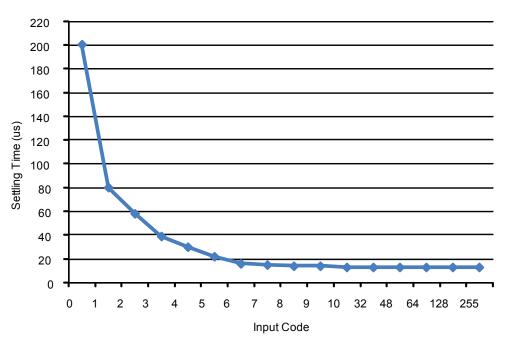
Specification	Test Conditions	Min.	Typical	Max.	Units
Input diode temperature range		-55		150	°C
		233.2		378.15	K
Temperature sensitivity			2.5		mV/K
Intercept	Extrapolated to 0K		0		V
Input referred temperature offset error	At 25°C (298.15K)		±1	1.5	°C
Gain error	Slope of BFSL vs. 2.5 mV/K		±1	2.5	% nom.
Overall accuracy	Peak error from ideal transfer function		±2	±3	°C
Input referred noise	At 25°C (298.15K) – no output averaging		4		°C rms
Output current	Idle mode		100		μA
	Final measurement phases		10		μA
Analog settling time	Measured to 0.1% of final value, (with ADC load)				
	From TM_STB (High)	5			μs
	From ADC_START (High)	5		105	μs
AT parasitic capacitance				500	pF
Power supply rejection ratio	DC (0–10 KHz)	1.2	0.7		°C/V
Input referred temperature sensitivity error	Variation due to device temperature (–40°C to +100°C). External temperature sensor held constant.		0.005	0.008	°C/°C
Temperature monitor (TM)	VCC33A		200		μA
operational power supply current requirements (per temperature	VCC33AP		150		μA
monitor instance, not including ADC or VAREFx)	VCC15A		50		μA

Note: All results are based on averaging over 64 samples.

Specification	Test Conditions	Min.	Тур.	Max.	Units
Input referred offset voltage					
	GDEC[1:0] = 11	-0.31	-0.07	0.31	% FS*
	-40°C to +100°C	-1.00		1.47	% FS*
	GDEC[1:0] = 10	-0.34	-0.07	0.34	% FS*
	-40°C to +100°C	-0.90		1.37	% FS*
	GDEC[1:0] = 01	-0.61	-0.07	0.35	% FS*
	-40°C to +100°C	-1.05		1.35	% FS*
	GDEC[1:0] = 00	-0.39	-0.07	0.35	% FS*
	-40°C to +100°C	-1.06		1.38	% FS*
SINAD		53	56		dB
Non-linearity	RMS deviation from BFSL			0.5	% FS*
Effective number of bits (ENOB)	GDEC[1:0] = 11 (±2.56 range), –1 dBFS input				
$ENOB = \frac{SINAD - 1.76 \text{ dB}}{6.02 \text{ dB/bit}}$	12-bit mode 10 KHz	8.6	9.1		Bits
EQ 11	12-bit mode 100 KHz	8.6	9.1		Bits
	10-bit mode 10 KHz	8.5	8.9		Bits
	10-bit mode 100 KHz	8.5	8.9		Bits
	8-bit mode 10 KHz	7.7	7.8		Bits
	8-bit mode 100 KHz	7.7	7.8		Bits
Large-signal bandwidth	–1 dBFS input		1		MHz
Analog settling time	To 0.1% of final value (with ADC load)			10	μs
Input resistance			1		MΩ
Power supply rejection ratio	DC (0–1 KHz)	38	40		dB
ABPS power supply current	ABPS_EN = 1 (operational mode)		-		•
requirements (not including ADC or VAREFx)	VCC33A		123	134	μA
	VCC33AP		89	94	μA
	VCC15A		1		μA

Table 2-96 • ABPS Performance Specifications	(continued)
--	-------------

Note: *FS is full-scale error, defined as the difference between the actual value that triggers the transition to full-scale and the ideal analog full-scale transition value. Full-scale error equals offset error plus gain error. Refer to the Analog-to-Digital Converter chapter of the SmartFusion Programmable Analog User's Guide for more information.



SmartFusion DC and Switching Characteristics

Table 2-98 • Analog Sigma-Delta DAC (continued)

Specification	Test Conditions	Min.	Тур.	Max.	Units
Sigma-delta DAC power supply current requirements (not including VAREFx)	Input = 0, EN = 1 (operational mode)				
	VCC33SDDx		30	35	μA
	VCC15A		3	5	μA
	Input = Half scale, EN = 1 (operational mode)				
	VCC33SDDx		160	165	μA
	VCC15A		33	35	μA
	Input = Full scale, EN = 1 (operational mode)				
	VCC33SDDx		280	285	μA
	VCC15A		70	75	μA

Note: *FS is full-scale error, defined as the difference between the actual value that triggers the transition to full-scale and the ideal analog full-scale transition value. Full-scale error equals offset error plus gain error. Refer to the Analog-to-Digital Converter chapter of the SmartFusion Programmable Analog User's Guide for more information.

Sigma Delta DAC Settling Time

Figure 2-44 • Sigma-Delta DAC Setting Time

Serial Peripheral Interface (SPI) Characteristics

This section describes the DC and switching of the SPI interface. Unless otherwise noted, all output characteristics given for a 35 pF load on the pins and all sequential timing characteristics are related to SPI_x_CLK. For timing parameter definitions, refer to Figure 2-47 on page 2-90.

Symbol	Description and Condition	A2F060	A2F200	A2F500	Unit			
sp1	SPI_x_CLK minimum period			LU				
	SPI_x_CLK = PCLK/2	20	NA	20	ns			
	SPI_x_CLK = PCLK/4	40	40	40	ns			
	SPI_x_CLK = PCLK/8	80	80	80	ns			
	SPI_x_CLK = PCLK/16	0.16	0.16	0.16	μs			
	SPI_x_CLK = PCLK/32	0.32	0.32	0.32	μs			
	SPI_x_CLK = PCLK/64	0.64	0.64	0.64	μs			
	SPI_x_CLK = PCLK/128	1.28	1.28	1.28	μs			
	SPI_x_CLK = PCLK/256	2.56	2.56	2.56	μs			
sp2	SPI_x_CLK minimum pulse width high							
	SPI_x_CLK = PCLK/2	10	NA	10	ns			
	SPI_x_CLK = PCLK/4	20	20	20	ns			
	SPI_x_CLK = PCLK/8	40	40	40	ns			
	SPI_x_CLK = PCLK/16	0.08	0.08	0.08	μs			
	SPI_x_CLK = PCLK/32	0.16	0.16	0.16	μs			
	SPI_x_CLK = PCLK/64	0.32	0.32	0.32	μs			
	SPI_x_CLK = PCLK/128	0.64	0.64	0.64	μs			
	SPI_x_CLK = PCLK/256	1.28	1.28	1.28	us			
sp3	SPI_x_CLK minimum pulse width low							
	SPI_x_CLK = PCLK/2	10	NA	10	ns			
	SPI_x_CLK = PCLK/4	20	20	20	ns			
	SPI_x_CLK = PCLK/8	40	40	40	ns			
	SPI_x_CLK = PCLK/16	0.08	0.08	0.08	μs			
	SPI_x_CLK = PCLK/32	0.16	0.16	0.16	μs			
	SPI_x_CLK = PCLK/64	0.32	0.32	0.32	μs			
	SPI_x_CLK = PCLK/128	0.64	0.64	0.64	μs			
	SPI_x_CLK = PCLK/256	1.28	1.28	1.28	μs			
sp4	SPI_x_CLK, SPI_x_DO, SPI_x_SS rise time (10%-90%) ¹	4.7	4.7	4.7	ns			
sp5	SPI_x_CLK, SPI_x_DO, SPI_x_SS fall time (10%-90%) ¹	3.4	3.4	3.4	ns			

Table 2-100 • SPI Characteristics

Commercial Case Conditions: T_J = 85°C, VDD = 1.425 V, -1 Speed Grade

Notes:

 These values are provided for a load of 35 pF. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/index.php?option=com_microsemi<emid=489&lang=en&view=salescontact.

2. For allowable pclk configurations, refer to the Serial Peripheral Interface Controller section in the SmartFusion Microcontroller Subsystem User's Guide.

Name	Туре	Description
VCCFPGAIOB5	Supply	Digital supply to the FPGA fabric I/O bank 5 (west FPGA I/O bank) for the output buffers and I/O logic.
		Each bank can have a separate VCCFPGAIO connection. All I/Os in a bank will run off the same VCCFPGAIO supply. VCCFPGAIO can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCFPGAIO pins tied to GND.
VCCLPXTAL	Supply	Analog supply to the low power 32 KHz crystal oscillator. Always power this pin. ¹
VCCMAINXTAL	Supply	Analog supply to the main crystal oscillator circuit. Always power this pin. ¹
VCCMSSIOB2	Supply	Supply voltage to the microcontroller subsystem I/O bank 2 (east MSS I/O bank) for the output buffers and I/O logic.
		Each bank can have a separate VCCMSSIO connection. All I/Os in a bank will run off the same VCCMSSIO supply. VCCMSSIO can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCMSSIO pins tied to GND.
VCCMSSIOB4	Supply	Supply voltage to the microcontroller subsystem I/O bank 4 (west MSS I/O bank) for the output buffers and I/O logic.
		Each bank can have a separate VCCMSSIO connection. All I/Os in a bank will run off the same VCCMSSIO supply. VCCMSSIO can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCMSSIO pins tied to GND.
VCCPLLx	Supply	Analog 1.5 V supply to the PLL. Always power this pin.
VCCRCOSC	Supply	Analog supply to the integrated RC oscillator circuit. Always power this pin. ¹
VCOMPLAx	Supply	Analog ground for the PLL
VDDBAT	Supply	External battery connection to the low power 32 KHz crystal oscillator (along with VCCLPXTAL), RTC, and battery switchover circuit. Can be pulled down if unused.

Notes:

1. The following 3.3 V supplies should be connected together while following proper noise filtering practices: VCC33A, VCC33ADCx, VCC33ADCx, VCC33SDDx, VCCMAINXTAL, and VCCLPXTAL.

2. The following 1.5 V supplies should be connected together while following proper noise filtering practices: VCC, VCC15A, and VCC15ADCx.

3. For more details on VCCPLLx capacitor recommendations, refer to the application note AC359, SmartFusion cSoC Board Design Guidelines, the "PLL Power Supply Decoupling Scheme" section.

JTAG Pins

SmartFusion cSoCs have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the SmartFusion cSoC part must be supplied to allow JTAG signals to transition the SmartFusion cSoC. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility with supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used, the VJTAG pin together with the TRSTB pin could be tied to GND.

Name	Туре	Polarity/ Bus Size	Description
JTAGSEL	In	1	JTAG controller selection
			Depending on the state of the JTAGSEL pin, an external JTAG controller will either see the FPGA fabric TAP/auxiliary TAP (High) or the Cortex-M3 JTAG debug interface (Low).
			The JTAGSEL pin should be connected to an external pull-up resistor such that the default configuration selects the FPGA fabric TAP.
ТСК	In	1	Test clock
			Serial input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, it is recommended to tie off TCK to GND or V_{JTAG} through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.
			Note that to operate at all V _{JTAG} voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 5-1 on page 5-11 for more information.
			Can be left floating when unused.
TDI	In	1	Test data
			Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.
TDO	Out	1	Test data
			Serial output for JTAG boundary scan, ISP, and UJTAG usage.
TMS	In	HIGH	Test mode select
			The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.
			Can be left floating when unused.
TRSTB	In	HIGH	Boundary scan reset pin
			The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be chosen from Table 5-1 on page 5-11 and must satisfy the parallel resistance value requirement. The values in Table 5-1 on page 5-11 correspond to the resistor recommended when a single device is used. The values correspond to the equivalent parallel resistor when multiple devices are connected via a JTAG chain.
			In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such cases, it is recommended that you tie off TRST to GND through a resistor placed close to the FPGA pin.
			The TRSTB pin also resets the serial wire JTAG – debug port (SWJ-DP) circuitry within the Cortex-M3.
			Can be left floating when unused.

	PQ208		
Pin Number	A2F200	A2F500	
156	GNDQ	GNDQ	
157	GNDQ	GNDQ	
158	VCCFPGAIOB0	VCCFPGAIOB0	
159	GBA1/IO19PDB0V0	GBA1/IO23PDB0V0	
160	GBA0/IO19NDB0V0	GBA0/IO23NDB0V0	
161	VCCFPGAIOB0	VCCFPGAIOB0	
162	GND	GND	
163	VCC	VCC	
164	EMC_AB[25]/IO16PDB0V0	IO21PDB0V0	
165	EMC_AB[24]/IO16NDB0V0	IO21NDB0V0	
166	EMC_AB[23]/IO15PDB0V0	IO20PDB0V0	
167	EMC_AB[22]/IO15NDB0V0	IO20NDB0V0	
168	EMC_AB[21]/IO14PDB0V0	IO19PDB0V0	
169	EMC_AB[20]/IO14NDB0V0	IO19NDB0V0	
170	EMC_AB[19]/IO13PDB0V0	IO18PDB0V0	
171	EMC_AB[18]/IO13NDB0V0	IO18NDB0V0	
172	EMC_AB[17]/IO12PDB0V0	IO17PDB0V0	
173	EMC_AB[16]/IO12NDB0V0	IO17NDB0V0	
174	VCCFPGAIOB0	VCCFPGAIOB0	
175	GND	GND	
176	VCC	VCC	
177	EMC_AB[15]/IO11PDB0V0	IO14PDB0V0	
178	EMC_AB[14]/IO11NDB0V0	IO14NDB0V0	
179	EMC_AB[13]/IO10PDB0V0	IO13PDB0V0	
180	EMC_AB[12]/IO10NDB0V0	IO13NDB0V0	
181	EMC_AB[11]/IO09PDB0V0	IO12PDB0V0	
182	EMC_AB[10]/IO09NDB0V0	IO12NDB0V0	
183	EMC_AB[9]/IO08PDB0V0	IO11PDB0V0	
184	EMC_AB[8]/IO08NDB0V0	IO11NDB0V0	
185	EMC_AB[7]/IO07PDB0V0	IO10PDB0V0	
186	EMC_AB[6]/IO07NDB0V0	IO10NDB0V0	

Notes:

1. Shading denotes pins that do not have completely identical functions from density to density. For example, the bank assignment can be different for an I/O, or the function might be available only on a larger density device.

 *: Indicates that the signal assigned to the pins as a CLKBUF/CLKBUF_LVPECL/CLKBUF_LVDS goes through a glitchless mux. In order for the glitchless mux to operate correctly, the signal must be a free-running clock signal. Refer to the 'Glitchless MUX' section in the SmartFusion Microcontroller Subsystem User's Guide for more details.

Datasheet Information

Revision	Changes	Page
Revision 3 (continued)	In Table 2-3 • Recommended Operating Conditions ^{5,6} , the VDDBAT recommended operating range was changed from "2.97 to 3.63" to "2.7 to 3.63" (SAR 25246). Recommended operating range was changed to "3.15 to 3.45" for the following voltages: VCC33A VCC33ADCx VCC33AP VCC33SDDx VCCMAINXTAL VCCLPXTAL Two notes were added to the table (SAR 27109): 1. The following 3.3 V supplies should be connected together while following proper noise filtering practices: VCC33A, VCC33ADCx, VCC33AP, VCC33SDDx, VCCMAINXTAL, and VCCLPXTAL. 2. The following 1.5 V supplies should be connected together while following proper	2-3
	noise filtering practices: VCC, VCC15A, and VCC15ADCx. In Table 2-3 • Recommended Operating Conditions ^{5,6} , the description for	2-3
	VCCLPXTAL was corrected to change "32 Hz" to "32 KHz" (SAR 27110).	
	The "Power Supply Sequencing Requirement" section is new (SAR 27178).	2-4
	Table 2-8 • Power Supplies Configuration was revised to change most on/off entries to voltages. Note 5 was added, stating that "on" means proper voltage is applied. The values of 6 μ A and 16 μ A were removed for IDC1 and IDC2 for 3.3 V. A note was added for IDC1 and IDC2: "Power mode and Sleep mode are consuming higher current than expected in the current version of silicon. These specifications will be updated when new version of the silicon is available" (SAR 27926).	2-10
	The "Power-Down and Sleep Mode Implementation" section is new (SAR 27178).	2-11
	A note was added to Table 2-86 • SmartFusion CCC/PLL Specification, pertaining to f_{out_CCC} , stating that "one of the CCC outputs (GLA0) is used as an MSS clock and is limited to 100 MHz (maximum) by software" (SAR 26388).	2-63
	Table 2-90 • eNVM Block Timing, Worst Commercial Case Conditions: $T_J = 85^{\circ}C$, VCC = 1.425 V was revised. Values were included for A2F200 and A2F500, for -1 and Std. speed grades. A note was added to define 6:1:1:1 and 5:1:1:1 (SAR 26166).	2-76
	The units were corrected (mV instead of V) for input referred offset voltage, GDEC[1:0] = 00 in Table 2-96 • ABPS Performance Specifications (SAR 25381).	2-82
	The test condition values for operating current (ICC33A, typical) were changed in Table 2-99 • Voltage Regulator (SAR 26465).	2-87
	Figure 2-45 • Typical Output Voltage was revised to add legends for the three curves, stating the load represented by each (SAR 25247).	2-88
	The "SmartFusion Programming" chapter was moved to this document from the SmartFusion Subsystem Microcontroller User's Guide (SAR 26542). The "Typical Programming and Erase Times" section was added to this chapter.	4-7
	Figure 4-1 • TRSTB Logic was revised to change 1.5 V to "VJTAG (1.5 V to 3.3 V nominal)" (SAR 24694).	4-8

SmartFusion Customizable System-on-Chip (cSoC)

Revision	Changes	Page
(continued)	"SmartFusion Development Tools" section was replaced with new content.	
	The pin description tables were revised by adding additional pins to reflect the pinout for A2F500.	
	The descriptions for "GNDSDD1" and "VCC33SDD1" were revised.	
	The description for "VCC33A" was revised.	
	The pin tables for the "FG256" and "FG484" were replaced with tables that compare pin functions across densities for each package.	
Draft B (December 2009)	The "Digital I/Os" section was renamed to the "I/Os and Operating Voltage" section and information was added regarding digital and analog VCC.	
	The "SmartFusion cSoC Family Product Table" and "Package I/Os: MSS + FPGA I/Os" section were revised.	П
	The terminology for the analog blocks was changed to "programmable analog," consisting of two blocks: the analog front-end and analog compute engine. This is reflected throughout the text and in the "SmartFusion cSoC Block Diagram".	IV
	The "Product Ordering Codes" table was revised to add G as an ordering code for eNVM size.	VI
	Timing tables were populated with information that has become available for speed grade –1.	N/A
	All occurrences of the VMV parameter were removed.	N/A
	The SDD[n] voltage parameter was removed from Table 2-2 • Analog Maximum Ratings.	2-2
	Table 36-4• Flash Programming Limits – Retention, Storage and OperatingTemperature was replaced with Table 2-4• FPGA and Embedded FlashProgramming, Storage and Operating Limits.	2-4
	The "Thermal Characteristics" section was revised extensively.	2-7
	Table 2-8 • Power Supplies Configuration was revised significantly.	2-10
	Table 2-14 • Different Components Contributing to Dynamic Power Consumption in SmartFusion cSoCs and Table 2-15 • Different Components Contributing to the Static Power Consumption in SmartFusion cSoCs were updated.	2-12
	Figure 2-2 • Timing Model was updated.	2-19
	The temperature associated with the reliability for LVTTL/LVCMOS in Table 2-34 • I/O Input Rise Time, Fall Time, and Related I/O Reliability was changed from 110° to 100°.	2-29
	The values in Table 2-78 • Combinatorial Cell Propagation Delays were updated.	2-57
	Table 2-85 • Electrical Characteristics of the Low Power Oscillator is new. Table 2-84 • Electrical Characteristics of the Main Crystal Oscillator was revised.	2-62
	Table 2-90 • eNVM Block Timing, Worst Commercial Case Conditions: $T_J = 85^{\circ}C$, VCC = 1.425 V and Table 2-91 • FlashROM Access Time, Worse Commercial Case Conditions: $T_J = 85^{\circ}C$, VCC = 1.425 V are new.	2-76
	The performance tables in the "Programmable Analog Specifications" section were revised, including new data available. Table 2-98 • Analog Sigma-Delta DAC is new.	2-78
	The "256-Pin FBGA" table for A2F200 is new.	4-15