

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f411rct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Compatible board design for LQFP100 package	. 13
Figure 2.	Compatible board design for LQFP64 package	. 14
Figure 3.	STM32F411xC/xE block diagram	. 15
Figure 4.	Multi-AHB matrix	
Figure 5.	Power supply supervisor interconnection with internal reset OFF	. 21
Figure 6.	Regulator OFF	. 23
Figure 7.	Startup in regulator OFF: slow V _{DD} slope -	
	power-down reset risen after V _{CAP_1} /V _{CAP_2} stabilization.	. 24
Figure 8.	Startup in regulator OFF mode: fast V _{DD} slope -	. .
-	power-down reset risen before V_{CAP_1}/V_{CAP_2} stabilization	
Figure 9.	STM32F411xC/xE WLCSP49 pinout	
Figure 10.	STM32F411xC/xE UFQFPN48 pinout	
Figure 11.	STM32F411xC/xE LQFP64 pinout	
Figure 12.	STM32F411xC/xE LQFP100 pinout	
Figure 13.	STM32F411xC/xE UFBGA100 pinout	. 37
Figure 14.	Memory map	. 53
Figure 15.	Pin loading conditions.	. 57
Figure 16.	Input voltage measurement	
Figure 17.	Power supply scheme	
Figure 18.	Current consumption measurement scheme	
Figure 19.	External capacitor C _{EXT}	
Figure 20.	Typical V _{BAT} current consumption (LSE in low-drive mode and RTC ON)	
Figure 21.	Low-power mode wakeup.	
Figure 22.	High-speed external clock source AC timing diagram	
Figure 23.	Low-speed external clock source AC timing diagram	
Figure 23.		
-	Typical application with a 8 MHz crystal	
Figure 25.	Typical application with a 32.768 kHz crystal	
Figure 26.	ACC _{HSI} versus temperature	
Figure 27.	ACC _{LSI} versus temperature	
Figure 28.	PLL output clock waveforms in center spread mode	
Figure 29.	PLL output clock waveforms in down spread mode	
Figure 30.	FT/TC I/O input characteristics	
Figure 31.	I/O AC characteristics definition	
Figure 32.	Recommended NRST pin protection	
Figure 33.	I ² C bus AC waveforms and measurement circuit	
Figure 34.	SPI timing diagram - slave mode and CPHA = 0	108
Figure 35.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	109
Figure 36.	SPI timing diagram - master mode ⁽¹⁾	109
Figure 37.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	. 111
Figure 38.	SPI timing diagram - master mode ⁽¹⁾ I ² S slave timing diagram (Philips protocol) ⁽¹⁾ I ² S master timing diagram (Philips protocol) ⁽¹⁾	111
Figure 39.	USB OTG FS timings: definition of data signal rise and fall time	113
Figure 40.	ADC accuracy characteristics	
Figure 41.	Typical connection diagram using the ADC	117
Figure 42.	Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})	
Figure 43.	Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})	110
Figure 44.	SDIO high-speed mode	
Figure 45.	SD default mode	
•	WLCSP49 - 49-ball, 2.999 x 3.185 mm, 0.4 mm pitch wafer level	121
Figure 46.	WECOF49 - 49-Dall, 2.999 X 3.103 mm, 0.4 mm pitch water level	

2 Description

The STM32F411xC/xE devices are based on the high-performance ARM[®] Cortex[®] -M4 32bit RISC core operating at a frequency of up to 100 MHz. The Cortex[®]-M4 core features a Floating point unit (FPU) single precision which supports all ARM single-precision dataprocessing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F411xC/xE belongs to the STM32 Dynamic Efficiency[™] product line (with products combining power efficiency, performance and integration) while adding a new innovative feature called Batch Acquisition Mode (BAM) allowing to save even more power consumption during data batching.

The STM32F411xC/xE incorporate high-speed embedded memories (up to 512 Kbytes of Flash memory, 128 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB bus and a 32-bit multi-AHB bus matrix.

All devices offer one 12-bit ADC, a low-power RTC, six general-purpose 16-bit timers including one PWM timer for motor control, two general-purpose 32-bit timers. They also feature standard and advanced communication interfaces.

- Up to three I²Cs
- Five SPIs
- Five I²Ss out of which two are full duplex. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Three USARTs
- SDIO interface
- USB 2.0 OTG full speed interface

Refer to *Table 2: STM32F411xC/xE features and peripheral counts* for the peripherals available for each part number.

The STM32F411xC/xE operate in the - 40 to + 125 °C temperature range from a 1.7 (PDR OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

These features make the STM32F411xC/xE microcontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances
- Mobile phone sensor hub

Figure 3 shows the general block diagram of the devices.

3.15 Power supply supervisor

3.15.1 Internal reset ON

This feature is available for V_{DD} operating voltage range 1.8 V to 3.6 V.

The internal power supply supervisor is enabled by holding PDR_ON high.

The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes.

The devices remain in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The devices also feature an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.15.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to low.

An external power supply supervisor should monitor V_{DD} and should set the device in reset mode when V_{DD} is below 1.7 V. NRST should be connected to this external power supply supervisor. Refer to *Figure 5: Power supply supervisor interconnection with internal reset OFF*.

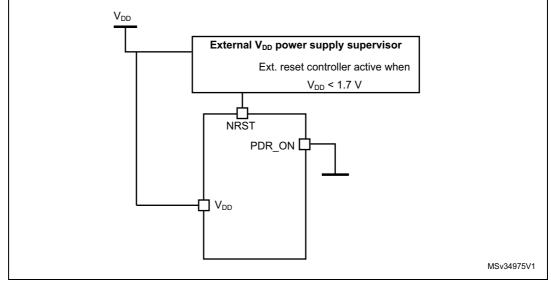


Figure 5. Power supply supervisor interconnection with internal reset OFF⁽¹⁾

1. The PRD_ON pin is only available on the WLCSP49 and UFBGA100 packages.

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
- The brownout reset (BOR) circuitry must be disabled.
- The embedded programmable voltage detector (PVD) is disabled.
- V_{BAT} functionality is no more available and VBAT pin should be connected to V_{DD}.

3.16 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low power regulator (LPR)
 - Power-down
- Regulator OFF

3.16.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when the regulator is ON:

- MR is used in the nominal regulation mode (With different voltage scaling in Run) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption.
- LPR is used in the Stop modes
 - The LP regulator mode is configured by software when entering Stop mode.
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Depending on the package, one or two external ceramic capacitors should be connected on the V_{CAP_1} and V_{CAP_2} pins. The V_{CAP_2} pin is only available for the LQFP100 and UFBGA100 packages.

All packages have the regulator ON feature.

3.16.2 Regulator OFF

The Regulator OFF is available only on the UFBGA100, which features the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through V_{CAP} 1 and V_{CAP} 2 pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Table 14: General operating conditions*.

The two 2.2 μ F V_{CAP} ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Figure 17: Power supply scheme*.

			IUN				paneen		
USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
USART1	х	х	х	х	х	х	6.25	12.5	APB2 (max. 100 MHz)
USART2	х	х	х	х	х	х	3.12	6.25	APB1 (max. 50 MHz)
USART6	х	N.A	х	Х	X X 6		6.25	12.5	APB2 (max. 100 MHz)

 Table 6. USART feature comparison

3.23 Serial peripheral interface (SPI)

The devices feature five SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4 and SPI5 can communicate at up to 50 Mbit/s, SPI2 and SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

3.24 Inter-integrated sound (I²S)

Five standard I²S interfaces (multiplexed with SPI1 to SPI5) are available. They can be operated in master or slave mode, in simplex communication modes and full duplex for I2S2 and I2S3 and can be configured to operate with a 16-/32-bit resolution as an input or output channel. All the I2Sx audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I^2Sx can be served by the DMA controller.

3.25 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S application. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance.

The PLLI2S configuration can be modified to manage an I^2S sample rate change without disabling the main PLL (PLL) used for the CPU.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 kHz to 192 kHz.

DocID026289 Rev 6

	Pir	n numt	ber							
UFQFPN48	LQFP64	WLCSP49	LQFP100	UFBGA100	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	81	C9	PD0	I/O	FT	-	EVENTOUT	-
-	-	-	82	B9	PD1	I/O	FT	-	EVENTOUT	-
-	54	-	83	C8	PD2	I/O	FT	-	TIM3_ETR, SDIO_CMD, EVENTOUT	-
-	-	-	84	B8	PD3	I/O	FT	-	SPI2_SCK/I2S2_CK, USART2_CTS, EVENTOUT	-
-	-	-	85	B7	PD4	I/O	FT	-	USART2_RTS, EVENTOUT	-
-	-	-	86	A6	PD5	I/O	FT	-	USART2_TX, EVENTOUT	-
-	-	-	87	B6	PD6	I/O	FT	-	SPI3_MOSI/I2S3_SD, USART2_RX, EVENTOUT	-
-	-	-	88	A5	PD7	I/O	FT	-	USART2_CK, EVENTOUT	-
39	55	A3	89	A8	РВЗ	I/O	FT	-	JTDO-SWO, TIM2_CH2, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, USART1_RX, I2C2_SDA, EVENTOUT	-
40	56	A4	90	A7	PB4	I/O	FT	-	JTRST, TIM3_CH1, SPI1_MISO, SPI3_MISO, I2S3ext_SD, I2C3_SDA, SDIO_D0, EVENTOUT	-
41	57	B4	91	C5	PB5	I/O	тс	-	TIM3_CH2, I2C1_SMBA, SPI1_MOSI/I2S1_SD, SPI3_MOSI/I2S3_SD, SDIO_D3, EVENTOUT	-
42	58	C4	92	В5	PB6	I/O	FT	-	TIM4_CH1, I2C1_SCL, USART1_TX, EVENTOUT	-

Table 8. STM32F411xC/xE pin definitions (continued)

48/149

DocID026289 Rev 6

		1		Т	able 9. A	Iternate f	unction ma	apping (c	ontinue	d)		1				1
	AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/I2S1S PI2/ I2S2/SPI3/ I2S3	SPI2/I2S2/ SPI3/ I2S3/SPI4/ I2S4/SPI5/ I2S5	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
PB) -	TIM1_CH2N	TIM3_CH3	-	-	-	SPI5_SCK /I2S5_CK		-	-	-	-	-	-	-	EVEN OUT
PB	1 -	TIM1_CH3N	TIM3_CH4	-	-	-	SPI5_NSS /I2S5_WS		-	-	-	-	-	-	-	EVEN1 OUT
PB:	2 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN1 OUT
PB:	3 JTDO- SWO	TIM2_CH2	-	-	-	SPI1_SCK/I 2S1_CK	SPI3_SCK /I2S3_CK	USART1_ RX	-	I2C2_SDA	-	-	-	-	-	EVEN OUT
PB	JTRST		TIM3_CH1	-	-	SPI1_MISO	SPI3_MISO	I2S3ext_S D	-	I2C3_SDA			SDIO_ D0	-	-	EVENT OUT
PB	5 -	-	TIM3_CH2	-	I2C1_SMB A	SPI1_MOSI /I2S1_SD	SPI3_MOSI/ I2S3_SD		-	-	-	-	SDIO_ D3	-	-	EVEN OUT
PB	3 -	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1_ TX	-	-	-	-		-	-	EVEN OUT
e PB	7 -	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_ RX	-	-	-	-	SDIO_ D0	-	-	EVEN OUT
B LOG PB	3 -	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	SPI5_MOSI/ I2S5_SD	-	-	I2C3_SDA	-	-	SDIO_ D4	-	-	EVEN OUT
PB	9 -	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS/I 2S2_WS	-	-	-	I2C2_SDA	-	-	SDIO_ D5	-	-	EVEN OUT
PB1	0 -	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK/I 2S2_CK	I2S3_MCK	-	-	-	-	-	SDIO_ D7	-	-	EVEN OUT
PB1	1 -	TIM2_CH4	-	-	I2C2_SDA	I2S2_CKIN	-	-	-	-	-	-	-	-	-	EVEN OUT
PB1	2 -	TIM1_BKIN	-	-	I2C2_SMB A	SPI2_NSS/I 2S2_WS	SPI4_NSS /I2S4_WS	SPI3_SCK /I2S3_CK	-	-	-	-	-	-	-	EVEN OUT
PB1	3 -	TIM1_CH1N	-	-	-	SPI2_SCK/I 2S2_CK	SPI4_SCK/ I2S4_CK	-	-	-	-	-	-	-	-	EVEN ^T OUT
PB1	4 -	TIM1_CH2N	-	-	-	SPI2_MISO	I2S2ext_SD	-	-	-	-	-	SDIO_ D6	-	-	EVEN OUT
PB1	5 RTC_50H	TIM1_CH3N	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	SDIO_ CK	-	-	EVEN OUT

Pinouts and pin description

STM32F411xC STM32F411xE

50/149

DocID026289 Rev 6

		AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
Р	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/I2S1S PI2/ I2S2/SPI3/ I2S3	SPI2/I2S2/ SPI3/ I2S3/SPI4/ I2S4/SPI5/ I2S5	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
	PD0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD2	-	-	TIM3_ETR	-	-	-	-	-	-	-	-	-	SDIO_ CMD			EVENT OUT
	PD3	-	-	-	-	-	SPI2_SCK/I 2S2_CK		USART2_ CTS	-	-	-	-	-	-	-	EVENT OUT
	PD4	-	-	-	-	-	-	-	USART2_ RTS	-	-	-	-	-	-	-	EVENT OUT
_	PD5	-	-	-	-	-	-	-	USART2_ TX	-	-	-	-	-	-	-	EVENT OUT
	PD6	-	-	-	-	-	SPI3_MOSI /I2S3_SD	-	USART2_ RX	-	-	-	-	-	-	-	EVENT OUT
Δ	PD7	-	-	-	-	-	-	-	USART2_ CK	-	-	-	-	-	-	-	EVENT OUT
Port D	PD8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
-	PD9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
_	PD11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD12	-	-	TIM4_CH1	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD13	-	-	TIM4_CH2	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD14	-	-	TIM4_CH3	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD15	-	-	TIM4_CH4	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

 Table 9. Alternate function mapping (continued)

Pinouts and pin description

STM32F411xC STM32F411xE

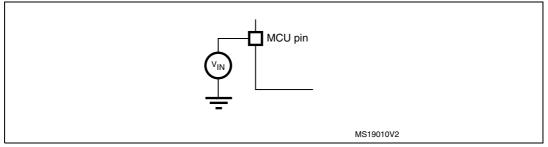

Bus	Boundary address	Peripheral
AHB2	0x5000 0000 - 0x5003 FFFF	USB OTG FS
	0x4002 6800 - 0x4FFF FFFF	Reserved
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6000 - 0x4002 63FF	DMA1
	0x4002 5000 - 0x4002 4FFF	Reserved
	0x4002 3C00 - 0x4002 3FFF	Flash interface register
	0x4002 3800 - 0x4002 3BFF	RCC
	0x4002 3400 - 0x4002 37FF	Reserved
AHB1	0x4002 3000 - 0x4002 33FF	CRC
AUDI	0x4002 2000 - 0x4002 2FFF	Reserved
	0x4002 1C00 - 0x4002 1FFF	GPIOH
	0x4002 1400 - 0x4002 1BFF	Reserved
	0x4002 1000 - 0x4002 13FF	GPIOE
	0x4002 0C00 - 0x4002 0FFF	GPIOD
	0x4002 0800 - 0x4002 0BFF	GPIOC
	0x4002 0400 - 0x4002 07FF	GPIOB
	0x4002 0000 - 0x4002 03FF	GPIOA

Table 10. STM32F411xC/xE register boundary addresses (continued)

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 16*.

			Тур	Max ⁽¹⁾					
	Conditions	Parameter	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	T _A = 125 °C	Unit	
	Flash in Stop mode, all oscillators OFF, no independent watchdog	Main regulator usage	113.7	145 ⁽²⁾	410	720 ⁽²⁾	1217		
		Low power regulator usage	43.1	68 ⁽²⁾	310	600 ⁽²⁾	1073		
IDD STOP	Flash in Deep power	Main regulator usage	76.2	105 ⁽²⁾	320	600 ⁽²⁾	1019	μA	
	down mode, all	Low power regulator usage	14	38 ⁽²⁾	275	560 ⁽²⁾	1025		
	oscillators OFF, no independent watchdog	Low power low voltage regulator usage	10	30 ⁽²⁾	235	510 ⁽²⁾	928		

1. Guaranteed by characterization results.

2. Guaranteed by test in production.

Table 29. Typical and maximum current consumption in Standby mode - V_{DD} = 1.7 V
--

			Тур ⁽¹⁾		Max ⁽²	2)		
Symbol	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	Т _А = 85 °С	T _A = 105 °C	I _A =	Unit
	cappij canon	Low-speed oscillator (LSE) and RTC ON	2.4	4	12	25	50	μA
^I DD_STBY	in Standby mode	RTC and LSE OFF	1.8	3 ⁽³⁾	11	24 ⁽³⁾	49	μΛ

1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 μ A.

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Table 30. Typical and maximum current consumption in Standby mode - $\rm V_{DD}$ = 3.6 V

			Typ ⁽¹⁾		Max ⁽²			
Symbol	Parameter	Conditions	T _A = 25 ℃	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	T _A = 125 °C	Unit
	Supply current	Low-speed oscillator (LSE) and RTC ON	2.8	5	14	29	59	
55_0.5.	in Standby mode	RTC and LSE OFF	2.1	4 ⁽³⁾	13.5	28 ⁽³⁾	58	μA

1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 μ A.

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

					1	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on VDD	VCO freq = 100 MHz VCO freq = 432 MHz	0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on VDDA	VCO freq = 100 MHz VCO freq = 432 MHz	0.30 0.55	-	0.40 0.85	

Table 41. Main PLL characteristics (continued)

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design.

3. The use of two PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization results.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾	-		0.95 ⁽²⁾	1	2.10	
f _{PLLI2S_OUT}	PLLI2S multiplier output clock	-		-	-	216	MHz
f _{VCO_OUT}	PLLI2S VCO output	-	-		-	432	
+	PLLI2S lock time	VCO freq = 100 MHz		75	-	200	
t _{LOCK}		VCO freq = 432 MHz		100	-	300	μs
	Master I2S clock jitter	Cycle to cycle at	RMS	-	90	-	
		48 kHz period,	peak to peak	-	±280	-	
Jitter ⁽³⁾		Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples		-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 KHz on 1000 samples		-	400	-	
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	

Table 42. PLLI2S (audio PLL) characteristics

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs	
		Program/erase parallelism (PSIZE) = x 8	-	400	800		
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms	
		Program/erase parallelism (PSIZE) = x 32	-	250	500		
		Program/erase parallelism (PSIZE) = x 8	-	1200	2400		
t _{ERASE64KB}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms	
		Program/erase parallelism (PSIZE) = x 32	-	550	1100		
	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 8	-	2	4		
t _{ERASE128KB}		Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	s	
		Program/erase parallelism (PSIZE) = x 32	-	1	2		
		Program/erase parallelism (PSIZE) = x 8	-	8	16		
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	5.5	11	s	
		Program/erase parallelism (PSIZE) = x 32	-	4	8		
		32-bit program operation	2.7	-	3.6	V	
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V	
		8-bit program operation	1.7	-	3.6	V	

Table 45. Flash memory programming

1. Guaranteed by characterization results.

2. The maximum programming time is measured after 100K erase operations.

Table 46. Flash memory	programming with	V _{PP} voltage
------------------------	------------------	-------------------------

				-		
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	ector (16 KB) erase time $T_A = 0$ to +40 °C		230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-	
t _{ME}	Mass erase time		-	3.50	-	s

Output voltage levels

Unless otherwise specified, the parameters given in *Table 54* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V ≤V _{DD} ≤3.6 V	V _{DD} -0.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} =+8 mA 2.7 V ⊴V _{DD} ⊴3.6 V	2.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3 ⁽⁴⁾	v
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	2.7 V ≤V _{DD} ≤3.6 V	V _{DD} -1.3 ⁽⁴⁾	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4 ⁽⁴⁾	v
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.8 V ≤V _{DD} ≤3.6 V	V _{DD} -0.4 ⁽⁴⁾	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +4 mA	-	0.4 ⁽⁵⁾	v
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.7 V ≤V _{DD} ≤3.6 V	V _{DD} -0.4 ⁽⁵⁾	-	v

Table 54.	Output voltage	characteristics
-----------	----------------	-----------------

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 12*. and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Guaranteed by characterization results.

5. Guaranteed by design.

SPI interface characteristics

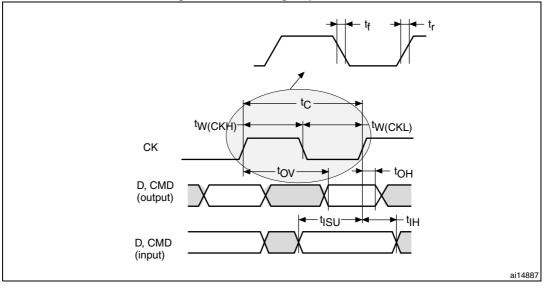
Unless otherwise specified, the parameters given in *Table 60* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

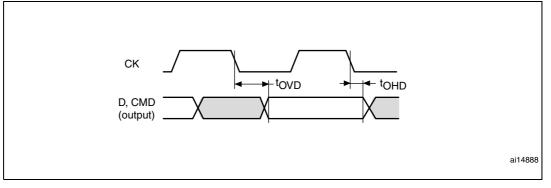
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Master full duplex/receiver mode, 2.7 V < V_{DD} < 3.6 V SPI1/4/5	-	-	42	
		Master full duplex/receiver mode, 3.0 V < V_{DD} < 3.6 V SPI1/4/5	-	-	50	
		Master transmitter mode 1.7 V < V _{DD} < 3.6 V SPI1/4/5	-	-	50	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Master mode 1.7 V < V _{DD} < 3.6 V SPI1/2/3/4/5	-	-	25	MHz
		Slave transmitter/full duplex mode 2.7 V < V_{DD} < 3.6 V SPI1/4/5	-	-	38 ⁽²⁾	
		Slave receiver mode, 1.8 V < V _{DD} < 3.6 V SPI1/4/5	-	-	50	
		Slave mode, 1.8 V < V _{DD} < 3.6 V SPI1/2/3/4/5	-	-	25	
Duty(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, SPI presc = 2	T _{PCLK} -1.5	T _{PCLK}	Т _{РСLК} +1.5	ns
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	3T _{PCLK}	-	-	ns
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2T _{PCLK}	-	-	ns
t _{su(MI)}	Data input setup time	Master mode	4	-	-	ns
t _{su(SI)}		Slave mode	2.5	-	-	ns
t _{h(MI)}	Data input hold time	Master mode	7.5	-	-	ns
t _{h(SI)}		Slave mode	3.5	-	-	ns

Table 60. SPI dynamic characteristics ⁽
--



6.3.24 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 76* for the SDIO/MMC/eMMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 14*, with the following configuration:


- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF (for eMMC C = 20 pF)
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output characteristics.

Figure 44. SDIO high-speed mode

Figure 45. SD default mode

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 WLCSP49 package information

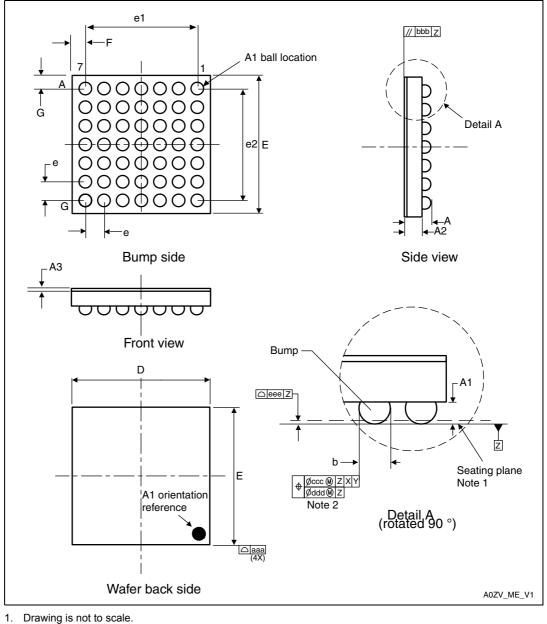
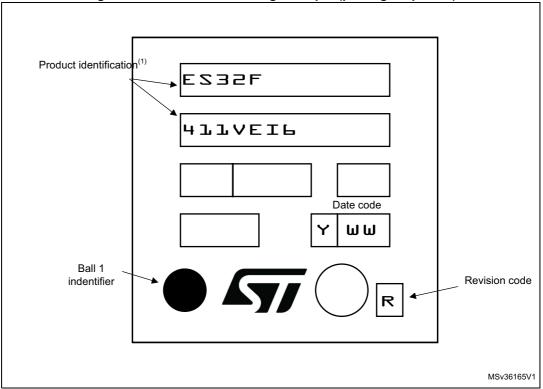


Figure 46. WLCSP49 - 49-ball, 2.999 x 3.185 mm, 0.4 mm pitch wafer level chip scale package outline


DocID026289 Rev 6

Device marking for UFBGA100

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 60. UFBGA100 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Date	Revision	Changes
21-Nov-2016	5	Updated: - Features - Figure 1: Compatible board design for LQFP100 package - Figure 2: Compatible board design for LQFP64 package - Figure 3: STM32F411xC/xE block diagram - Figure 22: High-speed external clock source AC timing diagram - Figure 23: Low-speed external clock source AC timing diagram - Figure 23: Low-speed external clock source AC timing diagram - Figure 33: I2C bus AC waveforms and measurement circuit - Figure 58: UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline - Table 2: STM32F411xC/xE features and peripheral counts - Table 8: STM32F411xC/xE pin definitions - Table 8: STM32F411xC/xE pin definitions - Table 13: Thermal characteristics - Table 14: General operating conditions - From Table 20: Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - VDD = 1.7 V to Table 31: Typical and maximum current consumptions in VBAT mode - Table 35: High-speed external user clock characteristics - Table 36: Low-speed external user clock characteristics - Table 36: Low-speed external user clock characteristics - Table 39: HSI oscillator characteristics - Table 39: HSI oscillator characteristics - Table 51: Electrical sensitivities - Table 51: Electrical sensitivities - Table 51: Lectrical sensitivities - Table 51: Lectrical sensitivities - Table 51: Lectrical sensitivities - Table 51: Lectrical sensitivities - Table 86: Ordering information scheme Added: - One-time programmable bytes - Table 85: Package thermal characteristics
05-Dec-2016	6	Updated: – Table 27: Typical and maximum current consumptions in Stop mode - VDD = 1.7 V – Table 28: Typical and maximum current consumption in Stop mode - VDD=3.6 V – Table 29: Typical and maximum current consumption in Standby mode - VDD= 1.7 V – Table 30: Typical and maximum current consumption in Standby mode - VDD= 3.6 V

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID026289 Rev 6