

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f411ret6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7

8

		6.3.5	Embedded reset and power control block characteristics	66
		6.3.6	Supply current characteristics	67
		6.3.7	Wakeup time from low-power modes	81
		6.3.8	External clock source characteristics	82
		6.3.9	Internal clock source characteristics	86
		6.3.10	PLL characteristics	88
		6.3.11	PLL spread spectrum clock generation (SSCG) characteristics	90
		6.3.12	Memory characteristics	91
		6.3.13	EMC characteristics	93
		6.3.14	Absolute maximum ratings (electrical sensitivity)	95
		6.3.15	I/O current injection characteristics	96
		6.3.16	I/O port characteristics	97
		6.3.17	NRST pin characteristics	103
		6.3.18	TIM timer characteristics	104
		6.3.19	Communications interfaces	104
		6.3.20	12-bit ADC characteristics	113
		6.3.21	Temperature sensor characteristics	119
		6.3.22	V _{BAT} monitoring characteristics	120
		6.3.23	Embedded reference voltage	120
		6.3.24	SD/SDIO MMC/eMMC card host interface (SDIO) characteristics	121
		6.3.25	RTC characteristics	123
7	Pack	age info	ormation	124
	7.1	-	P49 package information	
	7.2		N48 package information	
	7.3		4 package information	
	7.4		00 package information	
	7.5	UFBGA	100 package information	137
	7.6	Therma	al characteristics	140
		7.6.1	Reference document	140
8	Part	number	ing	141
Appendix	A R	lecomm	endations when using the internal reset OFF	142
	A.1	Operati	ng conditions	142
Appendix	B A	pplicati	on block diagrams	143
				—
4/149			DocID026289 Rev 6	\

3.4 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.5 Embedded Flash memory

The devices embed up to 512 Kbytes of Flash memory available for storing programs and data.

To optimize the power consumption the Flash memory can also be switched off in Run or in Sleep mode (see Section 3.18: Low-power modes). Two modes are available: Flash in Stop mode or in DeepSleep mode (trade off between power saving and startup time, see Table 34: Low-power mode wakeup timings(1)). Before disabling the Flash memory, the code must be executed from the internal RAM.

One-time programmable bytes

A one-time programmable area is available with 16 OTP blocks of 32 bytes. Each block can be individually locked.

(Additional information can be found in the product reference manual.)

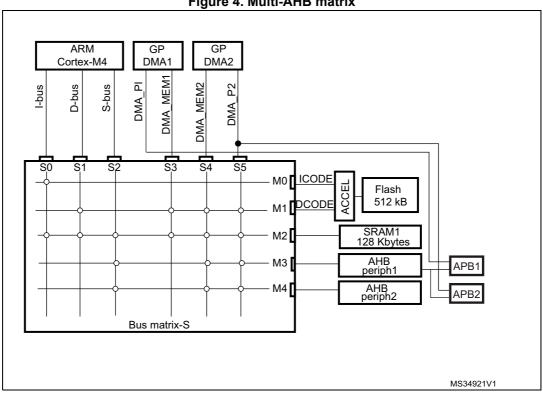
3.6 CRC (cyclic redundancy check) calculation unit

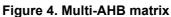
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.7 Embedded SRAM

All devices embed:


 128 Kbytes of system SRAM which can be accessed (read/write) at CPU clock speed with 0 wait states



DocID026289 Rev 6

3.8 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves (Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

3.9 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

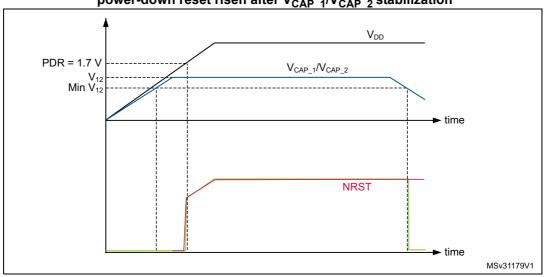
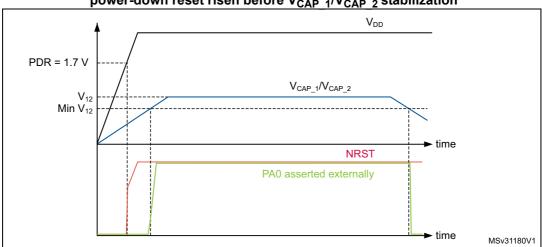



Figure 7. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after V_{CAP 1}/V_{CAP 2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

Figure 8. Startup in regulator OFF mode: fast V_{DD} slope - power-down reset risen before V_{CAP_1}/V_{CAP_2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

STM32F411xC STM32F411xE

									-			
	1	2	3	4	5	6	7	8	9	10	11	12
A	(PE3)	(PE1)	(РВ8)	(BOO)0	(PD7)	(PD5)	РВ4	(РВЗ)	(PA15)	(PA14)	PA13	(PA12)
в	PE4	(PE2)	(PB9)	(PB7)	(PB6)	(PD6)		(PD3)	(PD1)	C12	PC10	(PA11)
с		MP PE5	(PE0)	VDD	(PB5)		 	(PD2)	PD0	C11	(CAP 2	PA10
D	FC14 OSC32_IN	PE6	VSS				 			(PA9)	(PA8)	PC9
E	PC15) 05C32_0	VBAT	BYPAS	S_REG						PC8	PC7	PC6
F	PH0 SC N	VSS					 +				VSS	vss
G	PH1 OSCOL						 				VDD	VDD
н	PCO	NRS		DN			 			D15	PD14	PD13
J	VSSA	PC1	PC2							©D12	PD11	PD10
к	VRET-	PC3	(PA2)	(PA5)	(PC4)		 	(PD9)	(PB11)	PB15	PB14	PB13
L	VREF+	PAO	(PA3)	(PA6)	PC5	(PB2)	(PE8)	PE10	PE12	PB10	(VCAP)	PB12
м	VDDA	(PA1)	(PA4)	(PA7)	(PB0)	(PB1)	PE7	(PE9)	(PE11)	PE13	PE14	PE15

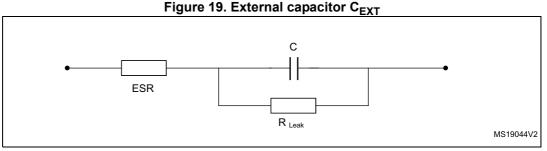
Figure 13. STM32F411xC/xE UFBGA100 pinout

1. This figure shows the package top view

	Pir	n numt	ber							
UFQFPN48	LQFP64	WLCSP49	LQFP100	UFBGA100	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
31	43	C2	69	C12	PA10	I/O	FT	-	TIM1_CH3, SPI5_MOSI/I2S5_SD, USART1_RX, USB_FS_ID, EVENTOUT	-
32	44	C1	70	B12	PA11	I/O	FT	-	TIM1_CH4, SPI4_MISO, USART1_CTS, USART6_TX, USB_FS_DM, EVENTOUT	-
33	45	C3	71	A12	PA12	I/O	FT	-	TIM1_ETR, SPI5_MISO, USART1_RTS, USART6_RX, USB_FS_DP, EVENTOUT	-
34	46	B3	72	A11	PA13	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
-	-	-	73	C11	VCAP_2	S	-	-	-	-
35	47	B1	74	F11	VSS	S	-	-	-	-
36	48	B2	75	G11	VDD	S	-	-	-	-
37	49	A1	76	A10	PA14	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
38	50	A2	77	A9	PA15	I/O	FT	-	JTDI, TIM2_CH1/TIM2_ETR , SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART1_TX, EVENTOUT	-
-	51	-	78	B11	PC10	I/O	FT	-	SPI3_SCK/I2S3_CK, SDIO_D2, EVENTOUT	-
-	52	-	79	C10	PC11	I/O	FT	-	I2S3ext_SD, SPI3_MISO, SDIO_D3, EVENTOUT	-
-	53	-	80	B10	PC12	I/O	FT	-	SPI3_MOSI/I2S3_SD, SDIO_CK, EVENTOUT	-

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum Flash memory access frequency with wait states ⁽¹⁾⁽²⁾	I/O operation	Clock output frequency on I/O pins ⁽³⁾	Possible Flash memory operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz	100 MHz with 4 wait states	 I/O compensation works 	up to 50 MHz	16-bit erase and program operations
V _{DD} = 2.7 to 3.6 V ⁽⁶⁾	Conversion time up to 2.4 Msps	30 MHz	100 MHz with 3 wait states	 I/O compensation works 	- up to 100 MHz when V_{DD} = 3.0 to 3.6 V - up to 50 MHz when V_{DD} = 2.7 to 3.0 V	32-bit erase and program operations

Table 15. Features depending on the operating power supply range (continued)


1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

- 2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.
- 3. Refer to Table 55: I/O AC characteristics for frequencies vs. external load.
- V_{DD}/V_{DDA} minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.15.2: Internal reset OFF).
- 5. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.
- The voltage range for the USB full speed embedded PHY can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

6.3.2 VCAP_1/VCAP_2 external capacitors

Stabilization for the main regulator is achieved by connecting the external capacitor C_{EXT} to the VCAP_1 and VCAP_2 pins. For packages supporting only 1 VCAP pin, the 2 CEXT capacitors are replaced by a single capacitor.

C_{EXT} is specified in *Table 16*.

1. Legend: ESR is the equivalent series resistance.

DocID026289 Rev 6

Symbol	Parameter	Conditions							
CEXT	Capacitance of external capacitor with a single VCAP pin available	4.7 µF							
ESR	ESR of external capacitor with a single VCAP pin available	<1Ω							

Table 16. VCAP_1/VCAP_2 operating conditions⁽¹⁾

 When bypassing the voltage regulator, the two 2.2 μF V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

6.3.3 Operating conditions at power-up/power-down (regulator ON)

Subject to general operating conditions for T_A .

Table 17. Operating conditions at power-up / power-down (regulator ON)

Symbol	Parameter	Min	Мах	Unit
1	V _{DD} rise time rate	20	∞	us/V
^L VDD	V _{DD} fall time rate	20	∞	μ5/ ν

6.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_A.

Table 18. Operating conditions at power-up / power-down (regulator OFF)⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
+	V _{DD} rise time rate	Power-up	20	~	
t _{VDD}	V _{DD} fall time rate	Power-down	20	~	us/V
+	V_{CAP_1} and V_{CAP_2} rise time rate	Power-up	20	~	μ5/ν
^I VCAP	V_{CAP_1} and V_{CAP_2} fall time rate	Power-down	20	~	

1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reach below 1.08 V.

Note: This feature is only available for UFBGA100 package.

(ART accelerator enabled except prefetch) running from Flash memory - V_{DD} = 3.6 V										
			£			Ma	x ⁽¹⁾			
Symbol Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	T _A = 125 °C	Unit		
			100	20.7	22.2	22.5	23.2	24.4		
		External clock, PLL	84	16.8	18.0	18.3	19.0	20.1		
		ON ⁽²⁾ , all peripherals	64	11.8	12.7	12.9	13.6	14.6		
		enabled ⁽³⁾⁽⁴⁾	enabled ⁽³⁾⁽⁴⁾	50	9.3	10.2	10.4	11.1	12.0	
			20	4.8	5.5	5.8	6.5	7.4	mA	
		HSI, PLL OFF ⁽²⁾ , all peripherals enabled ⁽³⁾	16	3.0	3.3	3.8	4.5	5.4		
	Supply current		1	0.7	1.0	1.4	2.1	3.0		
I _{DD}	in Run mode		100	11.6	12.6	12.9	13.6	14.8	ШA	
			84	9.7	10.2 ⁽⁵⁾	11.1	11.3	12.5	-	
		External clock, PLL ON ⁽²⁾ all peripherals disabled ⁽³⁾	64	6.7	7.4	7.7	8.3	9.4		
			50	5.4	6.0	6.3	7.0	8.0		
			20	2.9	3.4	3.7	4.4	5.4		
		HSI, PLL OFF ⁽²⁾ , all	16	1.9	2.2	2.6	3.3	4.3		
		peripherals disabled ⁽³⁾	1	0.7	0.9	1.3	2.1	3.1		

Table 23. Typical and maximum current consumption in run mode, code with data processing(ART accelerator enabled except prefetch) running from Flash memory - V_{DD} = 3.6 V

1. Guaranteed by characterization results.

2. Refer to Table 41 and RM0383 for the possible PLL VCO setting

3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

4. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the analog part.

5. Guaranteed by test in production.

						Ма	x ⁽¹⁾		
Symbol Param	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	T _A = 125 °C	Unit
			100	29.5	31.5	32.3	33.3	34.7	
		External clock, PLL	84	25.5	27.1	27.9	28.9	30.2	
		ON ⁽²⁾ , all peripherals	64	18.6	19.8	20.4	21.2	22.4	
		enabled ⁽³⁾⁽⁴⁾	50	15.2	16.4	16.9	17.7	18.7	mA
			20	7.6	8.4	8.8	9.5	10.5	
		HSI, PLL OFF ⁽²⁾ , all peripherals enabled ⁽³⁾	16	4.8	5.2	5.7	6.5	7.5	
	Supply current		1	0.9	1.3	1.6	2.4	3.4	
I _{DD}	in Run mode	External clock, PLL ON ⁽²⁾ all peripherals disabled ⁽³⁾	100	20.4	21.8	22.7	23.8	25.1	mA
			84	18.4	19.2 ⁽⁵⁾	20.9	21.1	22.4	-
			64	13.5	14.5	15.2	15.9	17.2	
			50	11.3	12.2	12.8	13.6	14.7	
			20	5.6	6.4	6.7	7.4	8.5	
		HSI, PLL OFF ⁽²⁾ , all	16	3.6	4.1	4.5	5.2	6.3	
		peripherals disabled ⁽³⁾	1	0.9	1.2	1.6	2.3	3.4	

Table 24. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - V_{DD} = 3.6 V

1. Guaranteed by characterization results.

2. Refer to Table 41 and RM0383 for the possible PLL VCO setting

3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

4. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the analog part.

5. Guaranteed by test in production.

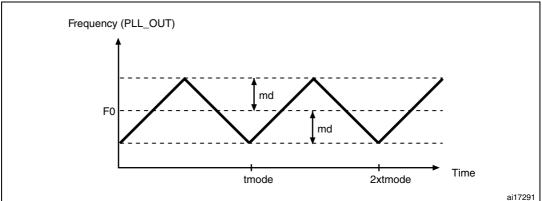
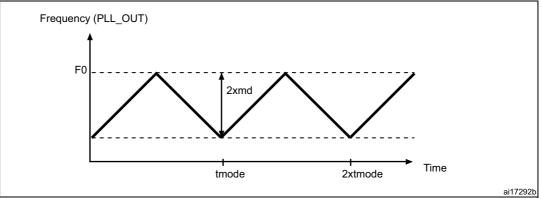


Figure 28 and *Figure 29* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.


 T_{mode} is the modulation period.

md is the modulation depth.

6.3.12 Memory characteristics

Flash memory

The characteristics are given at T_A = - 40 to 125 °C unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
I _{DD} Supply current		Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	12	-	

Symbol	Parameter		Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	All pins except for PA10 (OTG_FS_ID)	$V_{IN} = V_{SS}$	30	40	50	
		PA10 (OTG_FS_ID)	-	7	10	14	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁷⁾	All pins except for PA10 (OTG_FS_ID)	$V_{IN} = V_{DD}$	30	40	50	N22
		PA10 (OTG_FS_ID)	-	7	10	14	
C _{IO} ⁽⁸⁾	I/O pin capacitance		_	-	5	-	pF

Table 53. I/O static characteristics (continued)

1. Guaranteed by test in production.

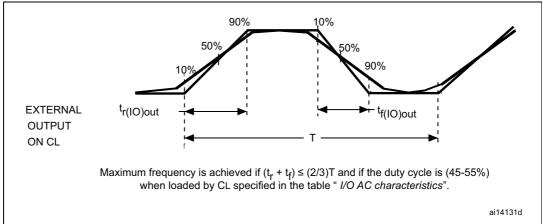
2. Guaranteed by design.

3. With a minimum of 200 mV.

- 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 52: I/O current injection susceptibility
- To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 52: I/O current injection susceptibility
- 6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
- Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT and TC I/Os is shown in *Figure 30*.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
			C _L = 30 pF, V _{DD} ≥ 2.70 V	-	-	100 ⁽⁴⁾	
	F _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	50 ⁽⁴⁾	MHz
			C _L = 30 pF, V _{DD} ≥ 2.70 V	-	-	4	
11	t _{f(IO)out} / t _{r(IO)out}	time and output low to high	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	6	ns
			C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	2.5	115
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	4	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10	-	-	ns


Table 55. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by characterization results.

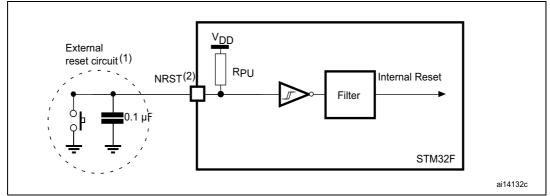
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure 31*.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

Figure 31. I/O AC characteristics definition

6.3.17 NRST pin characteristics


The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 53*).

Unless otherwise specified, the parameters given in *Table 56* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*. Refer to *Table 53: I/O static characteristics* for the values of VIH and VIL for NRST pin.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse		-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

2. Guaranteed by design.

Figure 32. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 56. Otherwise the reset is not taken into account by the device.

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 60* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
		Master full duplex/receiver mode, 2.7 V < V_{DD} < 3.6 V SPI1/4/5	-	-	42		
		Master full duplex/receiver mode, 3.0 V < V_{DD} < 3.6 V SPI1/4/5	-	-	50		
		Master transmitter mode 1.7 V < V _{DD} < 3.6 V SPI1/4/5	-	-	50		
^f scк 1/t _{c(SCK)}	SPI clock frequency	Master mode 1.7 V < V _{DD} < 3.6 V SPI1/2/3/4/5	-	-	25	MHz	
		Slave transmitter/full duplex mode $2.7 V < V_{DD} < 3.6 V$ SPI1/4/5		-	38 ⁽²⁾		
		Slave receiver mode, 1.8 V < V _{DD} < 3.6 V SPI1/4/5	-	-	50		
		Slave mode, 1.8 V < V _{DD} < 3.6 V SPI1/2/3/4/5	-	-	25		
Duty(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, SPI presc = 2	T _{PCLK} -1.5	T _{PCLK}	Т _{РСLК} +1.5	ns	
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	3T _{PCLK}	-	-	ns	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2T _{PCLK}	-	-	ns	
t _{su(MI)}	Data input setup time	Master mode	4	-	-	ns	
t _{su(SI)}		Slave mode	2.5	-	-	ns	
t _{h(MI)}	Data input hold time	Master mode	7.5	-	-	ns	
t _{h(SI)}		Slave mode	3.5	-	-	ns	

Table 60. SPI dynamic characteristics ⁽
--

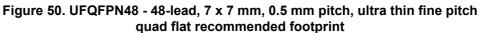
6.3.25 RTC characteristics

Table 77. Dynamic characteristics: eMMC characteristics $V_{DD} = 1.7 V$ to 1.9 $V^{(1)(2)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz					
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-					
t _{W(CKL)}	Clock low time	fpp = 50 MHz	10	10.5	-	200					
t _{W(CKH)}	Clock high time	fpp = 50 MHz	9	9.5	-	– ns					
CMD, D in	CMD, D inputs (referenced to CK) in eMMC mode										
t _{ISU}	Input setup time HS	fpp = 50 MHz	0	-	-	ns					
t _{IH}	Input hold time HS	fpp = 50 MHz	6	-	-						
CMD, D outputs (referenced to CK) in eMMC mode											
t _{OV}	Output valid time HS	fpp = 50 MHz	-	3.5	5	20					
t _{OH}	Output hold time HS	fpp = 50 MHz	2	-	-	– ns					

1. Guaranteed by characterization results.

2. C_{load} = 20 pF


Table 78. RTC characteristics

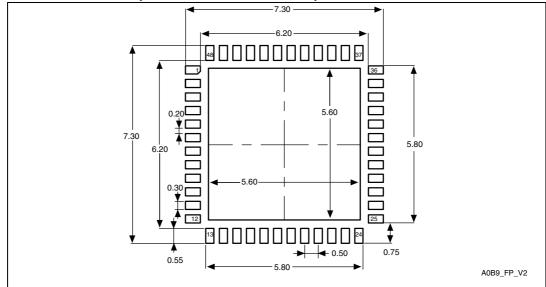
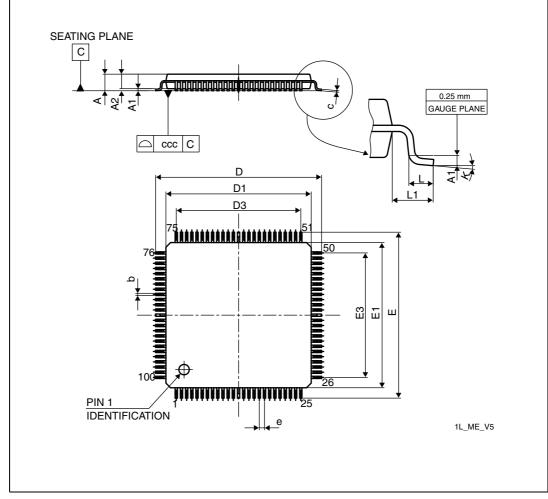

Symbol	Parameter	Conditions	Min	Max
-	f _{PCLK1} /RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

Table 81. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitchquad flat package mechanical data (continued)

	quad nat puckage meenaned, and (commune)								
Cumhal	millimeters			inches ⁽¹⁾					
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.			
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244			
L	0.300	0.400	0.500	0.0118	0.0157	0.0197			
Т	-	0.152	-	-	0.0060	-			
b	0.200	0.250	0.300	0.0079	0.0098	0.0118			
е	-	0.500	-	-	0.0197	-			
ddd	-	-	0.080	-	-	0.0031			

1. Values in inches are converted from mm and rounded to 4 decimal digits.



1. Dimensions are in millimeters.

7.4 LQFP100 package information

Figure 55. LQFP100 - 100-pin, 14 x 14 mm, 100-pin low-profile quad flat package outline

^{1.} Drawing is not to scale.

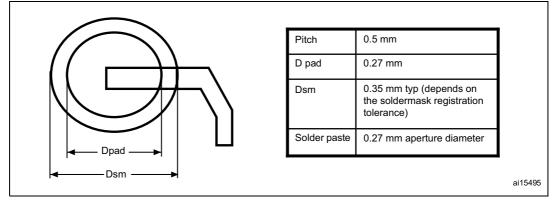
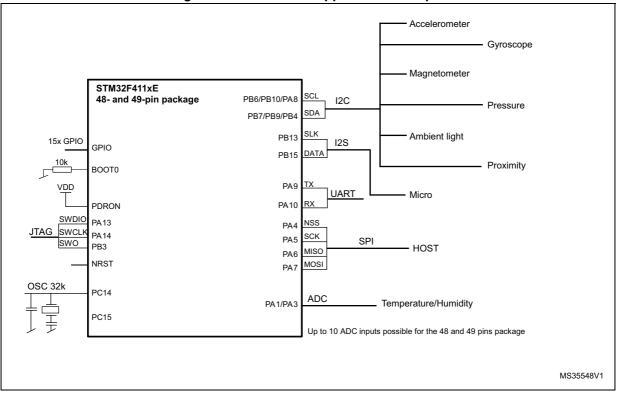


Table 84. UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array packagemechanical data (continued)

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
ddd	-	-	0.100	-	-	0.0039	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.050	-	-	0.0020	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 59. Recommended PCB design rules for pads (0.5 mm-pitch BGA)


1. Non solder mask defined (NSMD) pads are recommended.

2. 4 to 6 mils solder paste screen printing process.

B.2 Sensor Hub application example

Figure 64. Sensor Hub application example

