

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

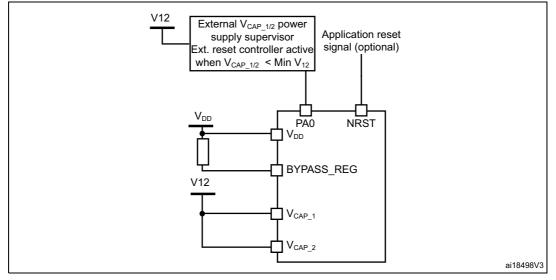
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f411ret7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


	chip scale package outline	124
Figure 47.	WLCSP49 - 49-ball, 2.999 x 3.185 mm, 0.4 mm pitch wafer level chip scale	
	recommended footprint	125
Figure 48.	WLCSP49 marking (package top view)	126
Figure 49.	UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch	
	quad flat package outline	127
Figure 50.	UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch	
	quad flat recommended footprint	128
Figure 51.	UFQFPN48 marking example (package top view)	129
Figure 52.	LQFP64 - 64-pin, 10 x 10 mm, 64-pin low-profile quad flat package outline	130
Figure 53.	LQFP64 recommended footprint	131
Figure 54.	LQFP64 marking example (package top view)	132
Figure 55.	LQFP100 - 100-pin, 14 x 14 mm, 100-pin low-profile quad flat	
	package outline	133
Figure 56.	LQFP100 - 100-pin, 14 x 14 mm, 100-pin low-profile quad flat	
	recommended footprint	135
Figure 57.	LQPF100 marking example (package top view)	136
Figure 58.	UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch	
	ball grid array package outline	137
Figure 59.	Recommended PCB design rules for pads (0.5 mm-pitch BGA)	138
Figure 60.	UFBGA100 marking example (package top view)	139
Figure 61.	USB controller configured as peripheral-only and used in Full-Speed mode	143
Figure 62.	USB controller configured as host-only and used in Full-Speed mode	143
Figure 63.	USB controller configured in dual mode and used in Full-Speed mode	144
Figure 64.	Sensor Hub application example	145
Figure 65.	Batch Acquisition Mode (BAM) example	146

When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.

Figure 6. Regulator OFF

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 7*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 8*).
- If V_{CAP_1} and V_{CAP_2} go below V_{12} minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.

Note:

The minimum value of V_{12} depends on the maximum frequency targeted in the application

3.29 Analog-to-digital converter (ADC)

One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4 or TIM5 timer.

3.30 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value. Refer to the reference manual for additional information.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.31 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.32 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F411xC/xE through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using any high-speed channel available. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

	Pir	n numt	ber							
UFQFPN48	LQFP64	WLCSP49	LQFP100	UFBGA100	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
21	29	E3	47	L10	PB10	I/O	FT	-	TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, I2S3_MCK, SDIO_D7, EVENTOUT	-
-	-	-	-	К9	PB11	I/O	FT	-	TIM2_CH4, I2C2_SDA, I2S2_CKIN, EVENTOUT	-
22	30	G2	48	L11	VCAP_1	S	-	-	-	-
23	31	D3	49	F12	VSS	S	-	-	-	-
24	32	F2	50	G12	VDD	S	-	-	-	-
25	33	E2	51	L12	PB12	I/O	FT	-	TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, SPI4_NSS/I2S4_WS, SPI3_SCK/I2S3_CK, EVENTOUT	-
26	34	G1	52	K12	PB13	I/O	FT	-	TIM1_CH1N, SPI2_SCK/I2S2_CK, SPI4_SCK/I2S4_CK, EVENTOUT	-
27	35	F1	53	K11	PB14	I/O	FT	-	TIM1_CH2N, SPI2_MISO, I2S2ext_SD, SDIO_D6, EVENTOUT	-
28	36	E1	54	K10	PB15	I/O	FT	-	RTC_50Hz, TIM1_CH3N, SPI2_MOSI/I2S2_SD, SDIO_CK, EVENTOUT	RTC_REFIN
-	-	-	55	-	PD8	I/O	FT	-	-	-
-	-	-	56	K8	PD9	I/O	FT	-	-	-
-	-	-	57	J12	PD10	I/O	FT	-	-	-
-	-	-	58	J11	PD11	I/O	FT	-	-	-
-	-	-	59	J10	PD12	I/O	FT	-	TIM4_CH1, EVENTOUT	-

	Pir	n numl	ber							
UFQFPN48	LQFP64	WLCSP49	LQFP100	UFBGA100	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
43	59	D4	93	B4	PB7	I/O	FT	-	TIM4_CH2, I2C1_SDA, USART1_RX, SDIO_D0, EVENTOUT	-
44	60	A5	94	A4	BOOT0	I	В	-	-	VPP
45	61	В5	95	A3	PB8	I/O	FT	-	TIM4_CH3, TIM10_CH1, I2C1_SCL, SPI5_MOSI/I2S5_SD, I2C3_SDA, SDIO_D4, EVENTOUT	-
46	62	C5	96	В3	PB9	I/O	FT	-	TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, I2C2_SDA, SDIO_D5, EVENTOUT	-
-	-	-	97	C3	PE0	I/O	FT	-	TIM4_ETR, EVENTOUT	-
-	-	-	98	A2	PE1	I/O	FT	-	EVENTOUT	-
47	63	A6	99	-	VSS	S	-	-	-	-
-	-	B6	-	H3	PDR_ON	Ι	FT	-	-	-
48	64	A7	100	-	VDD	S	-	-	-	-

Table 8. STM32F411xC/xE pin definitions (continued)

1. Function availability depends on the chosen device.

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF.
 These I/Os must not be used as a current source (e.g. to drive an LED).

3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F411xx reference manual.

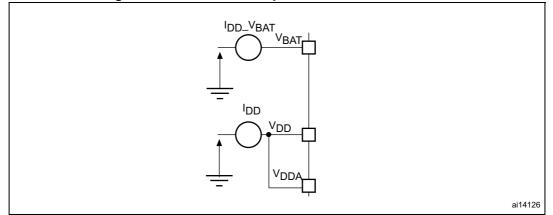
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

If the device is delivered in an UFBGA100 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON mode), then PA0 is used as an internal Reset (active low) 5.

STM32F411xC STM32F411xE

Pinouts and pin description

		AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF1
	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/I2S1S PI2/ I2S2/SPI3/ I2S3	SPI2/I2S2/ SPI3/ I2S3/SPI4/ I2S4/SPI5/ I2S5	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
	PE0	-	-	TIM4_ETR	-	-	-	-	-	-	-	-	-	-	-	-	EVE OU
	PE1	-	-		-	-	-	-	-	-	-	-	-	-	-	-	EVE OU
	PE2	TRACECL K	-	-	-	-	SPI4_SCK/I 2S4_CK	SPI5_SCK/I2 S5_CK	-	-	-	-	-	-	-	-	EVE OU
	PE3	TRACED0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVE OU
	PE4	TRACED1	-	-	-	-	SPI4_NSS/I 2S4_WS	SPI5_NSS/I2 S5_WS	-	-	-	-	-	-	-	-	EVE OU
	PE5	TRACED2	-	-	TIM9_CH1	-	SPI4_MISO	SPI5_MISO	-	-	-	-	-	-	-	-	EVE OL
	PE6	TRACED3	-	-	TIM9_CH2	-	SPI4_MOSI /I2S4_SD	SPI5_MOSI/I 2S5_SD	-	-	-	-	-	-	-	-	EVE OL
L	PE7	-	TIM1_ETR	-	-	-	-	-	-	-	-	-	-	-	-	-	EVE OL
	PE8	-	TIM1_CH1N	-	-	-	-	-	-	-	-	-	-	-	-	-	EVE OL
	PE9	-	TIM1_CH1	-	-	-	-	-	-	-	-	-	-	-	-	-	EVE OU
	PE10	-	TIM1_CH2N	-	-	-	-	-	-	-	-	-	-	-	-	-	EVE OU
	PE11	-	TIM1_CH2	-	-	-	SPI4_NSS/I 2S4_WS	SPI5_NSS/I2 S5_WS	-	-	-	-	-	-	-	-	EVE OL
	PE12	-	TIM1_CH3N	-	-	-	SPI4_SCK/I 2S4_CK	SPI5_SCK/I2 S5_CK	-	-	-	-	-	-	-	-	EVE OL
	PE13	-	TIM1_CH3	-	-	-	SPI4_MISO	SPI5_MISO	-	-	-	-	-	-	-	-	EVE Ol
	PE14	-	TIM1_CH4	-	-	-	SPI4_MOSI /I2S4_SD	SPI5_MOSI/I 2S5_SD	-	-	-	-	-	-	-	-	EVE Ol
	PE15	-	TIM1_BKIN	-	-	-	-	-	_	-	-	-	-	_	-	-	EVE


STM32F411xC STM32F411xE

Bus	Boundary address	Peripheral
	0x4001 5400- 0x4001 FFFF	Reserved
	0x4001 5000 - 0x4001 53FFF	SPI5/I2S5
	0x4001 4800 - 0x4001 4BFF	TIM11
	0x4001 4400 - 0x4001 47FF	TIM10
	0x4001 4000 - 0x4001 43FF	ТІМ9
	0x4001 3C00 - 0x4001 3FFF	EXTI
	0x4001 3800 - 0x4001 3BFF	SYSCFG
	0x4001 3400 - 0x4001 37FF	SPI4/I2S4
APB2	0x4001 3000 - 0x4001 33FF	SPI1/I2S1
APDZ	0x4001 2C00 - 0x4001 2FFF	SDIO
	0x4001 2400 - 0x4001 2BFF	Reserved
	0x4001 2000 - 0x4001 23FF	ADC1
	0x4001 1800 - 0x4001 1FFF	Reserved
	0x4001 1400 - 0x4001 17FF	USART6
	0x4001 1000 - 0x4001 13FF	USART1
	0x4001 0400 - 0x4001 0FFF	Reserved
	0x4001 0000 - 0x4001 03FF	TIM1
	0x4000 7400 - 0x4000 FFFF	Reserved

Table 10. STM32F411xC/xE register boundary addresses (continued)

6.1.7 Current consumption measurement

Figure 18. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA}, V_{DD} and $V_{BAT})^{(1)}$	-0.3	4.0	
	Input voltage on FT and TC pins ⁽²⁾	V _{SS} -0.3	V _{DD} +4.0	v
V _{IN}	Input voltage on any other pin	V _{SS} -0.3	4.0	
	Input voltage for BOOT0	V _{SS} 9.0		
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	mV
$ V_{SSX} - V_{SS} $	Variations between all the different ground pins	-	50	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio Absolute n ratings (ele sensitivity)	naximum ectrical	

Table 11. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum value must always be respected. Refer to *Table 12* for the values of the maximum allowed injected current.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
		UFQFPN48	-	-	156			
		WLCSP49	-	-	98			
PD	Power dissipation at $T_A = 125 \ ^{\circ}C \ (range 3)^{(7)}$	LQFP64	-	-	106	mW		
		LQFP100	-	-	116			
		UFBGA100	-	-	81			
	Ambient temperature for	Maximum power dissipation	- 40	-	85			
	range 6	Low power dissipation ⁽⁸⁾	- 40	-	105			
Та	Ambient temperature for	Maximum power dissipation	- 40	-	105			
IA	range 7	Low power dissipation ⁽⁸⁾	- 40	-	125			
	Ambient temperature for	Maximum power dissipation	- 40	-	110	°C		
	range 3	Low power dissipation ⁽⁸⁾	- 40	-	130			
		Range 6	- 40	-	105			
TJ	Junction temperature range	Range 7	- 40	-	125			
		Range 3	- 40	-	130			

Table 14. General operating conditions (continued)

V_{DD}/V_{DDA} minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.15.2: Internal reset OFF).

2. When the ADC is used, refer to Table 65: ADC characteristics.

- 3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
- 4. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and power-down operation.
- 5. Guaranteed by test in production.
- 6. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
- 7. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .
- 8. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax}.

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum Flash memory access frequency with wait states ⁽¹⁾⁽²⁾	I/O operation	Clock output frequency on I/O pins ⁽³⁾	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽⁴⁾	Conversion time up to 1.2 Msps	16 MHz ⁽⁵⁾	100 MHz with 6 wait states	 No I/O compensation 	up to 30 MHz	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	18 MHz	100 MHz with 5 wait states	 No I/O compensation 	up to 30 MHz	16-bit erase and program operations

Table 15. Features depending on the operating power supply range

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{RUSH} ⁽²⁾	In-Rush current on voltage regulator power- on (POR or wakeup from Standby)	-	-	160	200	mA
E _{RUSH} ⁽²⁾	In-Rush energy on voltage regulator power- on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 125 °C, I _{RUSH} = 171 mA for 31 µs	-	-	5.4	μC

 Table 19. Embedded reset and power control block characteristics (continued)

1. The product behavior is guaranteed by design down to the minimum V_{POR/PDR} value.

2. Guaranteed by design.

3. The reset timing is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is fetched by the user application code.

6.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 18: Current consumption measurement scheme*.

All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at VDD or VSS (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to both f_{HCLK} frequency and VDD ranges (refer to *Table 15: Features depending on the operating power supply range*).
- The voltage scaling is adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for $f_{HCLK} \le 64$ MHz
 - Scale 2 for 64 MHz < $f_{HCLK} \le 84$ MHz
 - Scale 1 for 84 MHz < f_{HCLK} ≤ 100 MHz
- The system clock is HCLK, f_{PCLK1} = f_{HCLK}/2, and f_{PCLK2} = f_{HCLK}.
- External clock is 4 MHz and PLL is ON except if it is explicitly mentioned.
- The maximum values are obtained for V_{DD} = 3.6 V and a maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

Symbol	Parameter	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽¹⁾	Unit	
t _{WUSLEEP} ⁽²⁾	Wakeup from Sleep mode	-	4	6	CPU clock cycle	
	Wakeup from Stop mode, usage of main regulator	-	13.5	14.5		
+ (2)	Wakeup from Stop mode, usage of main regulator, Flash memory in Deep power down mode	-	105	111	116	
twustop ⁽²⁾	Wakeup from Stop mode, regulator in low power mode	-	21	33	μs	
	Wakeup from Stop mode, regulator in low power mode, Flash memory in Deep power down mode	-	113	130		
twustdby ⁽²⁾⁽³⁾	Wakeup from Standby mode	-	314	407	μs	
turu=	Wakeup of Flash from Flash_Stop mode	-	-	8	116	
^t WUFLASH	Wakeup of Flash from Flash Deep power down mode	-	-	100	μs	

Table 34. Low-power mode wakeup timings⁽¹⁾

1. Guaranteed by characterization results.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.

3. $t_{WUSTDBY}$ maximum value is given at -40 °C.

6.3.8 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 53*. However, the recommended clock input waveform is shown in *Figure 22*.

The characteristics given in *Table 35* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	50	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	v
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	10	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%
١L	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 35. High-speed external user clock characteristics

1. Guaranteed by design.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

Table 51. I	Electrical	sensitivities
-------------	------------	---------------

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = + 125 \text{ °C conforming to JESD78A}$	II level A

6.3.15 I/O current injection characteristics

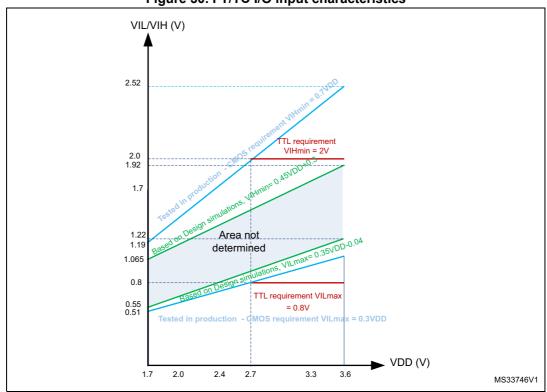
As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.


The test results are given in Table 52.

		Functional susceptibility		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 pin	-0	NA	
	Injected current on NRST pin	-0	NA	
I _{INJ}	Injected current on PB3, PB4, PB5, PB6, PB7, PB8, PB9, PC13, PC14, PC15, PH1, PDR_ON, PC0, PC1,PC2, PC3, PD1, PD5, PD6, PD7, PE0, PE2, PE3, PE4, PE5, PE6	-0	NA	mA
	Injected current on any other FT pin	-5	NA	
	Injected current on any other pins	-5	+5	

Table 52. I/O current injection susceptibility⁽¹⁾

1. NA = not applicable.

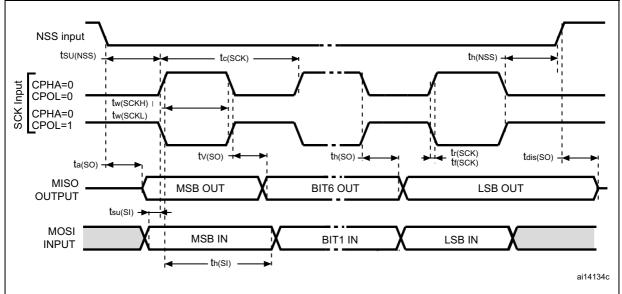
Figure 30. FT/TC I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14 and PC15 which can sink or source up to ± 3 mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 12*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 12*).



Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{a(SO})	Data output access time	Slave mode	7	-	21	ns
t _{dis(SO)}	Data output disable time	Slave mode	5	-	12	ns
+	Data output valid timo	Slave mode (after enable edge), 2.7 V < V_{DD} < 3.6 V	-	11	13	ns
t _{v(SO)} Data output valid time		Slave mode (after enable edge), 1.7 V < V_{DD} < 3.6 V	-	11	18.5	ns
t _{h(SO)}	Data output hold time	Slave mode (after enable edge), 1.7 V < V _{DD} < 3.6 V	8	-	-	ns
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	4	6	ns
t _{h(MO)}	Data output hold time	Master mode (after enable edge)	0	-	-	ns

Table 60. SPI	dynamic	characteristics ⁽¹⁾	(continued)
---------------	---------	--------------------------------	-------------

1. Guaranteed by characterization results.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50%

I²S interface characteristics

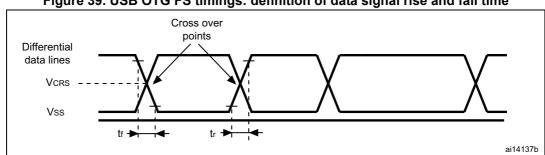
Unless otherwise specified, the parameters given in *Table 61* for the I²S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCK}	I2S Main clock output	-	256x8K	256xFs ⁽²⁾	MHz
f	125 clock froguonov	Master data: 32 bits	-	64xFs	MHz
f _{CK}	I2S clock frequency	Slave data: 32 bits	-	64xFs	
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	0	7	
t _{h(WS)}	WS hold time	Master mode	1.5	-	
t _{su(WS)}	WS setup time	Slave mode	1.5	-	
t _{h(WS)}	WS hold time	Slave mode	3	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	1	-	
$t_{su(SD_SR)}$		Slave receiver	2.5	-	ns
t _{h(SD_MR)}	Data input hold time	Master receiver	7	-	
t _{h(SD_SR)}	Data input noid time	Slave receiver	2.5	-	
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	20	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	6	
t _{h(SD_ST)}		Slave transmitter (after enable edge)	8	-	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	2	-	

Table 61. I ² S dynamic characteristics ⁽¹	I)	
--	----	--


1. Guaranteed by characterization results.

2. The maximum value of 256xFs is 50 MHz (APB1 maximum frequency).

Note: Refer to the I2S section of RM0383 reference manual for more details on the sampling frequency (F_{S}).

 f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_S maximum value is supported for each mode/condition.

Figure 39. USB OTG FS timings: definition of data signal rise and fall time

Table 64. USB OTG FS electrical characteristics⁽¹⁾

	Driver characteristics					
Symbol	Parameter	Conditions	Min	Max	Unit	
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns	
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns	
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%	
V _{CRS}	Output signal crossover voltage		1.3	2.0	V	

1. Guaranteed by design.

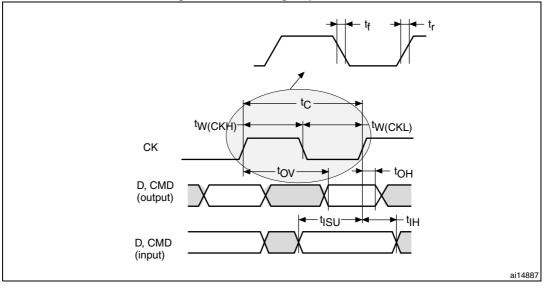
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

6.3.20 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 65* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 14*.

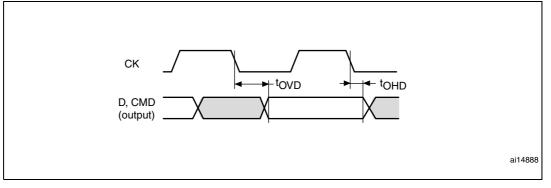
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply	V _{DDA} –V _{REF+} < 1.2 V	1.7 ⁽¹⁾	-	3.6	V
V _{REF+}	Positive reference voltage	$V_{DDA} - V_{REF+} < 1.2 V$	1.7 ⁽¹⁾	-	V _{DDA}	V
f	ADC clock frequency	V_{DDA} = 1.7 ⁽¹⁾ to 2.4 V	0.6	15	18	MHz
f _{ADC}	ADC Clock frequency	V _{DDA} = 2.4 to 3.6 V	0.6	30	36	MHz
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz
			-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾		0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	kΩ
R _{ADC} ⁽²⁾⁽⁴⁾	Sampling switch resistance		-	-	6	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor		-	4	7	pF

Table 65. ADC characteristics



6.3.24 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 76* for the SDIO/MMC/eMMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 14*, with the following configuration:

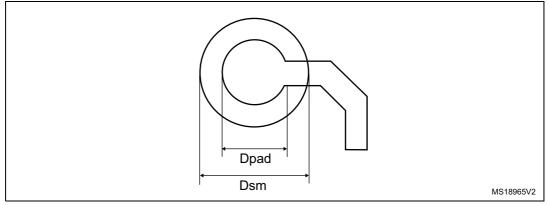

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF (for eMMC C = 20 pF)
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output characteristics.

Figure 44. SDIO high-speed mode

Figure 45. SD default mode

package mechanical data						
Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	2.964	2.999	3.034	0.1167	0.1181	0.1194
E	3.150	3.185	3.220	0.1240	0.1254	0.1268
е	-	0.400	-	-	0.0157	-
e1	-	2.400	-	-	0.0945	-
e2	-	2.400	-	-	0.0945	-
F	-	0.2995	-	-	0.0118	-
G	-	0.3925	-	-	0.0155	-
aaa	-	0.100	-	-	0.0039	-
bbb	-	0.100	-	-	0.0039	-
ccc	-	0.100	-	-	0.0039	-
ddd	-	0.050	-	-	0.0020	-
eee	-	0.050	-	-	0.0020	-


Table 79. WLCSP49 - 49-ball, 2.999 x 3.185 mm, 0.4 mm pitch wafer level chip scalepackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 47. WLCSP49 - 49-ball, 2.999 x 3.185 mm, 0.4 mm pitch wafer level chip scale recommended footprint

······································			
Dimension	Recommended values		
Pitch	0.4 mm		
Dpad	260 μm max. (circular) 220 μm recommended		
Dsm	300 μm min. (for 260 μm diameter pad)		
PCB pad design	Non-solder mask defined via underbump allowed		

 Table 80. WLCSP49 recommended PCB design rules (0.4 mm pitch)

Device marking for WLCSP49

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

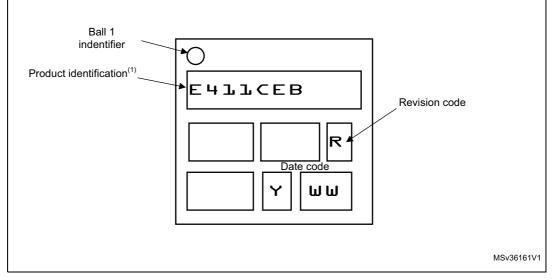
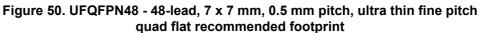


Figure 48. WLCSP49 marking (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

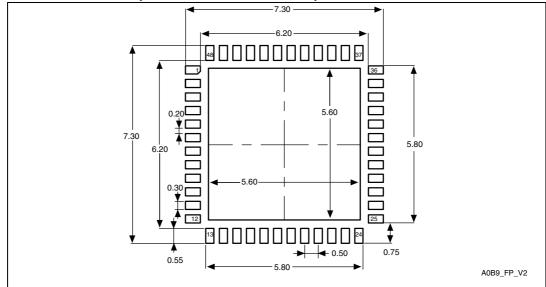


Table 81. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitchquad flat package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

