E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

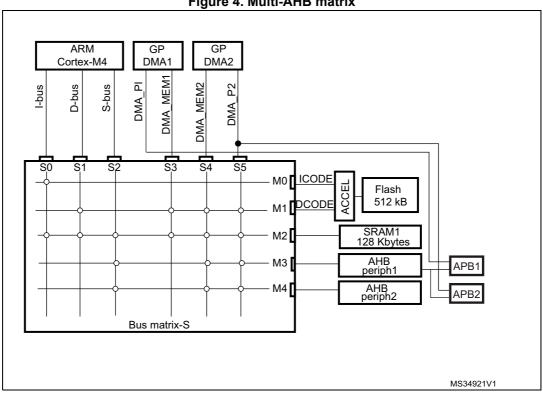
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

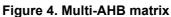
Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, IrDA, LINbus, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f411vct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Contents


1	Intro	duction	10
2	Desc	ription	11
	2.1	Compatibility with STM32F4 series	13
3	Func	tional overview	16
	3.1	$ARM^{ extsf{R}}$ Cortex $^{ extsf{R}}$ -M4 with FPU core with embedded Flash and SRAM \ldots	16
	3.2	Adaptive real-time memory accelerator (ART Accelerator™)	16
	3.3	Batch Acquisition mode (BAM)	16
	3.4	Memory protection unit	17
	3.5	Embedded Flash memory	17
	3.6	CRC (cyclic redundancy check) calculation unit	17
	3.7	Embedded SRAM	17
	3.8	Multi-AHB bus matrix	18
	3.9	DMA controller (DMA)	18
	3.10	Nested vectored interrupt controller (NVIC)	19
	3.11	External interrupt/event controller (EXTI)	19
	3.12	Clocks and startup	19
	3.13	Boot modes	20
	3.14	Power supply schemes	20
	3.15	Power supply supervisor	21
		3.15.1 Internal reset ON	21
		3.15.2 Internal reset OFF	21
	3.16	Voltage regulator	22
		3.16.1 Regulator ON	22
		3.16.2 Regulator OFF	
		3.16.3 Regulator ON/OFF and internal power supply supervisor availability	
	3.17	Real-time clock (RTC) and backup registers	
	3.18	Low-power modes	
	3.19	V _{BAT} operation	26
	3.20	Timers and watchdogs	27
		3.20.1 Advanced-control timers (TIM1)	27

3.8 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves (Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

3.9 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
USART1	х	х	х	х	х	х	6.25	12.5	APB2 (max. 100 MHz)
USART2	х	х	х	х	х	х	3.12	6.25	APB1 (max. 50 MHz)
USART6	х	N.A	х	Х	Х	х	6.25	12.5	APB2 (max. 100 MHz)

 Table 6. USART feature comparison

3.23 Serial peripheral interface (SPI)

The devices feature five SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4 and SPI5 can communicate at up to 50 Mbit/s, SPI2 and SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

3.24 Inter-integrated sound (I²S)

Five standard I²S interfaces (multiplexed with SPI1 to SPI5) are available. They can be operated in master or slave mode, in simplex communication modes and full duplex for I2S2 and I2S3 and can be configured to operate with a 16-/32-bit resolution as an input or output channel. All the I2Sx audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

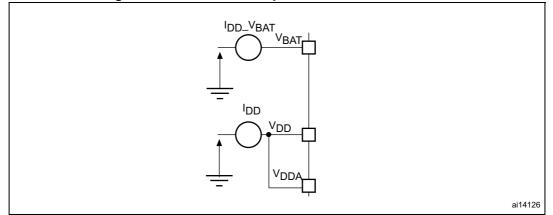
All I^2Sx can be served by the DMA controller.

3.25 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S application. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance.

The PLLI2S configuration can be modified to manage an I^2S sample rate change without disabling the main PLL (PLL) used for the CPU.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 kHz to 192 kHz.



	Pir	n numt	ber							
UFQFPN48	LQFP64	WLCSP49	LQFP100	UFBGA100	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	24	-	33	K5	PC4	I/O	FT	-	EVENTOUT	ADC1_14
-	25	-	34	L5	PC5	I/O	FT	I	EVENTOUT	ADC1_15
18	26	G5	35	M5	PB0	I/O	FT	-	TIM1_CH2N, TIM3_CH3, SPI5_SCK/I2S5_CK, EVENTOUT	ADC1_8
19	27	G4	36	M6	PB1	I/O	FT	-	TIM1_CH3N, TIM3_CH4, SPI5_NSS/I2S5_WS, EVENTOUT	ADC1_9
20	28	G3	37	L6	PB2	I/O	FT	-	EVENTOUT	BOOT1
-	-	-	38	M7	PE7	I/O	FT	-	TIM1_ETR, EVENTOUT	-
-	-	-	39	L7	PE8	I/O	FT	-	TIM1_CH1N, EVENTOUT	-
-	-	-	40	M8	PE9	I/O	FT	-	TIM1_CH1, EVENTOUT	-
-	-	-	41	L8	PE10	I/O	FT	-	TIM1_CH2N, EVENTOUT	-
-	-	-	42	M9	PE11	I/O	FT	-	TIM1_CH2, SPI4_NSS/I2S4_WS, SPI5_NSS/I2S5_WS, EVENTOUT	-
-	-	-	43	L9	PE12	I/O	FT	-	TIM1_CH3N, SPI4_SCK/I2S4_CK, SPI5_SCK/I2S5_CK, EVENTOUT	-
-	-	-	44	M10	PE13	I/O	FT	-	TIM1_CH3, SPI4_MISO, SPI5_MISO, EVENTOUT	-
-	-	-	45	M11	PE14	I/O	FT	-	TIM1_CH4, SPI4_MOSI/I2S4_SD, SPI5_MOSI/I2S5_SD, EVENTOUT	-
-	-	-	46	M12	PE15	I/O	FT	-	TIM1_BKIN, EVENTOUT	-

Table 8. STM32F411xC/xE pin definitions (continued)

6.1.7 Current consumption measurement

Figure 18. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA}, V_{DD} and $V_{BAT})^{(1)}$	-0.3	4.0	
	Input voltage on FT and TC pins ⁽²⁾	V _{SS} -0.3	V _{DD} +4.0	V
V _{IN}	Input voltage on any other pin	V _{SS} -0.3	4.0	
	Input voltage for BOOT0	V _{SS}	9.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	mV
$ V_{SSX} - V_{SS} $	Variations between all the different ground pins	-	50	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio Absolute n ratings (ele sensitivity)	naximum ectrical	

Table 11. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum value must always be respected. Refer to *Table 12* for the values of the maximum allowed injected current.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		UFQFPN48	-	-	156	
		WLCSP49	-	-	98	
PD	Power dissipation at $T_A = 125 \ ^{\circ}C \ (range 3)^{(7)}$	LQFP64	-	-	106	mW
		LQFP100	-	-	116	
		UFBGA100	-	-	81	
	Ambient temperature for	Maximum power dissipation	- 40	-	85	
	range 6	Low power dissipation ⁽⁸⁾	- 40	-	105	
Та	Ambient temperature for	Maximum power dissipation	- 40	-	105	
IA	range 7	Low power dissipation ⁽⁸⁾	- 40	-	125	
	Ambient temperature for	Maximum power dissipation	- 40	-	110	°C
	range 3	Low power dissipation ⁽⁸⁾	- 40	-	130	
		Range 6	- 40	-	105	
TJ	Junction temperature range	Range 7	- 40	-	125	
		Range 3	- 40	-	130	

Table 14. General operating conditions (continued)

V_{DD}/V_{DDA} minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.15.2: Internal reset OFF).

2. When the ADC is used, refer to Table 65: ADC characteristics.

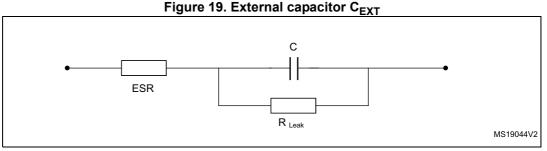
- 3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
- 4. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and power-down operation.
- 5. Guaranteed by test in production.
- 6. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
- 7. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .
- 8. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax}.

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum Flash memory access frequency with wait states ⁽¹⁾⁽²⁾	I/O operation	Clock output frequency on I/O pins ⁽³⁾	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽⁴⁾	Conversion time up to 1.2 Msps	16 MHz ⁽⁵⁾	100 MHz with 6 wait states	 No I/O compensation 	up to 30 MHz	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	18 MHz	100 MHz with 5 wait states	 No I/O compensation 	up to 30 MHz	16-bit erase and program operations

Table 15. Features depending on the operating power supply range

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum Flash memory access frequency with wait states ⁽¹⁾⁽²⁾	I/O operation	Clock output frequency on I/O pins ⁽³⁾	Possible Flash memory operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz	100 MHz with 4 wait states	 I/O compensation works 	up to 50 MHz	16-bit erase and program operations
V _{DD} = 2.7 to 3.6 V ⁽⁶⁾	Conversion time up to 2.4 Msps	30 MHz	100 MHz with 3 wait states	 I/O compensation works 	- up to 100 MHz when V_{DD} = 3.0 to 3.6 V - up to 50 MHz when V_{DD} = 2.7 to 3.0 V	32-bit erase and program operations

Table 15. Features depending on the operating power supply range (continued)


1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

- 2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.
- 3. Refer to Table 55: I/O AC characteristics for frequencies vs. external load.
- V_{DD}/V_{DDA} minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.15.2: Internal reset OFF).
- 5. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.
- The voltage range for the USB full speed embedded PHY can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

6.3.2 VCAP_1/VCAP_2 external capacitors

Stabilization for the main regulator is achieved by connecting the external capacitor C_{EXT} to the VCAP_1 and VCAP_2 pins. For packages supporting only 1 VCAP pin, the 2 CEXT capacitors are replaced by a single capacitor.

C_{EXT} is specified in *Table 16*.

1. Legend: ESR is the equivalent series resistance.

					Max ⁽¹⁾				
Symbol Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	T _A = 125 °C	Unit	
			100	29.5	31.5	32.3	33.3	34.7	
		External clock, PLL ON ⁽²⁾ , all peripherals	84	25.5	27.1	27.9	28.9	30.2	
			64	18.6	19.8	20.4	21.2	22.4	
	enabled ⁽³⁾⁽⁴⁾	50	15.2	16.4	16.9	17.7	18.7		
			20	7.6	8.4	8.8	9.5	10.5	mA
		HSI, PLL OFF ⁽²⁾ , all peripherals enabled ⁽³⁾	16	4.8	5.2	5.7	6.5	7.5	
	Supply current		1	0.9	1.3	1.6	2.4	3.4	
I _{DD}	in Run mode		100	20.4	21.8	22.7	23.8	25.1	mA
			84	18.4	19.2 ⁽⁵⁾	20.9	21.1	22.4	
		External clock, PLL ON ⁽²⁾ all peripherals disabled ⁽³⁾	64	13.5	14.5	15.2	15.9	17.2	
		50	11.3	12.2	12.8	13.6	14.7	-	
		20	5.6	6.4	6.7	7.4	8.5		
		HSI, PLL OFF ⁽²⁾ , all	16	3.6	4.1	4.5	5.2	6.3	1
		peripherals disabled ⁽³⁾	1	0.9	1.2	1.6	2.3	3.4	

Table 24. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - V_{DD} = 3.6 V

1. Guaranteed by characterization results.

2. Refer to Table 41 and RM0383 for the possible PLL VCO setting

3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

4. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the analog part.

5. Guaranteed by test in production.

Perip	bheral	I _{DD} (Тур)	Unit
	TIM1	5.71	
	TIM9	2.86	
	TIM10	1.79	
	TIM11	2.02	
	OTG_FS	23.93	
APB2	ADC1 ⁽⁴⁾	2.98	
(up to 100 MHz)	SPI1	1.19	μA/MHz
	USART1	3.10	
	USART6	2.86	
	SDIO	5.95	
	SPI4	1.31	
	SYSCFG	0.71	

 Table 33. Peripheral current consumption (continued)

1. Valid if all the DMA streams are activated (please refer to the reference manual RM0383).

2. For N DMA streams activated (up to 8 activated streams, refer to the reference manual RM0383).

3. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral.

4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the analog part.

	Table 461 Habi monory programming that tip volage (continuou)								
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit			
V _{prog}	Programming voltage		2.7	-	3.6	V			
V _{PP}	V _{PP} voltage range		7	-	9	V			
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin		10	-	-	mA			
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied		-	-	1	hour			

 Table 46. Flash memory programming with V_{PP} voltage (continued)

1. Guaranteed by design.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol	Parameter	Conditions	Value Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40 \text{ to } + 85 \text{ °C} \text{ (temp. range 6)}$ $T_A = -40 \text{ to } + 105 \text{ °C} \text{ (temp. range 7)}$ $T_A = -40 \text{ to } + 125 \text{ °C} \text{ (temp. range 3)}$	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
t _{RET}		1 kcycle ⁽²⁾ at T _A = 125 °C	3	Tears
		10 kcycle ⁽²⁾ at T _A = 55 °C	20	

Table 47. Flash memory	endurance and data retention
------------------------	------------------------------

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

6.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 49*. They are based on the EMS levels and classes defined in application note AN1709.

Input/output AC characteristics

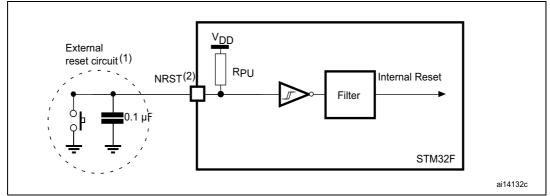
The definition and values of input/output AC characteristics are given in *Figure 31* and *Table 55*, respectively.

Unless otherwise specified, the parameters given in *Table 55* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DD} ≥ 2.70 V	-	-	4	
	f		C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	2	MHz
	f _{max(IO)out}		C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	8	MHZ
00			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	4	
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.7 V to 3.6 V	-	-	100	ns
		ax(IO)out Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DD} ≥ 2.70 V	-	-	25	
	f _{max(IO)out}		C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	12.5	MHz
			C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	50	
01			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	20	
01	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} ≥2.7 V	-	-	10	- ns
			C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	20	
			C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	6	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	10	
			C _L = 40 pF, V _{DD} ≥ 2.70 V	-	-	50 ⁽⁴⁾	
	f _{max(IO)out}	_{lout} Maximum frequency ⁽³⁾	C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	25	- MHz
10 -			C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	100 ⁽⁴⁾	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	50 ⁽⁴⁾	
			C _L = 40 pF, V _{DD} ≥ 2.70 V	-	-	6	– ns
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	10	
			C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	4	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	6	

Table 55. I/O AC characteristics⁽¹⁾⁽²⁾

6.3.17 NRST pin characteristics


The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 53*).

Unless otherwise specified, the parameters given in *Table 56* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*. Refer to *Table 53: I/O static characteristics* for the values of VIH and VIL for NRST pin.

Symbol	Parameter	Min	Тур	Мах	Unit	
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾ $V_{IN} = V_{SS}$ 304050				kΩ	
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse		-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	AST_OUT Generated reset pulse duration Internal Reset source 20 -		-	-	μs	

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

2. Guaranteed by design.

Figure 32. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 56. Otherwise the reset is not taken into account by the device.

6.3.18 TIM timer characteristics

The parameters given in Table 57 are guaranteed by design.

Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit
-		AHB/APBx prescaler=1	1	-	t _{TIMxCLK}
t _{res(TIM)}	_	or 2 or 4, f _{TIMxCLK} = 100 MHz	11.9	-	ns
	Timer resolution time	AHB/APBx prescaler>4,	1	-	t _{TIMxCLK}
		f _{TIMxCLK} = 100 MHz	11.9	-	ns
f _{EXT}	Timer external clock frequency on CH1 to CH4		0	f _{TIMxCLK} /2	MHz
		f _{TIMxCLK} = 100 MHz	0	50	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
t _{COUNTER}	16-bit counter clock period when internal clock is selected	f _{TIMxCLK} = 100 MHz	0.0119	780	μs
t _{MAX_COUNT}	Maximum possible count		-	65536 × 65536	t _{TIMxCLK}
	with 32-bit counter	f _{TIMxCLK} = 100 MHz	-	51.1	S

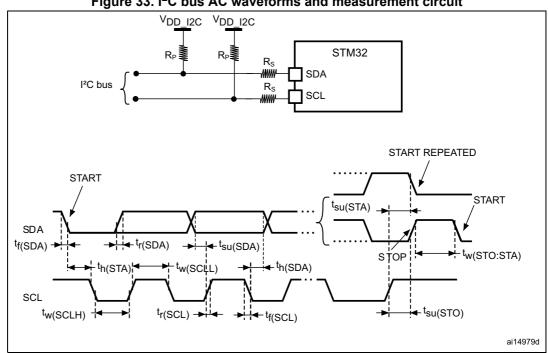
Table 57. TIMx characteristics⁽¹⁾⁽²⁾

1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.

2. Guaranteed by design.

 The maximum timer frequency on APB1 is 50 MHz and on APB2 is up to 100 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK >= 4x PCLKx.

6.3.19 Communications interfaces


I²C interface characteristics

The I²C interface meets the requirements of the standard I²C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" opendrain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 58*. Refer also to *Section 6.3.16*: I/O port *characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

The I²C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400 kHz). The I²C bus frequency can be increased up to 1 MHz. For more details about the complete solution, please contact your local ST sales representative.

- 1. R_S = series protection resistor.
- 2. R_P = external pull-up resistor.
- 3. $V_{DD \ I2C}$ is the I2C bus power supply.

	I2C_CCR value
f _{SCL} (kHz)	R_P = 4.7 k Ω
400	0x8019
300	0x8021
200	0x8032
100	0x0096
50	0x012C
20	0x02EE

Table 59. SCL frequency (f_{PCLK1} = 50 MHz, $V_{DD} = V_{DD_{-12C}} = 3.3 V$)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, f_{SCL} = I²C speed

2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed is $\pm 2\%$. These variations depend on the accuracy of the external components used to design the application.

Electrical characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{lat} (2)	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
'lat` '	latency		-	-	3 ⁽⁵⁾	1/f _{ADC}
t _{latr} (2)	Regular trigger conversion	f _{ADC} = 30 MHz	-	-	0.067	μs
'latr'	latency		-	-	2 ⁽⁵⁾	1/f _{ADC}
t _S ⁽²⁾	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
			3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time		-	2	3	μs
		f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
t _{CONV} ⁽²⁾		f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	μs
		9 to 492 (t _S for sampling approximation)	+n-bit resolution f	or succes	ssive	1/f _{ADC}
	$f_S^{(2)}$ Sampling rate (f_{ADC} = 30 MHz, and t_S = 3 ADC cycles)	12-bit resolution Single ADC	-	-	2	Msps
f _S ⁽²⁾		12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	6	Msps
I _{VREF+} ⁽²⁾	ADC V _{REF} DC current consumption in conversion mode		-	300	500	μA
I _{VDDA} ⁽²⁾	ADC V _{DDA} DC current consumption in conversion mode		-	1.6	1.8	mA

Table 65. ADC characteristics (continued)

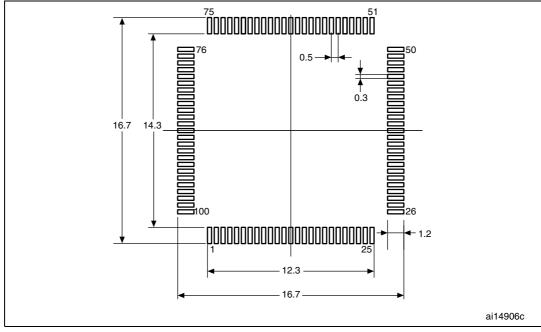
1. V_{DDA} minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.15.2: Internal reset OFF).

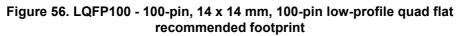
2. Guaranteed by characterization results.

3. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA} .

4. R_{ADC} maximum value is given for V_{DD}=1.7 V, and minimum value for V_{DD}=3.3 V.

5. For external triggers, a delay of $1/f_{PCLK2}$ must be added to the latency specified in *Table 65*.




Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz	
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-	
t _{W(CKL)}	Clock low time	fpp = 50 MHz	10.5	11	-		
t _{W(CKH)}	Clock high time	fpp = 50 MHz	8.5	9	-	ns	
CMD, D ir	puts (referenced to CK) in MMC and	d SD HS mode					
t _{ISU}	Input setup time HS	fpp = 50 MHz	2.5	-	-		
t _{iH}	Input hold time HS	fpp = 50 MHz -40°C <t<sub>A< 125°C</t<sub>	5	-	-	ns	
		fpp = 50 MHz -40°C <t<sub>A<+85°C</t<sub>	2.5	-	-		
CMD, D o	utputs (referenced to CK) in MMC a	nd SD HS mode					
t _{OV}	Output valid time HS	fpp = 50 MHz	-	3.5	4		
t _{OH}	Output hold time HS	fpp = 50 MHz	2	-	-	– ns	
CMD, D ir	nputs (referenced to CK) in SD defau	ılt mode					
t _{ISUD}	Input setup time SD	fpp = 25 MHz	3	-	-	ns	
t _{IHD}	Input hold time SD	fpp = 25 MHz	4	-	-		
CMD, D o	utputs (referenced to CK) in SD defa	ault mode				-	
t _{OVD}	Output valid default time SD	fpp =25 MHz	-	5	5.5		
t _{OHD}	Output hold default time SD	fpp =25 MHz	4.5	-	-	ns	

1. Guaranteed by characterization results.

2. V_{DD} = 2.7 to 3.6 V.

1. Dimensions are in millimeters.

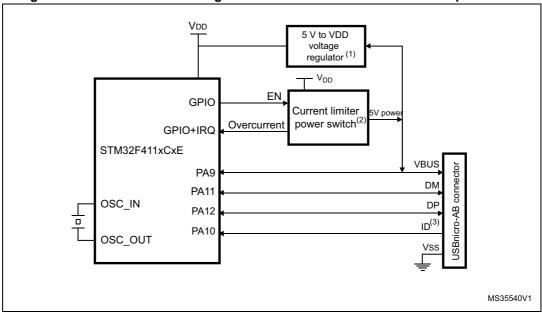
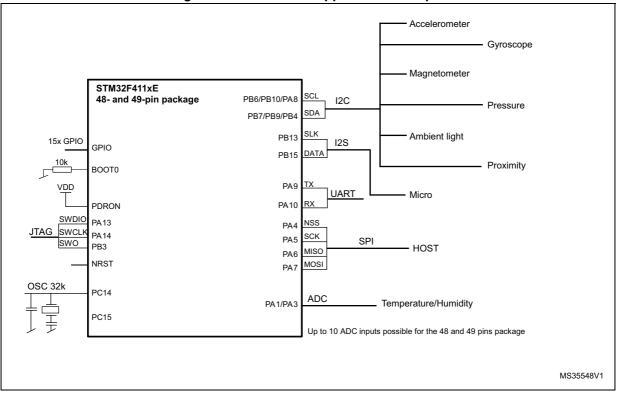



Figure 63. USB controller configured in dual mode and used in Full-Speed mode

- 1. The external voltage regulator is only needed when building a $\mathrm{V}_{\mathrm{BUS}}$ powered device.
- The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.
- 3. The ID pin is required in dual role only.

B.2 Sensor Hub application example

Figure 64. Sensor Hub application example

Date	Revision	Changes
21-Nov-2016	5	Updated: - Features - Figure 1: Compatible board design for LQFP100 package - Figure 2: Compatible board design for LQFP64 package - Figure 3: STM32F411xC/xE block diagram - Figure 22: High-speed external clock source AC timing diagram - Figure 23: Low-speed external clock source AC timing diagram - Figure 23: Low-speed external clock source AC timing diagram - Figure 33: I2C bus AC waveforms and measurement circuit - Figure 58: UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline - Table 2: STM32F411xC/xE features and peripheral counts - Table 8: STM32F411xC/xE pin definitions - Table 8: STM32F411xC/xE pin definitions - Table 13: Thermal characteristics - Table 14: General operating conditions - From Table 20: Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - VDD = 1.7 V to Table 31: Typical and maximum current consumptions in VBAT mode - Table 35: High-speed external user clock characteristics - Table 36: Low-speed external user clock characteristics - Table 36: Low-speed external user clock characteristics - Table 39: HSI oscillator characteristics - Table 39: HSI oscillator characteristics - Table 51: Electrical sensitivities - Table 51: Electrical sensitivities - Table 51: Lectrical sensitivities - Table 51: Lectrical sensitivities - Table 51: Lectrical sensitivities - Table 51: Lectrical sensitivities - Table 86: Ordering information scheme Added: - One-time programmable bytes - Table 85: Package thermal characteristics
05-Dec-2016	6	Updated: – Table 27: Typical and maximum current consumptions in Stop mode - VDD = 1.7 V – Table 28: Typical and maximum current consumption in Stop mode - VDD=3.6 V – Table 29: Typical and maximum current consumption in Standby mode - VDD= 1.7 V – Table 30: Typical and maximum current consumption in Standby mode - VDD= 3.6 V

