

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UFQFN Exposed Pad
Supplier Device Package	16-UQFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1503-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

1.0	Device Overview	7
2.0	Enhanced Mid-Range CPU	11
3.0	Memory Organization	13
4.0	Device Configuration	37
5.0	Oscillator Module	42
6.0	Resets	51
7.0	Interrupts	59
8.0	Power-Down Mode (Sleep)	72
9.0	Watchdog Timer (WDT)	75
10.0	Flash Program Memory Control	79
11.0	I/O Ports	95
12.0	Interrupt-On-Change	
13.0	Fixed Voltage Reference (FVR)	108
14.0	Temperature Indicator Module	111
15.0	Analog-to-Digital Converter (ADC) Module	113
16.0	5-Bit Digital-to-Analog Converter (DAC) Module	127
17.0	Comparator Module	130
18.0	Timer0 Module	
19.0	Timer1 Module with Gate Control	140
	Timer2 Module	
22.0	Pulse-Width Modulation (PWM) Module	208
23.0		
24.0	Numerically Controlled Oscillator (NCO) Module	230
25.0	Complementary Waveform Generator (CWG) Module	237
26.0	In-Circuit Serial Programming™ (ICSP™)	
27.0	Instruction Set Summary	
	Electrical Specifications	
29.0	DC and AC Characteristics Graphs and Charts	293
	Development Support	
31.0	Packaging Information	332
Appe	endix A: Data Sheet Revision History	347
	Microchip Website	
Custo	omer Change Notification Service	348
	omer Support	
Produ	uct Identification System	349

3.3.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-4 can be addressed from any Bank.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	0-31										
x00h or x80h	INDF0		this location ical register)		nts of FSR0H	/FSR0L to a	ddress data i	memory		xxxx xxxx	uuuu uuuu
x01h or x81h	INDF1		this location ical register)		nts of FSR1H	/FSR1L to a	ddress data i	memory		XXXX XXXX	uuuu uuuu
x02h or x82h	PCL	Program C	ounter (PC) I	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	_			TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect Da	Indirect Data Memory Address 0 Low Pointer							0000 0000	uuuu uuuu
x05h or x85h	FSR0H	Indirect Da	Indirect Data Memory Address 0 High Pointer						0000 0000	0000 0000	
x06h or x86h	FSR1L	Indirect Da	Indirect Data Memory Address 1 Low Pointer 0000 0000 uuuuu uu							uuuu uuuu	
x07h or x87h	FSR1H	Indirect Da	Indirect Data Memory Address 1 High Pointer 0000 0000						0000 0000		
x08h or x88h	BSR	_	_	_			BSR<4:0>			0 0000	0 0000
x09h or x89h	WREG	Working Re	Working Register							0000 0000	uuuu uuuu
x0Ahor x8Ah	PCLATH	_	Write Buffer	for the upp	er 7 bits of the	e Program Co	ounter			-000 0000	-000 0000
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-4: CORE FUNCTION REGISTERS SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

IADLL								020)			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3	1										
F8Ch	_	Unimplemen	ted							—	—
 FE3h											
FE4h	STATUS_ SHAD	_	_	-	_	—	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_ SHAD	Working Reg	Working Register Shadow 22						XXXX XXXX	uuuu uuuu	
FE6h	BSR_ SHAD	_	—	-	Bank Select	Register Sh	adow			x xxxx	u uuuu
FE7h	PCLATH_ SHAD	-	- Program Counter Latch High Register Shadow -						-xxx xxxx	uuuu uuuu	
FE8h	FSR0L_ SHAD	Indirect Data	Memory Add	Iress 0 Low F	Pointer Shado	W				XXXX XXXX	uuuu uuuu
FE9h	FSR0H_ SHAD	Indirect Data	ndirect Data Memory Address 0 High Pointer Shadow							uuuu uuuu	
FEAh	FSR1L_ SHAD	Indirect Data	Indirect Data Memory Address 1 Low Pointer Shadow							XXXX XXXX	uuuu uuuu
FEBh	FSR1H_ SHAD	Indirect Data	Indirect Data Memory Address 1 High Pointer Shadow						XXXX XXXX	uuuu uuuu	
FECh	—	Unimplemen	ted								_
FEDh	STKPTR	_	—	—	Current Star	ck Pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stack	Low byte							XXXX XXXX	uuuu uuuu
FEFh	TOSH	—	Top-of-Stack	High byte						-xxx xxxx	-uuu uuuu

TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.
PIC16F1503 only.
Unimplemented, read as '1'. Legend: : Note 1:

2:

4.6 Device ID and Revision ID

The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See **Section 10.4 "User ID, Device ID and Configuration Word Access**" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

4.7 Register Definitions: Device ID

REGISTER 4-3: DEVID: DEVICE ID REGISTER

		R	R	R	R	R	R
				DEV	<8:3>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
	DEV<2:0>				REV<4:0>		
bit 7							bit 0

Legend:

bit 13-5

R = Readable bit

'1' = Bit is set

D	DEV<8:0>: Device ID bits							
	Device	DEVID<13:0	> Values					
	Device	DEV<8:0>	REV<4:0>					
	PIC16LF1503	10 1101 101	x xxxx					
	PIC16F1503	10 1100 111	x xxxx					

'0' = Bit is cleared

bit 4-0 **REV<4:0>:** Revision ID bits

These bits are used to identify the revision (see Table under DEV<8:0> above).

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<1:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section
 5.3 "Clock Switching" for more information.

In **INTOSC** mode, CLKIN is available for general purpose I/O. CLKOUT is available for general purpose I/O or CLKOUT.

The function of the CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators that provides the internal system clock source.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz.
- 2. The **LFINTOSC** (Low-Frequency Internal Oscillator) operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source.

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). The frequency derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.6 "Internal Oscillator Clock Switch Timing"** for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

A fast start-up oscillator allows internal circuits to power-up and stabilize before switching to HFINTOSC.

The High-Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running.

The High-Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

5.2.2.2 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a 31 kHz internal clock source.

The output of the LFINTOSC connects to a multiplexer (see Figure 5-1). Select 31 kHz, via software, using the IRCF<3:0> bits of the OSCCON register. See Section 5.2.2.6 "Internal Oscillator Clock Switch Timing" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT) and the, Watchdog Timer (WDT).

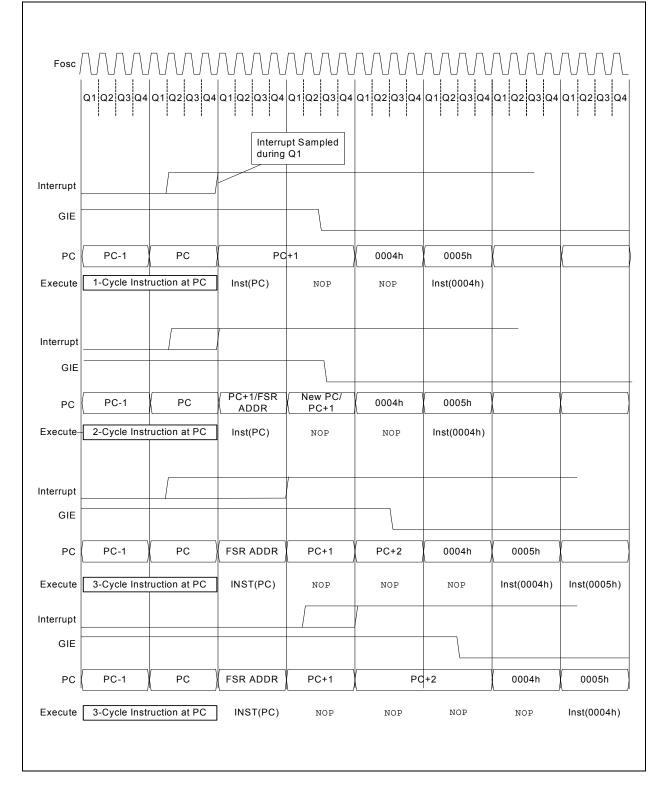
The LFINTOSC is enabled by selecting 31 kHz (IRCF<3:0> bits of the OSCCON register = 000) as the system clock source (SCS bits of the OSCCON register = 1x), or when any of the following are enabled:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired LF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)

The Low-Frequency Internal Oscillator Ready bit (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running.


5.2.2.3 FRC

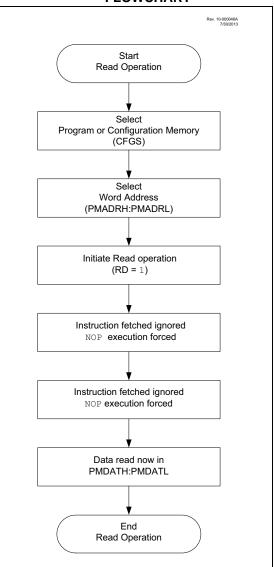
The FRC clock is an uncalibrated, nominal 600 kHz peripheral clock source.

The FRC is automatically turned on by the peripherals requesting the FRC clock.

The FRC clock continues to run during Sleep.

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:


- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program
	memory read are required to be NOPs.
	This prevents the user from executing a
	2-cycle instruction on the next instruction
	after the RD bit is set.

FIGURE 10-1: FLASH PROGRAM MEMORY READ FLOWCHART

13.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with a nominal output level (VFVR) of 1.024V. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- · Comparator positive input
- · Comparator negative input

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

13.1 Independent Gain Amplifier

The output of the FVR supplied to the peripherals, (listed above), is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 15.0 "Analog-to-Digital Converter (ADC) Module**" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the comparator modules. Reference **Section 17.0 "Comparator Module"** for additional information.

To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits.

13.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See the FVR Stabilization Period characterization graph, Figure 29-52.

FIGURE 13-1: VOLTAGE REFERENCE BLOCK DIAGRAM

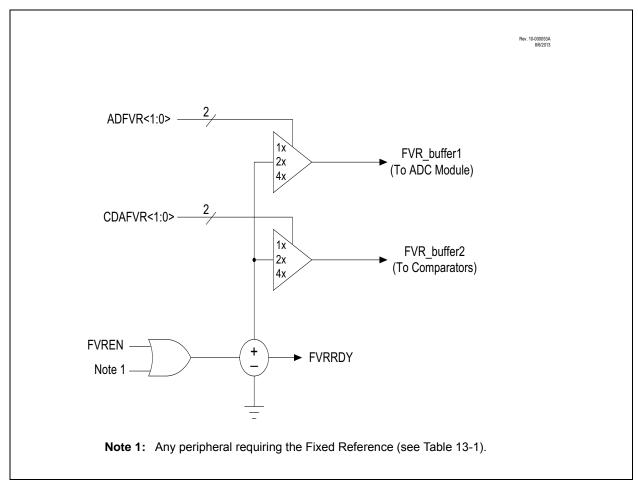
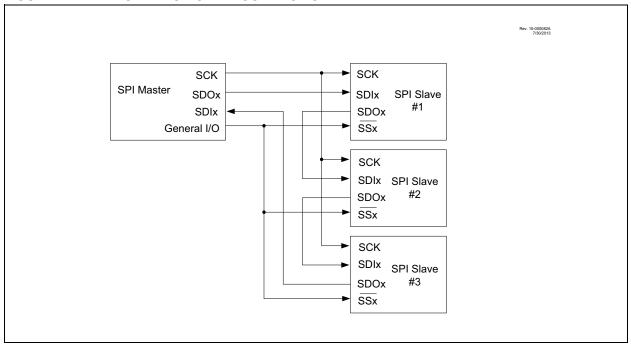
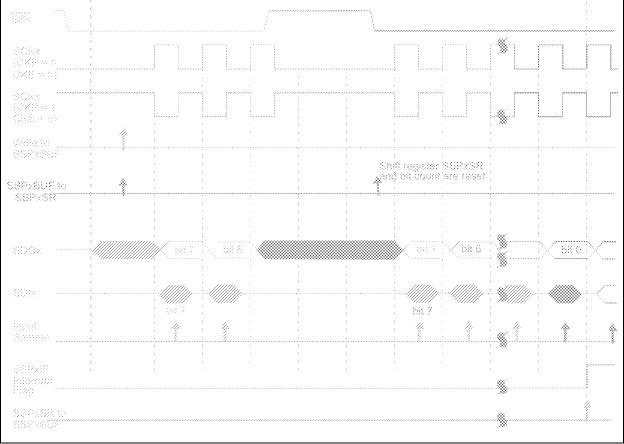
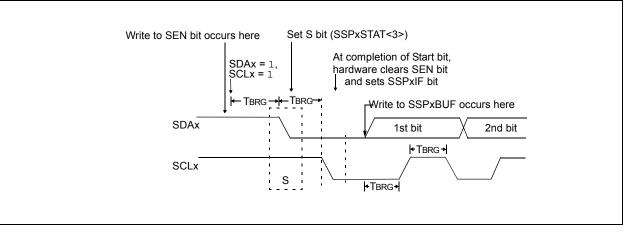




FIGURE 21-7: SPI DAISY-CHAIN CONNECTION


21.6.4 I²C MASTER MODE START CONDITION TIMING

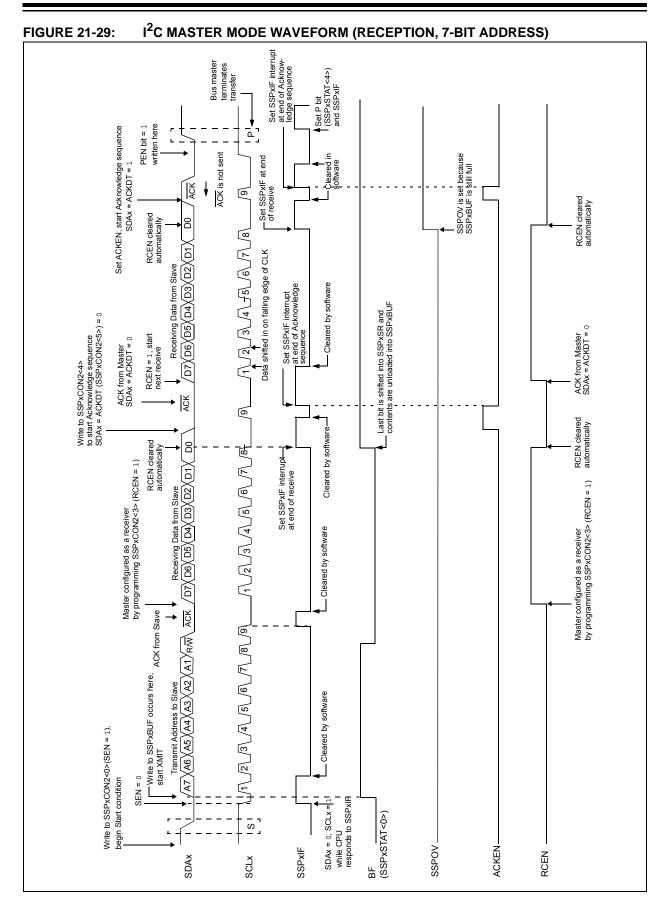

To initiate a Start condition (Figure 21-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDAx and SCLx pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCLx and SDAx are both sampled high when the Baud Rate Generator times out (TBRG), the SDAx pin is driven low. The action of the SDAx being driven low while SCLx is high is the Start condition and causes the S bit of the SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared

FIGURE 21-26: FIRST START BIT TIMING

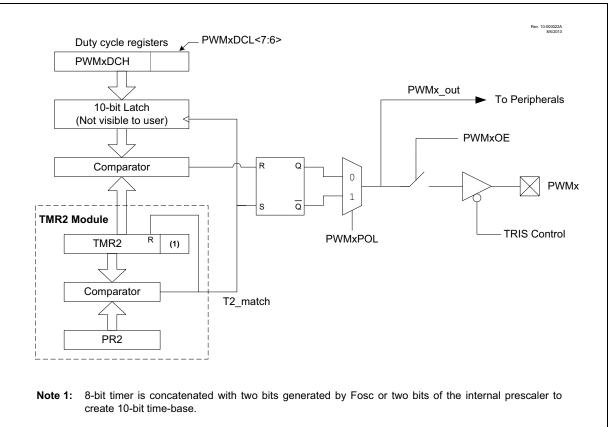
by hardware; the Baud Rate Generator is suspended, leaving the SDAx line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low, or if during the Start condition, the SCLx line is sampled low before the SDAx line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - 2: The Philips I²C Specification states that a bus collision cannot occur on a Start.

R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
ACKTIM ⁽³⁾	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN		
bit 7							bit		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets		
'1' = Bit is set	-	'0' = Bit is cle	eared						
bit 7	ACKTIM: Ad	cknowledge Tim	ne Status bit (I ²	C mode only) ⁽	3)				
	1 = Indicates	s the I ² C bus is Acknowledge se	in an Acknowle	edge sequence	e, set on eighth		SCLx clock		
bit 6	PCIE: Stop	Condition Interre	upt Enable bit (I ² C mode only	/)				
		interrupt on detention interrupt							
bit 5	SCIE: Start	Condition Interr	upt Enable bit (I ² C mode only	/)				
		nterrupt on dete			litions				
bit 4	BOEN: Buff	er Overwrite En	able bit						
	0 = lf n	<u>e mode:</u> ⁽¹⁾ PxBUF updates ew byte is rece PxCON1 registe	ived with BF bi	t of the SSPx	STAT register a				
	In I ² C Maste This bit	er mode: is ignored.							
	state	<u>mode:</u> PxBUF is updat e of the SSPOV PxBUF is only u	/ bit only if the I	BF bit = 0.		dress/data byte	e, ignoring th		
bit 3		Ax Hold Time S	•		•				
	1 = Minimun	n of 300 ns hold	time on SDAx	DAx after the falling edge of SCLx DAx after the falling edge of SCLx					
bit 2									
	If on the risi	SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only) If on the rising edge of SCLx, SDAx is sampled low when the module is outputting a high state BCLxIF bit of the PIR2 register is set, and bus goes idle							
	1 = Enable s	slave bus collisi us collision inter	on interrupts	-					
bit 1	AHEN: Address Hold Enable bit (I ² C Slave mode only)								
	SSPxC	ng the eighth fa ON1 register wi holding is disa	Il be cleared ar			address byte,	CKP bit of th		
bit 0	DHEN: Data	a Hold Enable b	it (I ² C Slave me	ode only)					
	bit of the	g the eighth fall e SSPxCON1 r lding is disabled	egister and SC		•	ave hardware o	lears the CK		
	daisy-chained	d SPI operation, is received and	allows the user						
• •	-					-			

REGISTER 21-4: SSPxCON3: SSP CONTROL REGISTER 3

3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.


22.0 PULSE-WIDTH MODULATION (PWM) MODULE

The PWM module generates a Pulse-Width Modulated signal determined by the duty cycle, period, and resolution that are configured by the following registers:

- PR2
- T2CON
- PWMxDCH
- PWMxDCL
- PWMxCON

Figure 22-1 shows a simplified block diagram of PWM operation.

For a step-by-step procedure on how to set up this module for PWM operation, refer to Section 22.1.9 "Setup for PWM Operation using PWMx Pins".

FIGURE 22-1: SIMPLIFIED PWM BLOCK DIAGRAM

TABLE 25-2: SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	-	ANSA4	-	ANSA2	ANSA1	ANSA0	99
CWG1CON0	G1EN	G10EB	G10EA	G1POLB	G1POLA	_	_	G1CS0	244
CWG1CON1	G1ASD	LB<1:0>	G1ASDLA<1:0>		_	_	G1IS•	245	
CWG1CON2	G1ASE	G1ARSEN	_	—	G1ASDSC2	G1ASDSC1	G1ASDSFLT	G1ASDSCLC2	246
CWG1DBF	-	_		CWG1DBF<5:0>					247
CWG1DBR	_	—		CWG1DBR<5:0>					247
TRISA	_	—	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	98
TRISC		_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	102

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by CWG.

Note 1: Unimplemented, read as '1'.

ΜΟνωι	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	$n \in [0,1]$ mm $\in [00,01, 10, 11]$ -32 $\leq k \leq 31$
Operation:	$\label{eq:W} \begin{split} & W \rightarrow \text{INDFn} \\ & \text{Effective address is determined by} \\ & \text{FSR + 1 (preincrement)} \\ & \text{FSR - 1 (predecrement)} \\ & \text{FSR + k (relative offset)} \\ & \text{After the Move, the FSR value will be} \\ & \text{either:} \\ & \text{FSR + 1 (all increments)} \\ & \text{FSR - 1 (all decrements)} \\ & \text{Unchanged} \end{split}$
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W		
Syntax:	[label] OPTION		
Operands:	None		
Operation:	$(W) \to OPTION_REG$		
Status Affected:	None		
Description:	Move data from W register to OPTION_REG register.		

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.

28.3 DC Characteristics

TABLE 28-1: SUPPLY VOLTAGE

PIC16LF1503			Standard Operating Conditions (unless otherwise stated)					
PIC16F1	503							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
D001 VDD Supply Voltage								
			VDDMIN 1.8 2.5		VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 20 MHz	
D001			2.3 2.5		5.5 5.5	V V	Fosc ≤ 16 MHz Fosc ≤ 20 MHz	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾						
			1.5	_	—	V	Device in Sleep mode	
D002*			1.7	_	—	V	Device in Sleep mode	
D002A*	VPOR	Power-on Reset Release Voltage ⁽²⁾						
			—	1.6	—	V		
D002A*			_	1.6	_	V		
D002B*	VPORR*	Power-on Reset Rearm Voltage ⁽²⁾						
			_	0.8	—	V		
D002B*			_	1.5	_	V		
D003	VFVR	Fixed Voltage Reference Voltage						
		1x gain (1.024V nominal) 2x gain (2.048V nominal) 4x gain (4.096V nominal)	-4 -3	_	+4 +7	% %	$ \begin{array}{l} \mbox{VDD} \geq 2.5 \mbox{V}, -40 \mbox{°C} \leq \mbox{Ta} \leq +85 \mbox{°C} \\ \mbox{VDD} \geq 2.5 \mbox{V}, -40 \mbox{°C} \leq \mbox{Ta} \leq +85 \mbox{°C} \\ \mbox{VDD} \geq 4.75 \mbox{V}, -40 \mbox{°C} \leq \mbox{Ta} \leq +85 \mbox{°C} \\ \end{array} $	
D004*	SVDD	VDD Rise Rate ⁽²⁾	0.05		—	V/ms	Ensures that the Power-on Reset signal is released properly.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 28-3, POR and POR REARM with Slow Rising VDD.

TABLE 28-4: I/O PORTS

Standard Operating Conditions (unless otherwise stated)

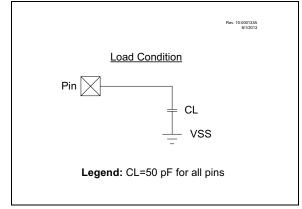
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					·
		I/O PORT:					
D030		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			—	_	0.15 VDD	V	$1.8V \le V\text{DD} \le 4.5V$
D031		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$2.0V \le V\text{DD} \le 5.5V$
		with I ² C™ levels	—	_	0.3 Vdd	V	
		with SMbus levels	—	_	0.8	V	$2.7V \le V\text{DD} \le 5.5V$
D032		MCLR	—	_	0.2 Vdd	V	
	VIH	Input High Voltage					
		I/O PORT:					
D040		with TTL buffer	2.0	_	_	V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25 VDD + 0.8	—	-	V	$1.8V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer	0.8 VDD	_	—	V	$2.0V \leq V\text{DD} \leq 5.5V$
		with I ² C™ levels	0.7 Vdd		—	V	
		with SMbus levels	2.1		—	V	$2.7V \le V\text{DD} \le 5.5V$
D042		MCLR	0.8 VDD		—	V	
	lil	Input Leakage Current ⁽¹⁾					
D060	I/O Ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C	
			—	± 5	± 1000	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 125°C
D061		MCLR ⁽²⁾	—	± 50	± 200	nA	VSS \leq VPIN \leq VDD, Pin at high-impedance, 85°C
	IPUR	Weak Pull-up Current					
D070*			25	100	200	μΑ	VDD = 3.3V, VPIN = VSS
			25	140	300	μΑ	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage					
D080		I/O Ports	_	_	0.6	V	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V
	Voн	Output High Voltage			•	•	
D090		I/O Ports	Vdd - 0.7	_	_	V	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 1 mA, VDD = 1.8V
		Capacitive Loading Specification	tions on Out	out Pins			
D101A*	CIO	All I/O pins	_	_	50	pF	

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


28.4 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т			
F	Frequency	Т	Time
Lowerc	case letters (pp) and their meanings:		
рр			
сс	CCP1	osc	CLKIN
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDIx	sc	SCKx
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	case letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 28-4: LOAD CONDITIONS

I²C BUS DATA REQUIREMENTS

Param. No.	Symbol	Characte	eristic	Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5TCY	_		
SP101*	TLOW	Clock low time	100 kHz mode	4.7		μS	Device must operate at a minimum of 1.5 MHz
		400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5TCY	_		
SP102* TR	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
SP103* TF	SDA and SCL fall	100 kHz mode	—	250	ns		
		time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
SP107* TSU:DAT	TSU:DAT	Data input setup	100 kHz mode	250	_	ns	(Note 2)
		time	400 kHz mode	100	_	ns	
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)
		clock	400 kHz mode	—	_	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3		μS	before a new transmission can start
SP111	Св	Bus capacitive loadir	ng		400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

31.1 Package Marking Information (Continued)

16-Lead QFN (3x3x0.9 mm)

16-Lead UQFN (3x3x0.5 mm)

Example

Example

TABLE 31-1:16-LEAD 3x3x0.9 QFN (MG)TOP MARKING

Part Number	Marking
PIC16F1503(T)-I/MG	MGA
PIC16F1503(T)-E/MG	MGB
PIC16LF1503(T)-I/MG	MGC
PIC16LF1503(T)-E/MG	MGD

TABLE 31-2: 16-LEAD 3x3x0.5 UQFN (MV) TOP MARKING

Part Number	Marking
PIC16F1503(T)-I/NL	AAB
PIC16F1503(T)-E/NL	AAA
PIC16LF1503(T)-I/NL	AAD
PIC16LF1503(T)-E/NL	AAC