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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC16(L)F1503
1.0 DEVICE OVERVIEW

The block diagram of these devices are shown in
Figure 1-1, the available peripherals are shown in
Table 1-1, and the pinout descriptions are shown in
Table 1-2.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY
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Analog-to-Digital Converter (ADC) ● ● ● ● ●

Complementary Wave Generator (CWG) ● ● ● ● ●

Digital-to-Analog Converter (DAC) ● ● ● ●

Enhanced Universal
Synchronous/Asynchronous Receiver/
Transmitter (EUSART)

● ●

Fixed Voltage Reference (FVR) ● ● ● ● ●

Numerically Controlled Oscillator (NCO) ● ● ● ● ●

Temperature Indicator ● ● ● ● ●

Comparators

C1 ● ● ● ●

C2 ● ● ●

Configurable Logic Cell (CLC)

CLC1 ● ● ● ● ●

CLC2 ● ● ● ● ●

CLC3 ● ●

CLC4 ● ●

Master Synchronous Serial Ports

MSSP1 ● ● ●

PWM Modules

PWM1 ● ● ● ● ●

PWM2 ● ● ● ● ●

PWM3 ● ● ● ● ●

PWM4 ● ● ● ● ●

Timers

Timer0 ● ● ● ● ●

Timer1 ● ● ● ● ●

Timer2 ● ● ● ● ●
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PIC16(L)F1503
3.3.2 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by
the application to control the desired operation of
peripheral functions in the device. The Special Function
Registers occupy the 20 bytes after the core registers of
every data memory bank (addresses x0Ch/x8Ch
through x1Fh/x9Fh). The registers associated with the
operation of the peripherals are described in the appro-
priate peripheral chapter of this data sheet.

3.3.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory
bank. The Special Function Registers occupy the 20
bytes after the core registers of every data memory
bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).

3.3.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a
non-banked method via the FSRs. This can simplify
access to large memory structures. See Section
3.6.2 “Linear Data Memory” for more information.

3.3.4 COMMON RAM

There are 16 bytes of common RAM accessible from all
banks.

FIGURE 3-2: BANKED MEMORY 
PARTITIONING 

Memory Region7-bit Bank Offset

00h

0Bh
0Ch

1Fh
20h

6Fh

7Fh

70h

Core Registers
(12 bytes)

Special Function Registers
(20 bytes maximum)

General Purpose RAM
(80 bytes maximum)

Common RAM
(16 bytes)

Rev. 10-000041A
7/30/2013
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PIC16(L)F1503
FIGURE 3-7: ACCESSING THE STACK EXAMPLE 4

3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is
programmed to ‘1’, the device will be reset if the stack
is PUSHed beyond the sixteenth level or POPed
beyond the first level, setting the appropriate bits
(STKOVF or STKUNF, respectively) in the PCON
register.

3.6 Indirect Addressing

The INDFn registers are not physical registers. Any
instruction that accesses an INDFn register actually
accesses the register at the address specified by the
File Select Registers (FSR). If the FSRn address
specifies one of the two INDFn registers, the read will
return ‘0’ and the write will not occur (though Status bits
may be affected). The FSRn register value is created
by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an
addressing space with 65536 locations. These locations
are divided into three memory regions:

• Traditional Data Memory

• Linear Data Memory

• Program Flash Memory

STKPTR = 0x10

When the stack is full, the next CALL or
an interrupt will set the Stack Pointer to
0x10. This is identical to address 0x00 so
the stack will wrap and overwrite the
return address at 0x00. If the Stack
Overflow/Underflow Reset is enabled, a
Reset will occur and location 0x00 will
not be overwritten.

Return Address0x0F
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0x0D

0x0C

0x0B

0x0A

0x09

0x08

0x07

0x06

0x04

0x05

0x03

0x02

0x01

0x00

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return Address

Return AddressTOSH:TOSL
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PIC16(L)F1503
4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words,
Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow
different oscillator and memory protection options.
These are implemented as Configuration Word 1 at
8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is
managed automatically by device
development tools including debuggers
and programmers. For normal device
operation, this bit should be maintained as
a ‘1’.
 2011-2015 Microchip Technology Inc. DS40001607D-page 37



PIC16(L)F1503
           

REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0

— — — — — — CLC2IF CLC1IF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-2 Unimplemented: Read as ‘0’

bit 1 CLC2IF: Configurable Logic Block 2 Interrupt Flag bit

1 = Interrupt is pending
0 = Interrupt is not pending

bit 0 CLC1IF: Configurable Logic Block 1 Interrupt Flag bit

1 = Interrupt is pending
0 = Interrupt is not pending

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Enable bit, GIE of the INTCON register.
User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
DS40001607D-page 70  2011-2015 Microchip Technology Inc.



PIC16(L)F1503
9.6 Register Definitions: Watchdog Timer Control

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0 U-0 R/W-0/0 R/W-1/1 R/W-0/0 R/W-1/1 R/W-1/1 R/W-0/0

— — WDTPS<4:0> SWDTEN

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets 

‘1’ = Bit is set ‘0’ = Bit is cleared      

bit 7-6 Unimplemented: Read as ‘0’

bit 5-1 WDTPS<4:0>: Watchdog Timer Period Select bits(1)

Bit Value  = Prescale Rate

11111  = Reserved. Results in minimum interval (1:32)
 •
 •
 •

10011  = Reserved. Results in minimum interval (1:32)

10010  = 1:8388608 (223) (Interval 256s nominal)
10001  = 1:4194304 (222) (Interval 128s nominal)
10000  = 1:2097152 (221) (Interval 64s nominal)
01111  = 1:1048576 (220) (Interval 32s nominal)
01110  = 1:524288 (219) (Interval 16s nominal)
01101  = 1:262144 (218) (Interval 8s nominal)
01100  = 1:131072 (217) (Interval 4s nominal)
01011  = 1:65536  (Interval 2s nominal) (Reset value)
01010  = 1:32768 (Interval 1s nominal)
01001  = 1:16384 (Interval 512 ms nominal)
01000  = 1:8192 (Interval 256 ms nominal)
00111  = 1:4096 (Interval 128 ms nominal)
00110  = 1:2048 (Interval 64 ms nominal)
00101  = 1:1024 (Interval 32 ms nominal)
00100  = 1:512 (Interval 16 ms nominal)
00011  = 1:256 (Interval 8 ms nominal)
00010  = 1:128 (Interval 4 ms nominal)
00001  = 1:64 (Interval 2 ms nominal)
00000  = 1:32 (Interval 1 ms nominal)

bit 0 SWDTEN: Software Enable/Disable for Watchdog Timer bit

If WDTE<1:0> = 1x:
This bit is ignored.
If WDTE<1:0> = 01:
1 = WDT is turned on
0 = WDT is turned off
If WDTE<1:0> = 00:
This bit is ignored.

Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.
 2011-2015 Microchip Technology Inc. DS40001607D-page 77



PIC16(L)F1503
10.6 Register Definitions: Flash Program Memory Control

                          

             

             

REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

PMDAT<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 PMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

— — PMDAT<13:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-6 Unimplemented: Read as ‘0’

bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

PMADR<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 PMADR<7:0>: Specifies the Least Significant bits for program memory address 

REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-1 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

—(1) PMADR<14:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 Unimplemented: Read as ‘1’

bit 6-0 PMADR<14:8>: Specifies the Most Significant bits for program memory address

Note 1: Unimplemented, read as ‘1’.
DS40001607D-page 92  2011-2015 Microchip Technology Inc.
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11.4 Register Definitions: PORTA

REGISTER 11-2: PORTA: PORTA REGISTER

U-0 U-0 R/W-x/x R/W-x/x R-x/x R/W-x/x R/W-x/x R/W-x/x

— — RA5 RA4 RA3 RA2 RA1 RA0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-6 Unimplemented: Read as ‘0’

bit 5-0 RA<5:0>: PORTA I/O Value bits(1)

1 = Port pin is > VIH

0 = Port pin is < VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return 
of actual I/O pin values.

REGISTER 11-3: TRISA: PORTA TRI-STATE REGISTER

U-0 U-0 R/W-1/1 R/W-1/1 U-1 R/W-1/1 R/W-1/1 R/W-1/1

— — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-6 Unimplemented: Read as ‘0’

bit 5-4 TRISA<5:4>: PORTA Tri-State Control bit
1 = PORTA pin configured as an input (tri-stated)
0 = PORTA pin configured as an output

bit 3 Unimplemented: Read as ‘1’

bit 2-0 TRISA<2:0>: PORTA Tri-State Control bit
1 = PORTA pin configured as an input (tri-stated)
0 = PORTA pin configured as an output

Note 1: Unimplemented, read as ‘1’.
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TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

ANSELA — — — ANSA4 — ANSA2 ANSA1 ANSA0 99

INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 64

IOCAF — — IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0 106

IOCAN — — IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0 106

IOCAP — — IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0 106

TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 98

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by interrupt-on-change.
Note 1: Unimplemented, read as ‘1’.
 2011-2015 Microchip Technology Inc. DS40001607D-page 107
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18.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the
following features:

• 8-bit timer/counter register (TMR0)

• 3-bit prescaler (independent of Watchdog Timer)

• Programmable internal or external clock source

• Programmable external clock edge selection

• Interrupt on overflow

• TMR0 can be used to gate Timer1

Figure 18-1 is a block diagram of the Timer0 module.

18.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer
or an 8-bit counter.

18.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction
cycle, if used without a prescaler. 8-bit Timer mode is
selected by clearing the TMR0CS bit of the
OPTION_REG register.

When TMR0 is written, the increment is inhibited for
two instruction cycles immediately following the write. 

18.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment
on every rising or falling edge of the T0CKI pin.

8-Bit Counter mode using the T0CKI pin is selected by
setting the TMR0CS bit in the OPTION_REG register to
‘1’. 

The rising or falling transition of the incrementing edge
for either input source is determined by the TMR0SE bit
in the OPTION_REG register.

FIGURE 18-1: TIMER0 BLOCK DIAGRAM   

Note: The value written to the TMR0 register
can be adjusted, in order to account for
the two instruction cycle delay when
TMR0 is written.

Rev. 10-000017A
8/5/2013
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PIC16(L)F1503
21.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a
synchronous serial data communication bus that
operates in Full-Duplex mode. Devices communicate
in a master/slave environment where the master device
initiates the communication. A slave device is
controlled through a Chip Select known as Slave
Select. 

The SPI bus specifies four signal connections:

• Serial Clock (SCKx)

• Serial Data Out (SDOx)

• Serial Data In (SDIx)

• Slave Select (SSx)

Figure 21-1 shows the block diagram of the MSSP
module when operating in SPI mode.

The SPI bus operates with a single master device and
one or more slave devices. When multiple slave
devices are used, an independent Slave Select con-
nection is required from the master device to each
slave device.

Figure 21-4 shows a typical connection between a
master device and multiple slave devices.

The master selects only one slave at a time. Most slave
devices have tri-state outputs so their output signal
appears disconnected from the bus when they are not
selected.

Transmissions involve two shift registers, eight bits in
size, one in the master and one in the slave. With either
the master or the slave device, data is always shifted
out one bit at a time, with the Most Significant bit (MSb)
shifted out first. At the same time, a new Least
Significant bit (LSb) is shifted into the same register.

Figure 21-5 shows a typical connection between two
processors configured as master and slave devices.

Data is shifted out of both shift registers on the pro-
grammed clock edge and latched on the opposite edge
of the clock.

The master device transmits information out on its
SDOx output pin which is connected to, and received
by, the slave’s SDIx input pin. The slave device trans-
mits information out on its SDOx output pin, which is
connected to, and received by, the master’s SDIx input
pin.

To begin communication, the master device first sends
out the clock signal. Both the master and the slave
devices should be configured for the same clock polar-
ity. 

The master device starts a transmission by sending out
the MSb from its shift register. The slave device reads
this bit from that same line and saves it into the LSb
position of its shift register. 

During each SPI clock cycle, a full-duplex data
transmission occurs. This means that while the master
device is sending out the MSb from its shift register (on
its SDOx pin) and the slave device is reading this bit
and saving it as the LSb of its shift register, that the
slave device is also sending out the MSb from its shift
register (on its SDOx pin) and the master device is
reading this bit and saving it as the LSb of its shift
register.

After eight bits have been shifted out, the master and
slave have exchanged register values.

If there is more data to exchange, the shift registers are
loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data),
depends on the application software. This leads to
three scenarios for data transmission:

• Master sends useful data and slave sends dummy 
data.

• Master sends useful data and slave sends useful 
data.

• Master sends dummy data and slave sends useful 
data.

Transmissions may involve any number of clock
cycles. When there is no more data to be transmitted,
the master stops sending the clock signal and it dese-
lects the slave.

Every slave device connected to the bus that has not
been selected through its slave select line must disre-
gard the clock and transmission signals and must not
transmit out any data of its own.
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FIGURE 21-5: SPI MASTER/SLAVE CONNECTION 

SPI Master SSPM<3:0> = 00xx
= 1010

SDOx

SDOx
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SDIx

Serial Input Buffer
(SSPxBUF)

Serial Input Buffer
(SSPxBUF)

Shift Register
(SSPxSR)

Shift Register
(SSPxSR)

SPI Slave SSPM<3:0> = 010x

MSb MSbLSb LSb
SCKx SCKx

General I/O SSx
Slave Select

(optional)

Serial clock

Processor 1 Processor 2
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21.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time
because it controls the SCKx line. The master
determines when the slave (Processor 2, Figure 21-5)
is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as
soon as the SSPxBUF register is written to. If the SPI
is only going to receive, the SDOx output could be dis-
abled (programmed as an input). The SSPxSR register
will continue to shift in the signal present on the SDIx
pin at the programmed clock rate. As each byte is
received, it will be loaded into the SSPxBUF register as
if a normal received byte (interrupts and Status bits
appropriately set).

The clock polarity is selected by appropriately
programming the CKP bit of the SSPxCON1 register
and the CKE bit of the SSPxSTAT register. This then,
would give waveforms for SPI communication as
shown in Figure 21-6, Figure 21-8, Figure 21-9 and
Figure 21-10, where the MSb is transmitted first. In
Master mode, the SPI clock rate (bit rate) is user
programmable to be one of the following:

• FOSC/4 (or TCY)

• FOSC/16 (or 4 * TCY)

• FOSC/64 (or 16 * TCY)

• Timer2 output/2 

• Fosc/(4 * (SSPxADD + 1))

Figure 21-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDOx data is valid before
there is a clock edge on SCKx. The change of the input
sample is shown based on the state of the SMP bit. The
time when the SSPxBUF is loaded with the received
data is shown.

FIGURE 21-6: SPI MODE WAVEFORM (MASTER MODE)        
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(CKP = 0

SCKx
(CKP = 1

SCKx
(CKP = 0

SCKx
(CKP = 1

4 Clock
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bit 7 bit 0

SDOx bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 7

SDIx

SSPxIF

(SMP = 1)

(SMP = 0)

(SMP = 1)

CKE = 1)

CKE = 0)
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CKE = 0)

(SMP = 0)
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SSPxBUF

SSPxSR to
SSPxBUF
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21.3 I2C MODE OVERVIEW

The Inter-Integrated Circuit Bus (I2C) is a multi-master
serial data communication bus. Devices communicate
in a master/slave environment where the master
devices initiate the communication. A slave device is
controlled through addressing.

The I2C bus specifies two signal connections:

• Serial Clock (SCLx)

• Serial Data (SDAx)

Figure 21-2 and Figure 21-3 show the block diagrams
of the MSSP module when operating in I2C mode.

Both the SCLx and SDAx connections are bidirectional
open-drain lines, each requiring pull-up resistors for the
supply voltage. Pulling the line to ground is considered
a logical zero and letting the line float is considered a
logical one.

Figure 21-11 shows a typical connection between two
processors configured as master and slave devices.

The I2C bus can operate with one or more master
devices and one or more slave devices. 

There are four potential modes of operation for a given
device:

• Master Transmit mode
(master is transmitting data to a slave)

• Master Receive mode
(master is receiving data from a slave)

• Slave Transmit mode
(slave is transmitting data to a master)

• Slave Receive mode
(slave is receiving data from the master)

To begin communication, a master device starts out in
Master Transmit mode. The master device sends out a
Start bit followed by the address byte of the slave it
intends to communicate with. This is followed by a sin-
gle Read/Write bit, which determines whether the mas-
ter intends to transmit to or receive data from the slave
device.

If the requested slave exists on the bus, it will respond
with an Acknowledge bit, otherwise known as an ACK.
The master then continues in either Transmit mode or
Receive mode and the slave continues in the comple-
ment, either in Receive mode or Transmit mode,
respectively.

A Start bit is indicated by a high-to-low transition of the
SDAx line while the SCLx line is held high. Address and
data bytes are sent out, Most Significant bit (MSb) first.
The Read/Write bit is sent out as a logical one when the
master intends to read data from the slave, and is sent
out as a logical zero when it intends to write data to the
slave. 

FIGURE 21-11: I2C MASTER/
SLAVE CONNECTION

The Acknowledge bit (ACK) is an active-low signal,
which holds the SDAx line low to indicate to the trans-
mitter that the slave device has received the transmit-
ted data and is ready to receive more.

The transition of a data bit is always performed while
the SCLx line is held low. Transitions that occur while
the SCLx line is held high are used to indicate Start and
Stop bits.

If the master intends to write to the slave, then it repeat-
edly sends out a byte of data, with the slave responding
after each byte with an ACK bit. In this example, the
master device is in Master Transmit mode and the
slave is in Slave Receive mode.

If the master intends to read from the slave, then it
repeatedly receives a byte of data from the slave, and
responds after each byte with an ACK bit. In this exam-
ple, the master device is in Master Receive mode and
the slave is Slave Transmit mode.

On the last byte of data communicated, the master
device may end the transmission by sending a Stop bit.
If the master device is in Receive mode, it sends the
Stop bit in place of the last ACK bit. A Stop bit is indi-
cated by a low-to-high transition of the SDAx line while
the SCLx line is held high.

In some cases, the master may want to maintain con-
trol of the bus and re-initiate another transmission. If
so, the master device may send another Start bit in
place of the Stop bit or last ACK bit when it is in receive
mode.

The I2C bus specifies three message protocols;

• Single message where a master writes data to a 
slave.

• Single message where a master reads data from 
a slave.

• Combined message where a master initiates a 
minimum of two writes, or two reads, or a 
combination of writes and reads, to one or more 
slaves.

SCLx

SDAx

Master
VDD

VDD

SCLx

SDAx

Slave
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21.6.8 ACKNOWLEDGE SEQUENCE 
TIMING

An Acknowledge sequence is enabled by setting the
Acknowledge Sequence Enable bit, ACKEN bit of the
SSPxCON2 register. When this bit is set, the SCLx pin is
pulled low and the contents of the Acknowledge data bit
are presented on the SDAx pin. If the user wishes to
generate an Acknowledge, then the ACKDT bit should
be cleared. If not, the user should set the ACKDT bit
before starting an Acknowledge sequence. The Baud
Rate Generator then counts for one rollover period
(TBRG) and the SCLx pin is deasserted (pulled high).
When the SCLx pin is sampled high (clock arbitration),
the Baud Rate Generator counts for TBRG. The SCLx pin
is then pulled low. Following this, the ACKEN bit is auto-
matically cleared, the Baud Rate Generator is turned off
and the MSSP module then goes into Idle mode
(Figure 21-30).

21.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge
sequence is in progress, then the WCOL bit is set and
the contents of the buffer are unchanged (the write
does not occur).

21.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a
receive/transmit by setting the Stop Sequence Enable
bit, PEN bit of the SSPxCON2 register. At the end of a
receive/transmit, the SCLx line is held low after the
falling edge of the ninth clock. When the PEN bit is set,
the master will assert the SDAx line low. When the
SDAx line is sampled low, the Baud Rate Generator is
reloaded and counts down to ‘0’. When the Baud Rate
Generator times out, the SCLx pin will be brought high
and one TBRG (Baud Rate Generator rollover count)
later, the SDAx pin will be deasserted. When the SDAx
pin is sampled high while SCLx is high, the P bit of the
SSPxSTAT register is set. A TBRG later, the PEN bit is
cleared and the SSPxIF bit is set (Figure 21-31).

21.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence
is in progress, then the WCOL bit is set and the
contents of the buffer are unchanged (the write does
not occur).

FIGURE 21-30: ACKNOWLEDGE SEQUENCE WAVEFORM         

Note: TBRG = one Baud Rate Generator period.

SDAx

SCLx

SSPxIF set at 

Acknowledge sequence starts here,
write to SSPxCON2

ACKEN automatically cleared

Cleared in

TBRG TBRG

the end of receive

8

ACKEN = 1, ACKDT = 0

D0

9

SSPxIF

software SSPxIF set at the end
of Acknowledge sequence

Cleared in
software

ACK
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TABLE 23-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Name Bit7 Bit6 Bit5 Bit4 BIt3 Bit2 Bit1 Bit0
Register 
on Page

ANSELA — — — ANSA4 — ANSA2 ANSA1 ANSA0 99

ANSELC — — — — ANSC3 ANSC2 ANSC1 ANSC0 103

CLC1CON LC1EN LC1OE LC1OUT LC1INTP LC1INTN LC1MODE<2:0> 220

CLCDATA — — — — — MLC3OUT MLC2OUT MLC1OUT 228

CLC1GLS0 LC1G1D4T LC1G1D4N LC1G1D3T LC1G1D3N LC1G1D2T LC1G1D2N LC1G1D1T LC1G1D1N 224

CLC1GLS1 LC1G2D4T LC1G2D4N LC1G2D3T LC1G2D3N LC1G2D2T LC1G2D2N LC1G2D1T LC1G2D1N 225

CLC1GLS2 LC1G3D4T LC1G3D4N LC1G3D3T LC1G3D3N LC1G3D2T LC1G3D2N LC1G3D1T LC1G3D1N 226

CLC1GLS3 LC1G4D4T LC1G4D4N LC1G4D3T LC1G4D3N LC1G4D2T LC1G4D2N LC1G4D1T LC1G4D1N 227

CLC1POL LC1POL — — — LC1G4POL LC1G3POL LC1G2POL LC1G1POL 221

CLC1SEL0 — LC1D2S<2:0> — LC1D1S<2:0> 222

CLC1SEL1 — LC1D4S<2:0> — LC1D3S<2:0> 223

CLC2CON LC2EN LC2OE LC2OUT LC2INTP LC2INTN LC2MODE<2:0> 220

CLC2GLS0 LC2G1D4T LC2G1D4N LC2G1D3T LC2G1D3N LC2G1D2T LC2G1D2N LC2G1D1T LC2G1D1N 224

CLC2GLS1 LC2G2D4T LC2G2D4N LC2G2D3T LC2G2D3N LC2G2D2T LC2G2D2N LC2G2D1T LC2G2D1N 225

CLC2GLS2 LC2G3D4T LC2G3D4N LC2G3D3T LC2G3D3N LC2G3D2T LC2G3D2N LC2G3D1T LC2G3D1N 226

CLC2GLS3 LC2G4D4T LC2G4D4N LC2G4D3T LC2G4D3N LC2G4D2T LC2G4D2N LC2G4D1T LC2G4D1N 227

CLC2POL LC2POL — — — LC2G4POL LC2G3POL LC2G2POL LC2G1POL 221

CLC2SEL0 — LC2D2S<2:0> — LC2D1S<2:0> 222

CLC2SEL1 — LC2D4S<2:0> — LC2D3S<2:0> 223

INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 64

PIE3 — — — — — — CLC2IE CLC1IE 67

PIR3 — — — — — — CLC2IF CLC1IF 70

TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 98

TRISC — — TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 102

Legend: — = unimplemented read as ‘0’,. Shaded cells are not used for CLC module.
Note 1: Unimplemented, read as ‘1’.
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26.0 IN-CIRCUIT SERIAL 
PROGRAMMING™ (ICSP™)

ICSP™ programming allows customers to manufacture
circuit boards with unprogrammed devices. Programming
can be done after the assembly process allowing the
device to be programmed with the most recent firmware
or a custom firmware. Five pins are needed for ICSP™
programming:

• ICSPCLK

• ICSPDAT

• MCLR/VPP

• VDD

• VSS

In Program/Verify mode the program memory, user IDs
and the Configuration Words are programmed through
serial communications. The ICSPDAT pin is a bidirec-
tional I/O used for transferring the serial data and the
ICSPCLK pin is the clock input. For more information on
ICSP™ refer to the “PIC12(L)F1501/PIC16(L)F150X
Memory Programming Specification” (DS41573).

26.1 High-Voltage Programming Entry 
Mode

The device is placed into High-Voltage Programming
Entry mode by holding the ICSPCLK and ICSPDAT
pins low then raising the voltage on MCLR/VPP to VIHH. 

26.2 Low-Voltage Programming Entry 
Mode

The Low-Voltage Programming Entry mode allows the
PIC® Flash MCUs to be programmed using VDD only,
without high voltage. When the LVP bit of Configuration
Words is set to ‘1’, the ICSP Low-Voltage Programming
Entry mode is enabled. To disable the Low-Voltage
ICSP mode, the LVP bit must be programmed to ‘0’. 

Entry into the Low-Voltage Programming Entry mode
requires the following steps:

1. MCLR is brought to VIL.

2. A 32-bit key sequence is presented on
ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, MCLR must be
held at VIL for as long as Program/Verify mode is to be
maintained.

If low-voltage programming is enabled (LVP = 1), the
MCLR Reset function is automatically enabled and
cannot be disabled. See Section 6.5 “MCLR” for more
information.

The LVP bit can only be reprogrammed to ‘0’ by using
the High-Voltage Programming mode.

26.3 Common Programming Interfaces

Connection to a target device is typically done through
an ICSP™ header. A commonly found connector on
development tools is the RJ-11 in the 6P6C (6-pin,
6-connector) configuration. See Figure 26-1.

FIGURE 26-1: ICD RJ-11 STYLE 
CONNECTOR INTERFACE

Another connector often found in use with the PICkit™
programmers is a standard 6-pin header with 0.1 inch
spacing. Refer to Figure 26-2. 

1

2

3

4

5

6

Target

Bottom Side
PC BoardVPP/MCLR VSS

ICSPCLK
VDD

ICSPDAT
NC

Pin Description*

1 = VPP/MCLR

2 = VDD Target

3 = VSS (ground)

4 = ICSPDAT

5 = ICSPCLK

6 = No Connect
 2011-2015 Microchip Technology Inc. DS40001607D-page 249



PIC16(L)F1503
FIGURE 28-1: VOLTAGE FREQUENCY GRAPH, -40°C  TA +125°C, PIC16F1503 ONLY

FIGURE 28-2: VOLTAGE FREQUENCY GRAPH, -40°C  TA +125°C, PIC16LF1503 ONLY
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         2:  Refer to Table 28-8 for each Oscillator mode’s supported frequencies.
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Note 1:  The shaded region indicates the permissible combinations of voltage and frequency.

         2:  Refer to Table 28-8 for each Oscillator mode’s supported frequencies.
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FIGURE 29-52: FVR STABILIZATION PERIOD

Typical
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Max: Typical + 3
Typical: statistical mean @ 25°C

Note: 
The FVR Stabilization Period applies when:
1) coming out of RESET or exiting Sleep mode for PIC12/16LFxxxx devices.
2) when exiting sleep mode with VREGPM = 1 for PIC12/16Fxxxx devices
In all other cases, the FVR is stable when released from RESET.
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Note: For the most current package drawings, please see the Microchip Packaging Specification located at 
http://www.microchip.com/packaging
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